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Retrieving classical information encoded in optical modes is at the heart of many quantum information
processing tasks, especially in the field of quantum communication and sensing. Yet, despite its importance,
the fundamental limits of optical mode discrimination have been studied only in a few specific examples.
Here we present a toolbox to find the optimal discrimination of any set of optical modes. The toolbox uses
linear and semidefinite programming techniques, which provide rigorous (not heuristic) bounds, and which
can be efficiently solved on standard computers. We study both probabilistic and unambiguous single-shot
discrimination in two scenarios: the channel-discrimination scenario, typical of metrology, in which the verifier
holds the light source and can set up a reference frame for the phase; and the source-discrimination scenario,
more frequent in cryptography, in which the verifier only sees states that are diagonal in the photon-number
basis. Our techniques are illustrated with several examples. Among the results, we find that, for many sets of
modes, the optimal state for mode discrimination is a superposition or mixture of at most two number states; but
this is not general, and we also exhibit counterexamples.
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I. INTRODUCTION

In quantum optical systems, information can be encoded in
the quantum state, in the optical mode, or in both [1]. In this
paper, we consider situations in which classical information
is encoded in optical modes and address the problem of the
ultimate limits in discriminating such modes (i.e., in retriev-
ing the classical information). Consider a set of N modes
associated to the annihilation operators {a1, a2, ..., aN } and
characterized by their commutation relations:

[ai, a†
j ] = ki j1 , |ki j | � 1. (1)

Two modes are called orthogonal if ki j = δi j . The sim-
plest example of nonorthogonal modes is a1 = a, a2 = ka +√

1 − |k|2b with [a, b†] = 0. This paper is devoted to single-
shot discrimination of modes under an energy constraint that
fixes the average number of photons n̄. The constraint is mo-
tivated by the fact that any set of modes becomes perfectly
distinguishable in the high intensity limit. Even for fixed n̄,
the probability of discrimination varies with the quantum state
encoded in the modes [2]. This is the optimization that we
need to tackle.

Mode discrimination takes different forms, depending
on the experimental scenario that is considered. We shall
consider two scenarios in this paper. In the channel-
discrimination scenario [Fig. 1(a)], the mode is created by the
unitary channel that maps a default mode a0 onto one of the
a j . The source of light is in the hands of the verifiers, who
can therefore avail themselves of a reference beam (idler) in
addition to the beam that will be sent through the channel
(signal). Then, the phase of the mode signal relative to the
idler is defined; for instance, it becomes possible to discrim-

inate a1 = a from a2 = −a. If the reference is classical (i.e.,
an intense coherent state), as we shall assume here, the phase
can be perfectly defined and the state in the channel can be
taken to be pure; this choice is optimal for discrimination. The
channel-discrimination scenario has a clearly metrological fla-
vor: Besides the obvious case of phase discrimination [3,4], it
can be seen as a special case of quantum reading [5–8], in
which the devices to be discriminated are the unitary channels
mentioned above. We refer to Ref. [9] for a review of such
metrological schemes.

The situation is different in the source-discrimination sce-
nario, in which the source of light is inside the same black
box that performs the encoding of the mode [Fig. 1(b)].
From the point of view of the verifier, the phase of the sig-
nal mode is global and thus inaccessible. The state as seen
from the verifier is the mixture over all possible values of
the mode’s phase: such a state is diagonal in the Fock basis
[10].1 The flavor of the source-discrimination scenario is more
cryptographic. Information is encoded in the modes in all

1This statement should not be misread as contradicting the known
facts that successive pulses in a laser may have relative coherence
[11], and that such coherence may affect the unconditional security
of cryptographic protocols, even if the encoding of classical infor-
mation ignores those phases [12]. For one, here the modes to be
discriminated may include relative phases between physical pulses
(see, e.g., Sec. IV D). Once these modes are decided, we are studying
single-shot discrimination, a task for which possible phases between
successive instances of the modes indeed will not matter. In other
words, we do not need to request the source to perform active phase
randomization for the state to be Fock diagonal.
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(a)

(b)

FIG. 1. The two scenarios considered in this paper for mode dis-
crimination. (a) Channel-discrimination scenario, studied in Sec. II.
The mode aj to be discriminated is encoded by a unitary transfor-
mation from an input mode a0. The verifier has control of the source
(star) and can add a reference beam, with respect to which phase of
the signal beam is well defined. If the reference is classical, the state
in the signal beam can be taken as pure. (b) Source-discrimination
scenario, studied in Sec. III. The source itself is in the black box,
whence the signal exits encoded in the mode to be discriminated. For
the verifier, the phase of the signal beam is global, and therefore the
state appears as a photon-number mixture.

the discrete-variable (e.g., BB84 [13]) and distributed-phase-
reference (e.g., differential phase shift (DPS) [14], coherent
one-way (COW) [15]) protocols for quantum key distribution
(QKD), and also in protocols other than QKD, for instance,
quantum fingerprinting [16,17]. For all these protocols, Eve
ultimately wants to learn the mode in which the signals were
encoded. Furthermore, it is well-known that the security of
these protocols also depends on the photon number distribu-
tion [18]. Of course, the analysis of a cryptographic protocol
goes beyond single-shot mode discrimination [19–21]. This
may be the reason why, to the best of our knowledge, the latter
has not been previously studied in the source-discrimination
scenario.

