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Fast and robust quantum state transfer via a topological chain
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We propose a fast and robust quantum state transfer protocol employing a Su-Schrieffer-Heeger chain, where
the interchain couplings vary in time. Based on simple considerations around the terms involved in the definition
of the adiabatic invariant, we construct an exponential time-driving function that successfully takes advantage
of resonant effects to speed up the transfer process. Using optimal control theory, we confirm that the proposed
time-driving function is close to optimal. To unravel the crucial aspects of our construction, we proceed to a
comparison with two other approaches: one where the underlying Su-Schrieffer-Heeger chain is adiabatically
time-driven and another where the underlying chain is topologically trivial and resonant effects are at work.
By numerically investigating the resilience of each protocol to static noise, we highlight the robustness of the
exponential driving.
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I. INTRODUCTION

Constructing a quantum network where states can be trans-
ferred in a coherent manner between two nodes is a task of
fundamental importance towards the realization of an efficient
platform for quantum information processing [1]. In the past
two decades great effort has been made to obtain the opti-
mal protocol for state transfer in the simplest geometry, the
one-dimensional quantum chain. The most common model
describing a quantum chain is the one-dimensional spin-1/2
chain. The Hamiltonian used is quite generic and the re-
sults can be applied to a variety of physical systems such as
evanescently coupled waveguides [2–4], acoustic cavities [5],
diamond vacancies [6], superconducting circuits [7,8], arrays
of quantum dots [9], driven optical lattices [10], NMR [11],
and nanoelectromechanical networks [12].

Depending on whether the parameters of the system vary
in time or not the quantum state transfer (QST) proto-
cols can be divided into two classes, time-independent and
time-dependent. In the former, the parameters are initially
engineered in a suitable manner and as the system evolves
“freely” the transfer takes place. The protocols in this ap-
proach usually rely either on the seminal work initiated by
Bose [13] and later evolved in Refs. [14,15] or on works where
the states are transferred via Rabi-like oscillation schemes
[16–18]. On the contrary, in time-dependent protocols, the
system’s parameters are controlled during the dynamical evo-
lution. The most intuitive protocol in this case is to apply
a sequence of swap operations between adjacent sites and
gradually move the state along the chain, while other repre-
sentative protocols are introduced in Refs. [19–22].

Besides the feasibility of the experimental implementation
and the scalability, there are two major factors that determine
the efficiency of a QST protocol. Namely, how much time
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it takes for the transfer to occur and how faithfully the state
is transferred in the presence or absence of decoherence and
static imperfections. The quantum speed limit for transferring
a state along a spin chain has been studied for various proto-
cols [23–27]. On the other hand, many works [28–31] have
examined the role of different sources of decoherence in QST
protocols and proposed schemes [19,32–35] to circumvent
their impact. In most cases there is a trade-off between speed
and robustness, as increasing one results in the decrease of the
other and vice versa.

A very promising direction towards the realization of an
efficient platform able to perform fault-tolerant quantum com-
putation comes from the flourishing field of topological states
of matter [36]. One of the most appealing properties of topo-
logical systems is that they host edge states which, due to their
topological protection, are robust to different sources of quan-
tum decoherence. Recent studies [7,37–42] have employed
one-dimensional (1D) topological systems, such as the Kitaev
chain [43] and the Su-Schrieffer-Heeger (SSH) model [44], to
act as a platform for realizing QST protocols. In this work, in
the same spirit and aiming to balance the trade-off between the
various factors that determine the efficiency of QST protocols,
we propose a fast and robust time-dependent protocol for
transferring an excitation along an SSH chain. Based on the
characteristics of the instantaneous eigenspectrum, we iden-
tify the crucial aspects that the time-driving function should
possess in order to speed up the transfer process. To this end,
we construct an alternative driving function for realizing the
protocol employed in Ref. [7]. In contrast to the latter, where
the system is adiabatically evolved, our proposal fine-tunes
the resonant processes to increase the protocol’s efficiency in
terms of speed and robustness. To demonstrate the power of
our treatment we proceed to a comparison with the adiabatic
protocol of Ref. [7], as well as to another QST protcol where
the underlying undriven chain does not possess topological
characteristics. Our approach opens up the prospect of em-
ploying optimization techniques to control systems possessing
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topological characteristics, extending in this way the scope of
previous studies featuring optimal control schemes [45–48]
and aiming for counter-adiabatic driving [49].

The rest of the paper is organized as follows. In Sec. II
we present the Hamiltonian of the system together with the
corresponding protocols for both topological and topologi-
cally trivial quantum channels. In Sec. III we identify the
crucial characteristics the driving function needs to possess,
in order to speed up QST in a topological quantum channel.
In Sec. III A we present numerical evidence supporting our
claims. In Sec. III B we analyze the impact of on- and off-
diagonal static noise, and in Sec. III C we study the behavior
of each protocol as the length of the quantum channel is
increased. Finally, in Sec. IV we conclude.

II. QST PROTOCOLS

We start by considering a paradigm model describing a
spin-1/2 chain acting as a data bus for transferring a quan-
tum state. The Hamiltonian describes N spins, where nearest
neighbors are coupled with an XX Heisenberg exchange in-
teraction of strength Ji and a local magnetic field Bi is applied
at each spin. When we restrict ourselves to the one-excitation
subspace, where all spins point down but one, the Hamiltonian
is written as follows:

H =
N−1∑

i=1

Ji(|i〉〈i + 1| + H.c.) +
N∑

i=1

Bi|i〉〈i|, (1)

where Ji ∈ R, Ji � 0, and |i〉 denotes that the ith site
of the chain is excited (i.e., in Fock space notation
|0102 . . . 1i . . . 0N 〉). Moreover, we assume that Bi is just a con-
stant value ∀i. Since an arbitrary value of the magnetic field
corresponds to a global shift on the energy spectrum, without
loss of generality for all protocols we present, we choose
Bi = 0 ∀i, unless explicitly stated otherwise. The aim of the
protocols we consider is to transfer a single site excitation
from the first |1〉 to the last |N〉 site of the chain by properly
controlling the couplings Ji(t ) during the dynamical evolution.
The quantity that determines how faithfully the transfer has
occurred is the fidelity, which in our case can be defined as

F = |〈N ||N (t∗)〉|2, (2)

where by |N (t∗)〉 we denote the amplitude of the N th
site, obtained by numerically solving the time-dependent
Schrödinger equation for H(t ), and t∗ corresponds to the
transfer time. We must note here that the fidelity for transfer-
ring a generic initial state of the form |ψinit〉 = cos(θ/2)|0〉 +
eiφ sin(θ/2)|1〉 from the first to the last site of the chain is

given by F =
√
F cos γ

3 + F
6 + 1

2 , where γ = arg{〈N ||N (t∗)〉}.
However, we can assume that the phase γ can be fixed to be a
multiple of 2π by applying an external magnetic field [13]. In
this case, F is simply a function of F and therefore, through-
out this paper, unless explicitly stated otherwise, whenever we
refer to fidelity we consider the quantity of Eq. (2).

In all protocols we present, the energy scale is determined
by the maximum value that the couplings acquire during the
dynamical evolution. Thus, without loss of generality we set
Jmax = 1. Time is given in units of 1/Jmax and energy in units
of Jmax. We now present two different cases for realizing an

FIG. 1. A schematic of different time instants during the dy-
namical evolution of the topological chain. (a) Initially, Jodd = 0,
Jeven = Jmax, the zero mode is localized on the first site, and the
energy gap takes its maximum value. (b) For t = t∗/2, we have
Jeven = Jodd < Jmax and the energy gap acquires its minimum value.
Before and after t∗/2, we have Jodd < Jeven < Jmax and Jeven < Jodd <

Jmax, respectively. (c) Finally, Jodd = Jmax, Jeven = 0, the zero mode
is localized on the last site, and the energy gap once again takes its
maximum value.

efficient time-driven quantum channel, one where the underly-
ing undriven chain has topological characteristics and another
where the chain is topologically trivial.