In this paper, we provide recipes to compute upper
bounds for single-shot discrimination (both probabilistic
and unambiguous) of any set of modes, i.e., for arbitrary
commutation relations (1). Specifically, we show that those
optimizations can be cast as a semidefinite programming
(SDP) relaxation based on the work of Ref. [22]. Note that
techniques based on SDP have also been used in the context
of quantum state discrimination [23,24]. We present the
recipes for the channel-discrimination scenario in Sec. II, and
for the source-discrimination scenario in Sec. III. In Sec. IV,
we illustrate our method with several case studies: two modes
(Sec. IV A), phase discrimination (Sec. IV B), a family of d
modes and its Fourier-dual family (Sec. IV C), and the modes
that appear in the DPS QKD protocol (Sec. IV D). Finally, in
Sec. V, we discuss the extension of our study when losses are
present between the device that encodes the modes and the
measurement.

II. CHANNEL-DISCRIMINATION SCENARIO

Let us first consider the channel-discrimination sce-
nario. Suppose there are N different optical modes M =

{a1, ..., aN }, with commutation relations given by Eq. (1).
As mentioned previously, in the presence of the reference
beam, the phase of the signal mode could be defined rel-
ative to the the phase of the reference beam. Hence, the
receiver’s task is to discriminate between pure states R =
{|ψ1〉 , |ψ2〉 , ..., |ψN 〉}, where

|ψ j〉 =
∞∑

n=0

cn

(a†
j )

n

√
n!

|0〉 ≡
∞∑

n=0

cn |n j〉 , (2)

where cn is an arbitrary complex number such that |cn|2 = pn

is the probability of the source emitting n photons. We also
introduced the shorthand |n j〉 denoting the n-photon state in
the mode a j . The inner product of the states associated to
different modes can be computed easily:

〈ψi |ψ j〉 =
∞∑

n=0

pnkn
i j . (3)

Note that the inner-product depends only on the photon num-
ber distribution {pn} and the commutation relations between
different modes defined in Eq. (1).

A. Probabilistic mode discrimination

We first consider the setting for probabilistic discrimina-
tion. For uniform priors (our method can be easily generalized
to any fixed priors), the optimal guessing probability is given
by

Popt
corr = max

{Mj },{cn}
1

N

N∑
j=1

〈ψ j | Mj |ψ j〉 , (4)

where Mj is the positive operator-valued measure (POVM)
element associated with the outcome j and cn is the coeffi-
cient of the state when written in the photon number basis.
In other words, we have to optimize both the state and the
measurements that maximize the guessing probability, subject
to the energy constraint. Let us now cast this optimization into
a SDP by adapting the techniques of Ref. [22]. Before getting
to it, we notice that Refs. [22,25,26] consider a hierarchy of
semidefinite relaxations, which, in general, only yield upper
bounds on the guessing probability. However, since we only
consider a single receiver with no classical inputs, going into
the second level of the hierarchy will satisfy the rank loop
condition [26] and hence the first level of the hierarchy is
actually tight.

Here comes the construction. Consider the set O =
{1, M1, ..., MN }. As discussed in [22,25,26], the {Mi} can
be taken as projective measurements without any loss of
generality. Denoting Oi the elements of O, one can define
a set of vectors S = {Oi |ψ j〉 : Oi ∈ O, |ψ j〉 ∈ R}. Since all
Gram matrices are positive semidefinite, so is the N (N +
1) × N (N + 1) Gram matrix G associated to the set S . Hence
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we have

Popt
corr = max

G,{pn}
1

N

N∑
j=1

〈ψ j | Mj |ψ j〉

s.t. pn � 0 ∀n,∑
n

pn = 1,

∑
n

pnn = n̄,

G 	 0

〈ψi |ψ j〉 =
∑

n

pnkn
i j ∀i, j,

(5)

where the last relation is Eq. (3) and determines the entries of
G associated with O0 = 1.

However, this is an optimization problem with infinitely
many variables pn and hence is computationally intractable.
We the relax it by truncating the number of photons to nmax

(i.e., we’ll have nmax + 1 variables pn). We do it in such a
way as to obtain an upper bound PSDP

corr � Popt
corr on the mode

discrimination probabilities, that is, we derive some necessary
(but not sufficient) conditions on the photon number distribu-
tion, and as a result the feasible region may be larger than the
one allowed by quantum theory. Clearly, the relaxation can be
made arbitrarily tight by increasing the photon number cutof,
and we expect Popt

corr ≈ PSDP
corr when n̄ � nmax.

We then define the truncated state

|ψ̃ j〉 =
nmax∑
n=0

cn
1√
n!

a†
j
n |0〉 (6)

that is subnormalized:
nmax∑
n=0

pn � 1. (7)

The inner product of the truncated states is

〈ψ̃i|ψ̃ j〉 =
nmax∑
n=0

pnkn
i j (8)

and its difference with the inner product of the full states can
be bounded as

|〈ψ̃i|ψ̃ j〉 − 〈ψi|ψ j〉| =
∣∣∣∣∣

∑
n>nmax

pnkn
i j

∣∣∣∣∣
�

∑
n>nmax

pn|ki j |n

�
(

1 −
nmax∑
n=0

pn

)
|ki j |nmax+1 ≡ εi j,

(9)

where the first inequality is a consequence of triangle inequal-
ity and the second inequality is due to the fact that |ki j | � 1.
The constraint on the mean photon number can be relaxed to

nmax∑
n=0

pnn + (nmax + 1)

(
1 −

nmax∑
n=0

pn

)
� n̄. (10)

All in all, we have Popt
corr � PSDP

corr with

PSDP
corr = max

G,{pn}
1

N

N∑
j=1

〈ψ j | Mj |ψ j〉

s.t. G 	 0

pn � 0 ∀n � nmax∑
n�nmax

pn � 1

∑
n�nmax

pn(nmax + 1 − n) � nmax + 1 − n̄

|〈ψi|ψ j〉 − 〈ψ̃i|ψ̃ j〉| � εi j ∀i, j,

(11)

where the last constraint uses the expressions (8) and (9).
That constraint is linear in the pn when ki j is real; when ki j

is complex, we can rewrite it as

(
εi j 〈ψi|ψ j〉 − 〈ψ̃i|ψ̃ j〉(〈ψi|ψ j〉 − 〈ψ̃i|ψ̃ j〉

)∗
εi j

)
	 0, (12)

which is a matrix inequality linear in the pn, hence a valid
SDP constraint.

B. Unambiguous mode discrimination

The same technique can be adapted to find the maximum
success probability for unambiguous mode discrimination.
For unambiguous discrimination, one must allow for the
inconclusive outcome, which we associate to the POVM el-
ement M∅. The Gram matrix G will correspondingly increase
in size to N (N + 2) × N (N + 2). Then we must add the con-
straint that the probability of error is zero:

N∑
j=1

∑
i = j,i =∅

〈ψ j | Mi |ψ j〉 = 0. (13)

In the study of unambiguous discrimination, the aim is to
minimize the probability of the inconclusive outcome or,
equivalently, to maximize the success probability. Assuming
uniform priors, the success probability is given by

PUD = 1 − 1

N

N∑
j=1

〈ψ j | M∅ |ψ j〉 . (14)

Note that both the success probability and the error probability
are linear functions of the Gram matrix G. Hence, putting
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everything together, we have Popt
UD � PSDP

UD with

PSDP
UD = max

G,{pn}
1 − 1

N

N∑
j=1

〈ψ j | M∅ |ψ j〉

s.t. pn � 0 ∀n � nmax∑
n�nmax

pn � 1

∑
n�nmax

pn(nmax + 1 − n) � nmax + 1 − n̄

G 	 0

|〈ψi|ψ j〉 − 〈ψ̃i|ψ̃ j〉| � εi j ∀i, j

N∑
j=1

∑
i = j,i =∅

〈ψ j | Mi |ψ j〉 = 0.

(15)

Recall that unambiguous state discrimination is possible
if and only if the states to be discriminated are linearly in-
dependent. But unambiguous mode discrimination is possible
even for linearly dependent modes, as the linear independence
of the states is provided by the multiphoton components. In
fact, the families studied in Secs. IV B–IV D will be linearly
dependent.

III. SOURCE-DISCRIMINATION SCENARIO

In the source-discrimination scenario, the task is to dis-
criminate between states {ρ1, ρ2, ..., ρN } that are diagonal in
the Fock basis, subject to the energy constraint. Indeed, even
assuming that the source produces a pure state

|ψ j (θ )〉 =
∞∑

n=0

cn

(eiθ a†
j )

n

√
n!

|0〉 (16)

[this is Eq. (2) with explicit mention of the global phase θ

of the signal mode], in the absence of a reference beam, the
information available to the receiver is the phase-randomized
state:

ρ j =
∫ 2π

0

dθ

2π
|ψ j (θ )〉 〈ψ j (θ )| =

∞∑
n=0

pn|n j〉〈n j |. (17)

Since the states to be discriminated are diagonal in the Fock
basis, nothing is lost if the receiver starts by measuring the
number of photons, then uses the best discrimination strategy
for the given value of n. This will manifest itself in the possi-
bility of splitting the optimization in two steps.

A. Probabilistic mode discrimination

For probabilistic mode discrimination, the guessing proba-
bility is given by

Popt
corr = max

{pn},{Mj }
1

N

N∑
j=1

Tr(ρ jMj )

≡ max
{pn}

∞∑
n=0

pnP(n)
corr, (18)

where

P(n)
corr = max

{Mj}
1

N

N∑
j=1

〈n j | Mj |n j〉 (19)

is the optimal guessing probability for n photons. Therefore,
as expected, we can split the optimization into two steps. In
the first step, we solve (19) for each value of n. This can
be done using the SDP technique of Ref. [22]. Similar to
what we have done in the channel-discrimination scenario,
consider the set Rn = {|n1〉 , |n2〉 , ..., |nN 〉} which are Fock
state n from the set of modes M. We define the set of vectors
Sn = {Oi |n j〉 : Oi ∈ O, |n j〉 ∈ Rn}. Now, denote the Gram
matrix associated to Sn by G(n). The SDP to bound P(n)

corr is

P(n)
corr = max

G(n)

1

N

N∑
j=1

〈n j | Mj |n j〉

s.t. G(n) 	 0

〈ni| n j〉 = kn
i j,

(20)

which we have to solve for each photon number n. In the
second step, having P(n)

corr for each photon number n, we just
need to enforce the energy constraint. This remaining step is
a linear program (LP):

Popt
corr = max

{pn}

∑
n

pnP(n)
corr

s.t. pn � 0 ∀n,∑
n

pn = 1,

∑
n

pnn = n̄.