A. Topological chain

The SSH model is the simplest topologically nontrivial
system in 1D that can be obtained by suitably modifying the
Hamiltonian of Eq. (1). To do so, the chain has to be dimer-
ized, which means we have to make Ji = Jodd for i ∈ odd and
Ji = Jeven for i ∈ even. For even-sized chains the topological
phase arises when Jodd > Jeven and two edge modes appear at
the two ends of the chain. The energies corresponding to the
two eigenmodes lie close (above and below) to E = 0 and are
separated from the rest of the modes by a finite energy gap.
The size of the gap is related to the ratio between Jeven and
Jodd [44]. On the contrary, for odd-sized chains, there is always
one edge mode that is localized on the end corresponding to
the weaker coupling. Namely, when Jodd < Jeven (Jodd > Jeven)
the mode is localized near the first (last) site of the chain.
In this case the energy of the mode is exactly zero. For odd-
sized chains, the eigenmode energies (besides the zero-energy
solution) are given by the following expression:

ε j = ±|Jodd + Jeveneiq j |, (3)

where q j = 2 jπ/(N + 1) and j = 1, 2, . . . , [N/2] ( j counts
the number of ± pairs and [x] gives the greatest integer that
is less than equal to x) [50]. Thus, for an odd-sized chain of
length N , the energy gap can be analytically determined and
is given by

g = 2|ε[N/2]|. (4)

For the protocols we consider in this case, we restrict
ourselves to odd-sized chains and we assume that we can
separately control even- and odd-indexed couplings. Initially
the system is prepared so that Jodd = 0 and Jeven = 1 and the
excitation is localized on the first site of the chain which
is disconnected from the rest [see Fig. 1(a)]. Therefore, the
initial state is an eigenstate of the system (|100 . . . 0〉 with
zero eigenenergy). At the transfer time t∗ [see Fig. 1(c)] we
end up with the reverse situation (i.e., Jeven = 0 and Jodd = 1).
The system undergoes a transition and transforms from a
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FIG. 2. A schematic of different time instants during the dynam-
ical evolution of the topologically trivial chain. (a) Initially, J1 = 0
and Ji = Jmax, where i = 2, . . . , N − 1, the zero mode is localized
on the first site, and the energy gap takes its maximum value.
(b) For t = t∗/2, we have J1 = JN−1 < Jmax, while Ji = Jmax for
i = 2, 3, . . . , JN−2. Before and after t∗/2, we have J1 < JN−1 < Jmax

and JN−1 < J1 < Jmax, respectively. (c) Finally, J1 = 0 and Ji = Jmax

for i = 2, . . . , N − 1, while the zero mode is localized at the last site
of the chain.

topological chain supporting an edge mode on the first site
to a topological chain with an edge mode on the last site,
resulting in an excitation transfer from one side to the other.
Note here that, in this protocol, there always exists a time
where all the couplings acquire the same value Jeven = Jodd. In
our case we consider this time to be t = t∗/2 [see Fig. 1(b)].
For the infinite system, Jeven = Jodd corresponds to the closing
of the energy gap separating the zero-energy mode with the
rest of the excited states. However, in finite systems a finite
energy difference between any two modes is always present.
Thus, the point in the parameter space where Jeven = Jodd

corresponds to the minimization of the energy gap.

B. Topologically trivial chain

We also proceed to a comparison with a protocol, where the
underlying static chain is topologically trivial. We consider a
protocol where the only couplings that are controlled are the
ones connecting the edge sites with the rest of the chain [i.e.,
J1(t ) and JN−1(t )]. Protocols where control is only assumed
on the boundaries of the chain have been previously proposed
in many studies [21,22,51–53]. It has been alleged that such
protocols are experimentally more feasible, since the control
over the system’s parameters is kept close to minimum. We
construct a protocol of this class and choose to compare it with
the SSH for the two following reasons: First, this protocol
does not rely on the adiabatic evolution; on the contrary, reso-
nant processes are at work, which result in high transfer speed.
Second, we examine how and when static disorder affects
the transfer process, depending on whether the underlying
undriven chain possesses topological characteristics or not.

As was the case for the topological chain, the initial state
is localized at the first site and corresponds to the system’s
zero-energy eigenstate [see Fig. 2(a)]. Here, J1 = 0 while
Ji = J ∀i �= 1. During the dynamical evolution, due to the
odd-size of the chain, the zero-energy eigenstate is always
present. Therefore, gradually switching on J1 while JN−1 is
decreased results at time t∗ in the transfer of the excitation
at the other end of the chain [see Fig. 2(c)]. An important
difference between this protocol and the one described in the
previous section is that, in this case, there is no point in the

parameter space where all the couplings acquire the same
value.

III. CRUCIAL CHARACTERISTICS OF THE DRIVING
FUNCTION

Before presenting our numerical results, we develop an
intuitive and solid line of arguments that dictate which are
the crucial considerations that have to be taken into account
when driving the state transfer in an odd-sized SSH chain.
In all protocols we consider the system is prepared in the
zero-energy eigenstate that is localized on the first site of
the chain. As the system evolves, a zero-energy state is al-
ways present due to the odd size of the chain. Therefore, the
adiabatic approximation ensures that, if the system is driven
sufficiently slowly during the transfer process, we can remain
in the zero-energy eigenstate without exciting other eigen-
states. What we propose in this paper is to suitably adjust the
driving function in order to reach high-fidelity values for small
transfer times. Our approach does not rely on methods like the
adiabatic passage or shortcuts to adiabaticity, where specifi-
cally engineered terms are introduced in the Hamiltonian that
can induce counter-processes able to suppress the excitations.
In other words, we confine ourselves to drive the parameters
of nearest-neighbor coupling. To introduce counter-adiabatic
terms one should include next-to-nearest-neighbor interac-
tions like in Ref. [54].

When driving the chain, we focus on two important quanti-
ties: the energy difference between the zero mode and the rest
of the states, and the derivative of the Hamiltonian matrix that
is directly related to the slope of the driving function. These
two quantities after all appear in the definition of the adiabatic
invariant, which is defined as follows: Instantaneously, the
Hamiltonian satisfies the eigenvalue equation: H(t )|vi(t )〉 =
Ei(t )|vi(t )〉, where |vi(t )〉 and Ei(t ) are the instantaneous
eigenvectors and eigenvalues, respectively. Assuming that
|vn(t )〉 is the instantaneous zero-energy eigenstate, in order
to be close to the adiabatic limit, the following sum has to be
sufficiently small:

∑

m �=n

〈vm(t )| ˙̂H|vn(t )〉
Em(t ) − En(t )

	 1, (5)

where Em(t ) is the instantaneous eigenenergy of the mth
mode and ˙̂H is the time derivative of the Hamiltonian.
Equation (5) holds when no degeneracies appear in the spec-
trum and the energies |Em(t ) − En(t )| > ε0 are separated by a
small ε0 ∀t . In the QST protocol employing the odd-sized SSH
chain, initially (as Jodd = 0) the energy gap separating the zero
mode from the excited states takes its maximum value. As Jodd

is switched on and Jeven decreases, the energy gap approaches
its minimum, occurring at Jodd = Jeven, and at the transfer
time t∗ the energy gap regains its maximum value [e.g., see
Figs. 3(a) and 3(b), bottom panel]. Our logic when dealing
with the aforementioned dynamical evolution is simple and
can be summarized into two considerations. One thing that
we can do is to force the driving function to equate Jodd and
Jeven at values close to Jmax, which is the maximum value the
couplings can acquire during the transfer. This will result in
the maximization of the minimum energy gap. The minimum
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FIG. 3. For each protocol, (a) cosine, (b) exponential, and (c) trivial, in the top panel we plot the driving function as a function of time.
While in the bottom panel, we depict the corresponding instantaneous energy spectrum as a function of time. In all plots, we have taken the
transfer time to be t∗ = 1 and the chain consists of N = 31 sites.

energy gap can be used to specify a characteristic timescale.
When the transfer time is sufficiently large compared to this
timescale, we can safely assume that we are close to the adi-
abatic following of the zero-energy state. A driving function
that has this characteristic has also been used in Ref. [31],
where the dimerized chain they consider is equivalent to the
SSH chain. The other crucial consideration is to adjust the
driving in such a way that, initially, when the energy gap is
bigger, we ”strongly” drive the system (i.e., steeper slope of
the driving function) and when we are close to the minimum
value of the energy gap the driving becomes more “gentle”
(i.e., smaller slope). Note here, however, that strongly driving
the system may induce nonadiabatic transitions between the
zero-energy state and the excited states, which in general
reduce the efficiency of the transfer.