(21)

Like in the channel-discrimination scenario, we have infinitely
many variables pn, so we need a cutoff that relaxes the original
LP. With the same arguments as above, the resulting relaxation
PLP

corr � Popt
corr is given by

PLP
corr = max

{pn}

nmax∑
n=0

pnP(n)
corr +

(
1 −

nmax∑
n=0

pn

)

s.t. pn � 0 ∀n � nmax,

nmax∑
n=0

pn � 1,

nmax∑
n=0

pnn +
(

1 −
nmax∑
n=0

pn

)
(nmax + 1) � n̄.

(22)

Notice that this relaxation is equivalent to assuming that the
modes are perfectly distinguishable for n > nmax. This is a
good approximation when we pick sufficiently high photon
number cutoff nmax.
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B. Unambiguous mode discrimination

Also, for unambiguous state discrimination, the optimal
success probability is of the form

Popt
UD = max

{pn}

∑
n

pnP(n)
UD (23)

and can be bounded in two steps. In the first step, P(n)
UD is

computed from the SDP,

P(n)
UD = max

G(n)
1 − 1

N

N∑
j=1

〈n j | M∅ |n j〉

s.t. G(n) 	 0,

〈ni|n j〉 = kn
i j,

〈n j | Mi |n j〉 = 0, ∀i = j, i = ∅,

(24)

where the last constraint captures the unambiguous discrimi-
nation condition

N∑
j=1

∑
i = j,i =∅

Tr(ρ jMi ) = 0, (25)

which is indeed satisfied if and only if 〈n j | Mi |n j〉 = 0 for
all n whenever i = ∅, j = i. In the second step, the energy
constraint is enforced in a LP, which we write down directly
for the relaxation PLP

UD � Popt
UD with a photon-number cutoff:

PLP
UD = max

{pn}

nmax∑
n=0

pnP(n)
UD +

(
1 −

nmax∑
n=0

pn

)

s.t. pn � 0 ∀n � nmax,

nmax∑
n=0

pn � 1,

nmax∑
n=0

pnn +
(

1 −
nmax∑
n=0

pn

)
(nmax + 1) � n̄.

(26)

C. Toward an analytical solution of the LP

We have just seen that the final step of the optimization for
the source-discrimination scenario is a LP of the form

Popt = max
{pn}

∑
n

pnan

s.t. pn � 0 ∀n,∑
n

pn = 1,

∑
n

pnn = n̄,

(27)

where an = P(n)
corr for probabilistic discrimination and an =

P(n)
UD for unambiguous discrimination. For a given set of coef-

ficients {an}, this LP can be solved analytically. We are going
to show how this can be done and highlight a condition on the
{an} under which the solution can be easily spelled out.

a
0

a
1
' a

1
a

2
a

3

L
1

L
2 L

3

L
0

L
obj

L
1
'

FIG. 2. Geometrical solution of the dual LP (28). The first con-
straint is associated to the line L0 : x = a0, and is satisfied in the
half-space x � a0. For n > 0, the constraint is associated to the
line Ln : y = − 1

n (x − an) and the region satisfying that constraint
is the upper half-space above Ln. The feasible region is the region
where all constraints are satisfied (shaded area, drawn for n � 3).
The objective function is a line Lobj with gradient −1/n̄ (dashed;
for the plot, n̄ = 0.5). The dual problem can hence be understood as
finding the minimum y-intercept by translating the line Lobj vertically
while ensuring that it still touches the feasible region. The an satisfy
(29) and thus all the Ln contribute nontrivially to the boundary of the
feasible region. Had we chosen a′

1 instead of a1, the line L′
1 (dotted)

would not contribute to that boundary; that is, the constraint for n = 1
would always be satisfied within the feasible region.

The LP (27) is written in the so-called primal form. One
could also consider its dual form given by [27]

d∗ = min
x,y

x + n̄y

s.t. y � −1

n
(x − an) ∀n.

(28)

Due to the strong duality of LP, we know that d∗ = Popt and
hence it is sufficient to solve the dual problem.

Whereas the primal problem is an optimization over in-
finitely many variables with a few equality constraints, the
dual problem is an optimization over two variables with in-
finitely many constraints, which define the feasible region.
The way to solve the dual problem is easily understood
geometrically (Fig. 2). One translates the lines Lobj(d ) =
{(x, y) | x + n̄y = d} with fixed gradient −1/n̄ till finding the
lowest one that has at least one point in the feasible region. But
the boundary of the feasible region is given by segments of
straight lines Ln of gradient −1/n. So the limiting line Lobj(d∗)
may touch the boundary of the feasible set either in a single
point (the intersection of two Ln, as illustrated in the figure) or
in a whole segment. The latter can only happen if n̄ = n, but
this is not the only condition: It is further necessary that Ln

contributes to the boundary of the feasible region. This may
not always be the case, as illustrated in Fig. 2. By this recipe,
one can always find the solution, given the an.
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It is worth describing in detail the case where all the con-
straints in (28), i.e., all the Ln, contribute to the boundary of
the feasible region in a nontrivial way. Given that the gradient
of Ln is −1/n, a necessary and sufficient condition for the
boundary to be as described is that xn−1,n < xn,n+1 where
(xn,m, yn,m ) are the coordinates of the intersection of Ln with
Lm. From yn−1,n = − 1

n−1 (xn−1,n − an−1) = − 1
n (xn−1,n − an),

one immediately finds xn−1,n = nan−1 − (n − 1)an. Thus,
xn−1,n < xn,n+1 will be the case if and only if

an−1 − 2an + an+1 < 0. (29)

If this condition is satisfied, then the optimal discrimina-
tion takes up a very clear form. Indeed, for a boundary as
described:

(i) If n̄ ∈ N, the intersection that defines d∗ will be with
a single point, namely, the intersection of L�n̄� and L�n̄�. The
optimal state is then a mixture of two Fock states with these
numbers, and the suitable weights.

(ii) If n̄ = n ∈ N, the intersection that defines d∗ will be
the whole segment of gradient −1/n, and the optimal state
with be the Fock state ρ = |n〉 〈n|.

In other words, the solution of the LP will be Popt =
p�n̄�a�n̄� + p�n̄�a�n̄�, with

pn =
⎧⎨
⎩

1 + �n̄� − n̄ if n = �n̄�
n̄ − �n̄� if n = �n̄� + 1
0 otherwise.

(30)

Thus, in many cases, we can expect the optimal state for
discrimination to consist of the Fock state |n̄〉 if n̄ ∈ N, and
of the suitable mixture of the Fock states |�n̄�〉 and |�n̄�〉
if n̄ ∈ N. However, condition (29) does not always hold: In
Sec. IV C, we shall see an example where it is not met for
n = 1, and indeed the Fock state |1〉 will not be optimal for
n̄ = 1.

IV. CASE STUDIES

We have derived efficient relaxations for estimating the
parameters of mode discrimination, both probabilistic and
unambiguous, in both the channel-discrimination and the
source-discrimination scenario. In this section, we discuss
some case studies.

A. Two modes

The discrimination between two modes is determined by a
single parameter:

[a1, a†
2] = k1, k ∈ C, |k| � 1. (31)

When k = 1, the two modes are identical and therefore indis-
tinguishable. When k = 0, the two modes are orthogonal and
can be perfectly distinguished when n̄ � 1.

Besides using our numerical tools, we are going to derive
analytical solutions, exploiting the fact that the discrimination
of two equally probable pure states has been solved long ago
for both probabilistic [28] and unambiguous discrimination

[29–31]:

Popt
corr = 1

2 (1 +
√

1 − |〈ψ1|ψ2〉|2),

Popt
UD = 1 − |〈ψ1|ψ2〉|.

(32)

With this, single-shot discrimination of two modes in the
source-discrimination scenario can be fully solved analyti-
cally. Indeed, there is no need to solve the SDPs (20) and (24)
since we know from (32) that P(n)

corr = 1
2 (1 +

√
1 − |k|2n) and

P(n)
UD = 1 − |k|n (notice that everything depends on |k|). Mov-

ing to the LP, it is immediate to verify that both expressions
satisfy condition (29). So we can import from Sec. III C that
the solution is

Popt
corr/UD = p�n̄�P

(�n̄�)
corr/UD + p�n̄�P

(�n̄�)
corr/UD, (33)

with the pn given in (30).
In the channel-discrimination scenario, we know from (32)

that Popt
corr = 1

2 (1 +
√

1 − χ2) and Popt
UD = 1 − χ with

χ = min
{pn}

∣∣∣∣∣
∞∑

n=0

pnkn

∣∣∣∣∣
s.t. pn � 0 ∀n,∑

n

pn = 1,

∑
n

pnn = n̄,

(34)

where we used the expression (3) of the scalar product. Instead
of the SDPs, we could try and solve (34).

For k � 0, it is a LP of the form (28) with an ≡ −kn (notice
that here we are minimizing, whence the sign). Condition
(29) reads −kn−1(1 + k2) < 0 and is therefore satisfied, so we
know that the solution is

χ = p�n̄�k�n̄� + p�n̄�k�n̄� [k � 0], (35)

with the pn given in (30). The corresponding op-
timal state is

√
p�n̄� |�n̄�〉 + eiϕ√

p�n̄� |�n̄�〉 for any ϕ.
This value of χ shows that Popt

corr is larger than in
the source-discrimination scenario (33), since

√
1 − χ2 �

p�n̄�
√

1 − k2�n̄� + p�n̄�
√

1 − k2�n̄�; while the value of Popt
UD is

identical in the two scenarios.
For k < 0, the optimization (34) is also LP; but whether

the absolute value adds a minus sign or not (i.e., whether an =
+kn or −kn) is not known a priori. One would therefore have
to solve the two LPs, then compare the solutions. In either
case, condition (29) would be satisfied only for alternate n,
and so the solution is not expected to involve only �n̄� and
�n̄�. As for k ∈ C \ R, the optimization (34) is quadratic, and
there is no guarantee that an analytical solution can be found.

We thus turn to our SDPs (11) and (15). The results are
shown in Fig. 3 for probabilistic discrimination, and in Fig. 4
for unambiguous discrimination. As expected, the modes are
harder to distinguish when k ≈ 1. More remarkable is the fact
that distinguishability improves significantly in the region of
negative phases. For instance, while it is known and rather ob-
vious that perfect discrimination for k = 0 becomes possible
for n̄ � 1, we see that when k = −1 the modes can already be
perfectly distinguished for n̄ = 0.5 (more in Sec. IV B).
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FIG. 3. Probabilistic channel discrimination between two modes:
dependence on the mode overlap k ∈ C. Upper bound PSDP

corr on the
guessing probability, solution of the SDP (11) for nmax = 300, in a
polar plot of k, for (a) n̄ = 0.5 and (b) n̄ = 1.