Our aim is to balance the interplay between the two afore-
mentioned considerations in order to increase the speed of
the transfer protocol. An intuitive driving function that we
propose and claim to encapsulate this behavior is the ex-
ponential. In the next subsections it becomes clear that the
proper implementation of the above leads to a faster transfer
process while at the same time the robustness of the protocol
is maintained.

A. Speed of the transfer

Now let us examine in more detail the QST protocols that
we briefly described in the previous section and provide the
numerical evidence supporting our claims. We examine chains
of moderate length N = 31 sites. In the protocol we pro-
pose the couplings are driven by an exponential function [see
Fig. 3(b), top panel], where Jodd = (1 − e−αt/t∗

)/(1 − e−α )
and Jeven = (1 − e−α(t∗−t )/t∗

)/(1 − e−α ), while α = 6.0 is a

free parameter that has been fine-tuned to increase the ef-
ficiency in terms of speed. We get back to the role of this
free parameter at the end of the current section. The ex-
ponential protocol is compared with a protocol proposed in
Ref. [7], where Jodd = b[1 − cos (πt/t∗)] and Jeven = b[1 +
cos (πt/t∗)] and b = 0.5 [see Fig. 3(a), top panel]. On the
other hand, for the trivial protocol the driving function has
the following linear form: J1 = t

t∗ , JN−1 = 1 − t
t∗ , and Ji =

Jmax = 1,∀i �= 1, N − 1 [see Fig. 3(c), top panel].
In Fig. 3, we plot for each protocol in the top panels the

driving function for the couplings and in the bottom panels we
plot how the instantaneous eigenspectrum evolves over time.
Comparing the two protocols that employ the topological
chain [see Figs. 3(a) and 3(b)], we can immediately notice
their qualitative differences. The cosine function, initially for
large values of the energy gap, drives the system slowly,
meaning the numerator of Eq. (5) is smaller as compared to
the exponential. However, it approaches the minimum value of
the energy gap with greater slope, while the exponential slows
down and drives the system more smoothly in this region.
Last but not least, the minimum value of the energy gap is
analytically obtained by plugging into Eq. (4) the instanta-
neous values of the couplings at t = t∗/2. For the cosine we
get gcos

min = 0.09, while for the exponential we get gexp
min = 0.18.

As it was already mentioned, this is because the exponential
equates Jeven and Jodd at higher values.

In the trivial protocol on the other hand [Fig. 3(c)], the
evolution is completely different. Namely, the instantaneous
energy gap separating the zero-energy mode with the rest
of the modes starts from its minimum value (gtriv

min = 0.1),
slowly increases reaching its maximum (gtriv

max = 0.14) at the
middle of the time evolution, and then returns to its initial
value.
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FIG. 4. Fidelity as a function of the transfer time for all protocols.

Now that the qualitative differences between the protocols
have become apparent let us proceed and examine some quan-
titative results. In Fig. 4, for each protocol, we plot the fidelity
F [Eq. (2)] as a function of the transfer time t∗. To make a
comparison in terms of the speed of the transfer, we have to
set a lower bound in fidelity. In particular, we consider the
time after which the fidelity is stabilized above 0.9. In this
case, the exponential protocol is clearly faster than the cosine
protocol, since this occurs for t∗ � 42 as compared to the
cosine where this happens for t∗ � 761. The trivial protocol
on the other hand, even though it reaches F = 0.9 for t∗ = 35,
appears to have a strongly oscillatory behavior that prevents
its stabilization above F = 0.9 till t∗ � 231.