B. Phase discrimination

Next we consider the problem of phase discrimination.
Since the phase of an optical mode is not defined unless a
reference beam is provided, this case study is restricted to
the channel-discrimination scenario. The receiver’s task is to
guess one of a set of unitary channels Uj = eiϕ j n̂, where n̂ is
the number operator in the signal mode. In other words, the
receiver can use pure states to distinguish modes of the form

a j = eiϕ j a, (36)

where a is the initial signal mode prior to the phase-shift.
Our formalism can be applied to any set of phases to be

discriminated. For the numerical case study, we choose the

FIG. 4. Unambiguous channel discrimination between two
modes: dependence on the mode overlap k ∈ C. Upper bound PSDP

UD

on the guessing probability, solution of the SDP (15) for nmax = 300,
in a polar plot of k, for (a) n̄ = 0.5 and (b) n̄ = 1.

symmetric set {ϕ j = 2π j/N | j = 0, ..., N − 1}, whose prob-
abilistic discrimination has been studied in the context of
quantum sensing [4]. The commutation relations are then
given by

[a j, a†
k] = ei2π ( j−k)/N1. (37)

For probabilistic discrimination [see Fig. 5(a)], our SDP (11)
recovers the same bound as Theorem 3 of Ref. [4]. The study
of unambiguous discrimination is unique: the result is plotted
in Fig. 5(b). Also notice that, for N > 2, the modes in this
family are linearly dependent but, as discussed, unambiguous
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FIG. 5. Phase discrimination: Dependence on n̄. (a) Upper bound
PSDP

corr on the guessing probability, solution of the SDP (11). (b) Upper
bound PSDP

UD on the success probability, solution of the SDP (15). Both
SDPs solved for nmax = 50. In (a), the circles denote the analytical
bounds from Theorem 3 of Ref. [4].

discrimination is possible because one can create linearly
independent states.

The N = 2 case corresponds to k = −1 in Sec. IV A.
As we notice there and see again here, perfect discrim-
ination becomes possible at n̄ = 0.5. This is because the
pure states with c0 = c1 = 1√

2
are orthogonal. Indeed, |ψa〉 =

1√
2
(|0〉 + a† |0〉) = 1√

2
(|0〉 + |1〉a), while |ψ−a〉 = 1√

2
(|0〉 +

(−a†) |0〉) = 1√
2
(|0〉 − |1〉a). Since distinguishability cannot

decrease when increasing n̄, one expects to find two orthogo-

nal states for any n̄ � 0.5. Indeed, these are
√

1−δ
4 |m − 1〉a ±

1√
2
|m〉a +

√
1+δ

4 |m + 1〉a with n̄ = m + δ/2 and −1 � δ <

1. In general, these are superpositions of three Fock states,
reducing to two only when n̄ = m − 1

2 (δ = 0). Thus, as an-
ticipated, the optimal state does not obey (30).

C. Computational and Fourier transform basis modes

As our next example, we consider a family made of two
sets of orthogonal modes. The first set Cd = {a0, a1, ..., ad−1}
is called computational basis modes. The second set Fd =
{b0, b1, ..., bd−1} is called Fourier transform basis modes and

is defined as

bk = 1√
d

d−1∑
j=0

(ωd ) jka j, (38)

where ωd = e2π i/d is the dth root of unity. This family of
modes has appeared in quantum cryptography: The classical
information is encoded into these modes in the famous BB84
protocol [13] for d = 2, and the case d > 2 defines one of its
possible generalizations to higher alphabets [32]. However, in
those QKD protocols, the classical information is encoded in
the mode’s index: one wants to determine j, whether from
a j or b j . By contrast, here we stay with the task of mode
discrimination and study both probabilistic and unambiguous
discrimination from the set Md = Cd ∪ Fd .

For given d , the commutation relations are

[a j, a†
k] = δ jk1,

[b j, b†
k] = δ jk1,

[a j, b†
k] = 1√

d
(ω∗

d ) jk1.

(39)

We set nmax = 50 and solve the SDP and/or LP for n̄ vary-
ing from 10−3 to 10, and for d = 2, 3, 4, 5. The results for
probabilistic discrimination are shown in Fig. 6(a); those for
unambiguous discrimination in Fig. 6(b); both figures con-
tain information about the channel-discrimination scenario
(dashed) and the source-discrimination scenario (solid).

Channel discrimination is more powerful than source
discrimination: while more marked for probabilistic dis-
crimination, the difference is also present in unambiguous
discrimination, contrary to what was the case for two modes
(Sec. IV A). Another feature present in both figures, again
more marked for probabilistic discrimination, is a crossover
of behavior as a function of n̄: for n̄ � 1, the discrimination
is better for smaller d; whereas for n̄ � 1, the discrimination
is better for higher d . This can be understood qualitatively.
In the limit n̄ → 0, guessing the mode is hardly more than a
random pick from a uniform distribution, the guessing prob-
ability is close to 1

2d and decreases with d . In the limit of
large n, |〈naj |nbk 〉| = √

1/dn decreases with d and therefore
the distinguishability increases.

In the source-discrimination scenario, we find that con-
dition (29) is generally not satisfied for n̄ = 1, either for
probabilistic or unambiguous discrimination.

For unambiguous discrimination, the reason is clear: the
single-photon states are linearly dependent and hence un-
ambiguous discrimination is not possible. For unambiguous
discrimination to be possible, the state must contain some
multiphoton component.

For probabilistic discrimination, we find that the condition
(29) is violated for d = 3, 4, 5. To see that, we compare PLP

corr
with that of Fock states in Fig. 7. For d = 2, 3, 4, 5, the single-
photon bound is P(1)

corr = 0.5. This corresponds to a simple
strategy: Bet on one of the bases and measure in it.
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FIG. 6. Computational and Fourier transform basis modes: De-
pendence on n̄. (a) Upper bound on the guessing probability for
probabilistic discrimination. (b) Upper bound on the success proba-
bility for unambiguous discrimination. The solid lines are the bounds
in the source-discrimination scenario, obtained by solving the LP
(22) or (26), respectively, whereas the dashed curves are the bounds
in the channel-discrimination scenario, obtained by solving the SDP
(11) or (15). For this family of modes, it is sufficient to set nmax = 50.

D. Differential-phase-shift modes

Lastly, we consider a family of modes inspired by the
DPS QKD protocol [14]. In the protocol, the information is
encoded in the relative phase between subsequent temporal
modes. Abstractly, to any �-bit strings x, a mode is associated
according to

bx = 1√
� + 1

(
a0 +

�∑
i=1

eiϕ(x)
i ai

)
, (40)

where the {ai}i=0,...,� are (� + 1) orthogonal modes (temporal
ones in the original setting) and where

ϕ
(x)
i − ϕ

(x)
i−1 = xiπ, (41)

with xi ∈ {0, 1} the ith bit of the string x (by convention, we
set the phase of the reference mode ϕ

(x)
0 = 0 for all x). For a

given �, there are 2� different modes, only linearly many of
which are orthogonal among the 2� ones. The commutation
relation for the modes associated to strings x and y can be

FIG. 7. Computational and Fourier transform basis modes: opti-
mal state versus Fock states (for probabilistic discrimination in the
source-discrimination scenario). The solid lines are the bound PLP

corr,
the solution to (22) with nmax = 50. On the other hand, the dots
represent the bound P(n)

corr, the solution to the SDP (19).

computed recursively using the relation (41) and is given by

[
bx, b†

y

] = 1

� + 1

(
1 +

�∑
i=1

ei(ϕ(x)
i −ϕ

(y)
i )

)
1. (42)

Since the SDP scales badly with �, in this paper we present
the results only for � = 1, 2, 3. When � = 1, the two modes to
be distinguished are orthogonal, and so this is a special case of
what we studied in Sec. IV A. For � = 2, the four modes are
all nonorthogonal. The eight modes for � = 3 form two sets
of four orthogonal modes.

The results of our numerical method are shown in Fig. 8(a)
for probabilistic discrimination, and in Fig. 8(b) for un-
ambiguous discrimination. Since the family given by � is
constructed from � + 1 orthogonal modes (pulses), we found
it more appropriate to compare the families for a given value
of the energy per pulse μ = n̄/(� + 1), rather than of the total
energy n̄. Even with this scaling, it proves more difficult to
distinguish within a set with higher �, since the receiver has to
discriminate more modes.

Comparing the mixed state encoding to the pure state
encoding, we find that the pure state encoding is more dis-
tinguishable only in the probabilistic discrimination setting.
Remarkably, we find that the mixed state bounds coincide
with that of the pure state encoding for the unambiguous
discrimination setting.

V. CODA: ON LOSSES

In this last section, we review how the ultimate limits
of mode discrimination are modified when there are mode-
independent losses between the device to be tested and the
measurement, as sketched in Fig. 9. This is modeled as a
beam-splitter transformation aj −→ ta j + rb j , where t and r
can be taken as real and positive and t2 + r2 = 1. The state
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FIG. 8. Discriminating the differential-phase-shift modes: De-
pendence on the energy per pulse μ. (a) Upper bound on the guessing
probability for probabilistic discrimination. (b) Upper bound on the
success probability for unambiguous discrimination. In both cases,
the solid lines are the bounds for source-discrimination scenario:
Solutions to the LPs (22) and (26), respectively. The dashed curves
in (a) and the circles in (b) are the bounds for channel-discrimination
scenario obtained by solving the SDPs (11) and (15), respectively.
Here, we set nmax = 50.

that arrives at the measurement station is now the partial state
associated with the transmitted output.

The study of the source-discrimination scenario remains
practically unchanged. Indeed, losses do not introduce any co-

(a)

(b)

FIG. 9. The two scenarios studied in this paper, with additional
mode-independent losses before the measurement device (t refers to
the transmittivity).