For all profiles, in the limit of t∗ → ∞ the fidelity ap-
proaches unity and the excitation is perfectly transferred along
the chain. This makes up the adiabatic limit where, during
the dynamical evolution, we “follow” the zero-energy state,
without exciting other energy eigenstates. The oscillations
that appear in the fidelity plot of the trivial protocol are in
general undesirable in QST protocols since they demand great
precision when tuning the transfer time [55]. Moreover, they
signify that resonant processes are the underlying mechanism
responsible for achieving high values of fidelity in such small
transfer times. Taking a closer look at the fidelity plot of
the exponential protocol (Fig. 5 for α = 6), we can notice
that small oscillations are also present here; i.e., the fidelity
curve does not increase smoothly. This indicates that resonant
processes are at work also in this case. Obtaining a suitable
basis where these processes that occur during the dynamical
evolution can be rigorously tracked down remains a highly
nontrivial task [56,57]. Nevertheless, as we now show, the
resonant processes can be properly handled to increase the
efficiency of the transfer process.

When we introduced the exponential driving function,
we mentioned that the α parameter is fine-tuned (α = 6.0).
Smaller values of the a parameter lead to a less steep slope of
the driving function and a smaller value of gexp

min (i.e., Jeven and
Jodd equate at a smaller value). In this case, the resonant pro-
cesses are suppressed and the fidelity smooths out (see Fig. 5,
α = 4). Consequently, the protocol’s speed is reduced since

FIG. 5. Fidelity as a function of the transfer time for the expo-
nential driving and for different values of the α parameter.

high fidelity values are obtained for larger transfer times. On
the contrary, increasing α above the fine-tuned value results
in a stronger slope of the driving function and a greater value
of gexp

min. Therefore, the resonant processes take over for small
transfer times and strong oscillations appear at the fidelity plot
(see Fig. 5 α = 8). This once again reduces the speed of the
protocol. Thus, the value of this fine-tuned parameter α = 6 is
a trade-off, since it signifies the point up to which we strongly
drive the system such that the speed is increased, but gently
enough to avoid strong resonant effects. Let us also note here
that we have performed optimizations (see the Appendix) in
terms of the CRAB (chopped random basis) algorithm [58],
where the guess function was assumed to be the exponen-
tial, or the cosine. The CRAB algorithm gives corrections in
terms of a chopped polynomial or Fourier expansion of the
correction function. The correction of CRAB to the exponential
function was very small, with subtle corrections not changing
its basic logic and behavior. On the other hand the cosine
function as a guess function in CRAB had a strong correction in
the direction of getting closer to the exponential profile. Those
calculations indicate that our protocol is close to the optimal
one, within the constraints taken in this work.

B. Disorder analysis

In this section, we consider static disorder both on the
couplings and on the magnetic field and study its effect on
fidelity, similarly to Ref. [31]. Based on the matrix repre-
sentation of the Hamiltonian the disorder on the couplings is
commonly addressed as off-diagonal disorder, while the dis-
order on the magnetic field is addressed as diagonal disorder.
Static disorder can be attributed to manufacturing errors that
arise during the experimental implementation. The way each
disorder realization is imposed on the system’s parameters is
the following:

Ji(t ) → Ji(t )(1 + δJi ), Bi(t ) → Bi(t ) + δBi. (6)

Here δJi and δBi acquire random real values uniformly dis-
tributed in the interval (−ds, ds), while ds corresponds to the

052409-5



N. E. PALAIODIMOPOULOS et al. PHYSICAL REVIEW A 103, 052409 (2021)

FIG. 6. For each protocol, (a) cosine, (b) exponential and (c) trivial, we show the impact of diagonal and off-diagonal disorder of strength
ds = 0.2 (units of Jmax). Each point corresponds to the mean value of the transfer probability F̄ averaged over 10 000 disorder realizations
given as a function of the transfer time, while the error bars correspond to the standard deviation of the sample. In order to compare we have
also included the unperturbed curve. The transfer time axis is displayed in logarithmic scale. We also note that the limits of the t∗ axis for the
cosine differ from the other two.

disorder strength. When we consider static disorder, for each
realization a random profile of perturbations is imposed on the
parameters and remains fixed during the time evolution. For
each realization we calculate F as a function of t∗ and then
take the average over all realizations. We have to note that the
phase γ appearing in the more general definition fidelity (see
Sec. II) is in general affected by disorder. Here, we restrict
ourselves to investigating the effect of disorder on the transfer
probability F = |〈N ||N (t∗)〉|2. Thus, to avoid any confusion,
instead of referring to the mean value F̄ as mean fidelity, the
term mean transfer probability is used.

In Fig. 6, for each protocol, we plot the mean transfer prob-
ability as a function of log t∗ for diagonal and off-diagonal
disorder of moderate strength ds = 0.2. What we can imme-
diately notice is that in almost all cases (there is one exception
that is discussed later on) the effect of disorder does not ruin
completely the transfer process. Instead, the main effect is
that, in the presence of disorder (diagonal or off-diagonal),
the transfer time t∗ needed to reach high values of transfer
probability is increased.

Let us turn our attention to the protocols employing the
SSH chain. The zero-energy mode of the underlying static
chain is known to be robust against perturbations that re-
spect chiral symmetry [44]. Off-diagonal (chiral) disorder
may change the mode’s wave function; however, its energy
remains pinned down to zero. On the contrary, diagonal dis-
order breaks chiral symmetry and the energy of the mode
is shifted. For the time-driven chain a difference between
chiral and nonchiral disorder becomes apparent in the case
of the adiabatic cosine protocol [see Fig. 6(a)]. As it was
expected from the static case, the transfer probability reduces
more in the presence of nonchiral disorder [7,40]. The expo-
nential protocol, however, seems indifferent to whether the
disorder is chiral or not [see Fig. 6(b)]. The reason behind
this lies in the higher speed of the exponential protocol.
Since the effect of disorder strongly manifests in large time
scales, the adiabatic cosine protocol is far more sensitive
compared to the exponential. This argument has been recently
used to justify the resilience of the counter-adiabatic protocol
in Ref. [54].

When we examine the effect of the disorder on the cou-
plings for the topologically trivial protocol [see Fig. 6(c)], we

observe that the oscillatory behavior of the transfer probability
for small transfer times is suppressed (i.e., less oscillations
and the mean transfer probability is significantly degraded).
Thus, we can deduce that the resonant processes are not so
robust to the static off-diagonal disorder.

On the other hand, when considering the effect of the
disorder on the magnetic field we distinguish two cases:
one where the disorder is imposed on all sites of the chain
and another where the first and last sites are exempted (i.e.,
δB1 = δBN = 0). In the latter case, the protocol proves to be
even more robust than the off-diagonal case [see Fig. 6(c),
diagonal 2]. However, in the former, the effect of disorder is
severe and the transfer process is completely destroyed [see
Fig. 6(c), diagonal 1]. The diagonal disorder on the edges
greatly affects the transfer process since it induces an energy
difference between the initial and the final state. The system’s
initial state is localized on the first site with energy equal to
δB1, while the final state is localized on site N with energy
δBN . Combined with the fact that the energy gap separating
them from the rest of the excited states takes its minimum
value (which is smaller than the strength of the disorder)
during the beginning and the end of the transfer process, this
explains the high impact of the diagonal disorder on the edges.
In conclusion, the topological protection coming from the
energy gap clearly favors the topological channels, which are
indifferent to whether the diagonal disorder is imposed on the
edge sites.

To sum up, the exponential protocol is quite robust to both
on- and off-diagonal disorder and clearly outperforms the two
other protocols. As opposed to the adiabatic cosine protocol,
it is indifferent to whether the disorder is chiral or not, and
compared with the trivial chain we can deduce that no signif-
icant (in terms of affecting the transfer probability) resonant
processes susceptible to static noise are at work. Finally, the
presence of a wide energy gap in the underlying static SSH
chain clearly favors the topological quantum channel when the
diagonal disorder is imposed on the edge sites of the chain.