TABLE I. Photon-number weights of the optimal input states, for
n̄ = 1 and k = 0.4 (thick dots in Fig. 10). The result for t2 = 1 is
analytical [see (35) in Sec. IV A], the other values are the output
of the heuristic optimization. The coherent state weights e−1/n! are
given for reference in the last line.

t2 p0 p1 p2 p3 p4 p5

1 (Fock) 0 1 0 0 0 0

0.9 0.1458 0.7088 0.1454 0.0000 0.0000 0.0000
0.5 0.3075 0.4363 0.2092 0.0430 0.0039 0.0001
0.2 0.3450 0.3914 0.1952 0.0567 0.0105 0.0012
coh 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031

herence between photon number states. So, if the state before
the losses is given by Eq. (17), the state after the losses will
still be a number mixture ρ j (t ) = ∑∞

n=0 qn(t )|n j〉〈n j |, with

qn(t ) =
∑
m�n

pm

(
m

n

)
(1 − t2)m−nt2n. (43)

If n̄ still represents the energy constraint for the input state,
one solves the LP under the energy constraints n̄t2 to get the
{qn(t )}. The {pn} to be prepared are then obtained by inverting
the linear system of equations (43). The only practical worries
may come from numerical cutoffs in this inversion when n̄ is
large.

On the contrary, the optimizations in the channel-
discrimination scenario can no longer be cast as SDPs. Indeed,
the initially pure state becomes mixed with losses. Thus, on
the one hand, we cannot build Gram matrices as we did in
Sec. II. On the other hand, the basis in which the mixed state
is diagonal is not fixed, and is definitely not the Fock basis, so
we cannot adapt the approach of Sec. III either.

In some simple cases, a heuristic optimization may still
be trustful. For instance, let us look at the probabilistic
discrimination of two modes with k � 0. We know [28]
that the probability of discriminating correctly between two
equally probable mixed states is given by Pcorr(ρ1, ρ2) =
1
2 (1 + 1

2 Tr|ρ1 − ρ2|). One can then write the algorithm that,
given a |ψ j〉 in the form (2), computes the ρ j (t ) obtained
after losses, then heuristically maximizes the trace distance
|ρ1(t ) − ρ2(t )| over the complex parameters cn under the
energy constraint

∑
n n|cn|2 = n̄ for the initial states. We

implemented this procedure using the function fmincon of
MATLAB. Inspection of the numerical solutions we obtained
indicates that the relevant parameter in the input state are the
pn = |cn|2, while the arguments of the cn (relative phases) do
not seem to matter, just as in the lossless case (34).

An example is given in Fig. 10. The constraint is set at n̄ =
1: thus, in the absence of losses, the optimal state is the Fock
state |1〉. When losses increase, this state becomes quickly
suboptimal, while the probability Popt

corr(k, n̄, t ) of guessing
correctly approaches the value corresponding to choosing a
coherent state as the input state (see also Table I). Based
on this observation, whenever n̄ = m integer, for the sake of
estimates one could use

Popt
corr � max

(
Pcoh

corr, PFock
corr

)
(44)
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FIG. 10. Probabilistic discrimination of two modes as a function
of losses (channel-discrimination scenario). Plot of Popt

corr(k, n̄, t ) as
a function of t2 for n̄ = 1 and k = 0, 0.4, 0.8 (from top to bottom).
The thick solid lines are the result of the heuristic optimization (for
which the photon number was truncated at 5); on the line for k = 0.4
are indicated the points reported in Table I. The dotted lines are the
values Pcoh

corr for coherent state input; the dashed lines are the values
PFock

corr for Fock state input.

because the two probabilities on the right-hand side can
be given analytically. Indeed, on a beam splitter, a coher-
ent state splits as |α〉 → |tα〉T |rα〉R; so the states in the
transmitted mode are pure and a standard calculation gives
〈tα|0 |tα〉1 = e−|tα|2(1−k) and, finally, Pcoh

corr(k, n̄, t ) = 1
2 (1 +√

1 − e−2t2 n̄(1−k) ). For a m-photon Fock state, the transmit-
ted state reads ρT = ∑m

n=0 q(n, m, t ) |n〉 〈n| with q(n, m, t ) =(m
n

)
t2nr2(m−n). Because it’s diagonal in the number basis,

the optimal measurement to discriminate between the modes
can be seen as follows: First, measure the photon num-
ber and thus project in a Fock state; then distinguish
between the two Fock states. Thus PFock

corr (k, m, t ) = 1
2 (1 +∑m

n=0 q(n, m, t )
√

1 − k2n).

VI. CONCLUSION

In this paper, we have presented efficient methods to
compute the ultimate limits for single-shot discrimination of
optical modes. The methods, based on linear and SDP, apply
to any set of modes with any prior distribution (we wrote
the paper for the uniform prior not to introduce further no-
tation, but the modifications are obvious). The bounds that
are obtained can be used as fundamental benchmark for the
performance of realistic devices or measurement schemes.

We pointed out the importance of stating whether the ver-
ifier has the possibility of defining a reference frame for the
modes’ phase. Depending on the family of modes that is
considered, the difference in discrimination is found to be
significant and, of course, some tasks like phase discrimina-
tion only make sense if the reference is available. Note that
we assumed that the reference beam is classical and hence
its phase relative to the receiver’s reference frame could be
determined with arbitrary precision. We leave the study of the
channel-discrimination scenario with a weak reference beam
as an open problem.

Let us finish by pointing out two related topics that we have
not dealt with in the current work. First, throughout the paper,
the characterization of the optical modes has been taken as
known and perfect. It is known that this could be relaxed in
some situations. Indeed, randomness of quantum origin can
be certified from the measurement of uncharacterized optical
modes, based only on an energy constraint n̄ < 0.5 [33]. Sec-
ond, we have considered single-shot discrimination. For the
discrimination of unitaries, it is known that perfect discrimi-
nation is always possible if one has enough copies [34], and a
similar result for energy-constrained discrimination has been
described recently [35].
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