C. Scalability

One more crucial aspect determining the efficiency of a
QST protocol is its scalability. In other words, how does
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FIG. 7. For each protocol, we plot the transfer time t∗
0.9 it takes to

reach F = 0.9 as a function of the system’s size N .

the protocol behave when we increase the system’s size? To
numerically examine this property, we pick up an arbitrary
fidelity and plot the transfer time t∗ it takes to reach it as
a function of the system’s size N . For consistency with the
analysis made so far, we once again pick F = 0.9 and ex-
amine chains up to N = 100 (see Fig. 7). We have to note
that, in the case of the trivial protocol, we pick up the transfer
time t∗

0.9 after which the oscillations of fidelity do not lead
to a decreased fidelity value below the imposed bound (i.e.,
F < 0.9). Considering the SSH protocols, as the system size
is increased the value of the minimum instantaneous energy
gap decreases. Consequently, to reach the desirable value of
fidelity, the system has to be driven at a slower pace. Never-
theless, by inspecting Fig. 7, it is evident that the proposed
exponential driving outperforms the two other protocols in
terms of the transfer time and exhibits a good behavior up to
the lengths we have considered here.

IV. CONCLUSIONS

In this work we have numerically investigated a time-
dependent protocol that employs a topological quantum chain
to act as a quantum channel for transferring single-site ex-
citations. We propose an exponential driving function that
increases the efficiency of the transfer in terms of speed. To
sustain our claim, we make a comparison with two other
QST protocols. The crucial characteristics of the exponential
function are the fact that it suitably adapts the slope of the
driving function based on the value of the instantaneous en-
ergy gap, while at the same time it ensures that the minimum
value of the energy gap gmin is as big as possible. The res-
onant processes are fine-tuned, leading to a speed increase.
Employing the CRAB optimization algorithm, we get strong
indications that the proposed time-driving function is close
to optimal. We study the effect of diagonal and off-diagonal
static noise, highlighting the fact that even though the speed
of the protocol is increased its robustness is maintained. In
addition, we numerically examine how each protocol behaves
as the system’s size is increased, demonstrating the fact that
the exponential, in terms of the transfer time, outperforms the

other two approaches. The difference, in terms of speed, with
the cosine and the trivial protocols emphasizes the power of
our treatment and identifies the considerations that have to
be taken into account when driving a topological quantum
chain. The developed scheme adds up to the ongoing effort of
constructing discrete networks that can efficiently transfer and
manipulate quantum states. It also makes a substantial contri-
bution to speeding up adiabatic protocols (with topological
characteristics or not) since it indicates a conceptual way of
designing the control schemes depending on the instantaneous
eigenspectrum characteristics.
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APPENDIX: OPTIMIZATION

To perform optimizations of the control scheme and make
comparisons with the proposed analytical functions, we use
the general logic of the optimal control method chopped
random basis (CRAB) introduced in Ref. [58]. The idea
of the method is to parametrize the control function with
a constrained (chopped) expansion of, e.g., polynomial or
trigonometric functions. Then, we can use a standard opti-
mization method like the downhill simplex method for direct
search of the optimal values of the parameters for a cer-

FIG. 8. For the protocol employing the SSH chain, we plot the
coupling strength Jodd as a function of time t for the cosine (black
line) and the exponential (red line) driving, together with the cor-
responding optimized driving functions (black dashed line for the
cosine and red dashed line for the exponential) obtained by the
optimal control method CRAB. Note that the driving function imposed
on Jeven is obtained by mirror inverting this picture, where the axis of
symmetry has the equation t = 0.5.
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tain cost or fidelity function. For our purposes we want to
demonstrate how close to our proposed control functions the
optimal scheme may be. To keep things simple we use a
forth-order polynomial function:

f (t ) = a0 + a1t + a2t2 + a3t3 + a4t4.

Keeping boundary conditions (initial and final values) we end
up with fixing a0 and, e.g., a4, and we are left with three
parameters to be optimized. We set out from an initial guess
for these parameters given by a fit to the cosine pulse for the
total time T = 761 where this pulse has a fidelity of F > 0.9.

We show in Fig. 8 the initial cosine scheme (black line)
and the optimized pulse (dashed black line) optimizing the
aforementioned parameters with the same fidelity. Apparently
the cosine pulse is strongly corrected by optimal control,
tending indeed as we have mentioned in the main text to
the exponential one (red line). On the other hand, performing
the same optimization procedure for the exponential scheme
(for the corresponding total time T = 42), we end up with
a minor correction (dashed red line). We conclude that the
analytical exponential scheme proposed in this work is closer
to an optimal scheme than others appearing in the literature.
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