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Characterizing quantum networks: Insights from coherence theory
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Networks based on entangled quantum systems enable interesting applications in quantum information
processing and the understanding of the resulting quantum correlations is essential for advancing the technology.
We show that the theory of quantum coherence provides powerful tools for analyzing this problem. For that, we
demonstrate that a recently proposed approach to network correlations based on covariance matrices can be
improved and analytically evaluated for the most important cases.
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I. INTRODUCTION

Quantum networks [1–4] have recently attracted much in-
terest as they have been identified as a promising platform
for quantum information processing, such as long-distance
quantum communication [5,6]. In an abstract sense, a quan-
tum network consists of several sources, which distribute
entangled quantum states to spatially separated nodes, then
the quantum information is processed locally in these nodes.
This may be seen as a generalization of a classical causal
model [7,8], where the shared classical information between
the nodes is replaced by quantum states. Clearly, it is impor-
tant to understand the quantum correlations that arise in such
a quantum network. Recent developments have shown that
the network structure and topology leads to novel notions of
nonlocality [9,10], as well as new concepts of entanglement
and separability [11–13], which differ from the traditional
concepts and definitions [14,15]. Dealing with these new
concepts requires theoretical tools for their analysis. So far,
examples of entanglement criteria for the network scenario
have been derived using the mutual information [11,12], the
fidelity with pure states [12,13], or covariance matrices build
from measurement probabilities [16,17], but these ideas work
either only for specific examples, or require numerical opti-
mizations for their evaluation.

In this paper we demonstrate that the theory of quantum
coherence provides powerful tools for analyzing correlations
in quantum networks. In recent years, quantum coherence was
under intense research, it was demonstrated that coherence
is essential in quantum information applications and entan-
glement generation [18–21] and a resource theory of it has
been developed [22–26]. We provide a direct link between the
theory of multisubspace coherence [27,28] and the approach
to quantum networks using covariance matrices established
in Refs. [16,17]. This allows to solve analytically the criteria
developed there for important cases; furthermore, some con-
jectures can be proved and, besides that, our methods can be
applied to large networks for which tools based on numerical
optimization are infeasible. We note that, since the covariance

matrix approach is essentially a tool coming from classical
causal models [16], our results demonstrate that results from
the theory of quantum coherence are useful beyond the level
of quantum states for the analysis of classical networks.

II. QUANTUM NETWORKS

The simplest nontrivial network is the triangle network,
where three nodes are mutually connected by three sources
that prepare bipartite quantum states that are subsequently
shared with the nodes, see also Fig. 1(a). More generally,
one has M sources, labeled by m = 1, 2, . . . , M that indepen-
dently produce quantum states �m, which are then distributed
to N nodes, labeled by n = 1, 2, . . . , N . For every source m
we denote by Cm the set of all connected nodes that have
access to the state �m. The topology of the network captures
the fact that not all vertices are connected to a single source,
thus limiting the influence that each source can have on the
different nodes.

At each node a measurement is performed that is described
by a POVM A(n) = {A(n)

x }x. The observed probability distribu-
tion over the outcomes reads p(x1 . . . xN ) = tr[(A(1)

x1
⊗ · · · ⊗

A(N )
xN

)�1 ⊗ · · · ⊗ �M]. The central question is whether a given
probability distribution may originate from a network with a
given topology. We note that the set of probability distribu-
tions that are compatible with a given network topology is
nonconvex and thus, in general, hard to characterize. One way
to overcome this problem was put forward in Ref. [17]. The
idea is to map the set of probability distributions compatible
with the network to the space of covariance matrices, and then
consider a convex relaxation of the problem.

For this purpose, a so-called feature map is defined that
maps the outcomes xn at each vertex n to a vector v(n)

xn
∈ Vn,

where the Vn are some orthogonal vector spaces. Combining
all the feature maps, one obtains a random vector v with com-
ponents vx1...,xN = v(1)

x1
+ · · · + v(N )

xN
. The covariance matrix is

then defined as

�(v) = E (vv†) − E (v)E (v)† (1)
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FIG. 1. (a) The triangle network consists of three nodes that
produce measurement outcomes x1, . . . , x3 and three sources that
distribute bipartite entanglement that is shared amongst the nodes.
The covariance matrix of the triangle network has a 3 × 3 block
structure and consists of three terms, where (�)i denotes those blocks
that are contributed by the source i. (b) A network consisting of four
nodes that is 3-complete, i.e., it features four sources that distribute
tripartite entanglement.

with E (vv†) = ∑
x1,...,xN

vx1,...,xN v†
x1,...,xN

P(x1, . . . , xN ) and
E (v) = ∑

x1,...,xN
vx1,...,xN P(x1, . . . , xN ). Due to the structure

of v, the covariance matrix has a natural block structure: � is
an N × N block matrix with blocks �αβ , and each block is a
r × r matrix, with r being the dimension of Vn. The standard
covariance matrix formalism from mean values is a special
instance of this notion, where one assigns to the outcomes
xn just real numbers and hence takes the Vn to be one
dimensional. Here, however, we will assume that the feature
map simply maps the outcomes xn to orthogonal vectors
|xn〉, as for measurements with more than two outcomes the
mean value contains less information in comparison with the
probability distribution.

III. COVARIANCE MATRICES AND COHERENCE

The topology of the network imposes strong constraints
on the structure of the covariance matrix. More precisely, the
covariance matrix can be decomposed in a sum of positive
matrices that have a certain block structure, corresponding
to the sources [16,17]. The verification of this structure is
then an instance of a semidefinite program (SDP) [29,30]. For
simplicity, we will restrict our attention in the following to
k-complete networks. This means that all sources distribute
their states to k < N parties and all possible k-partite sources
are being used, so we have M = (N

k

)
[see also Fig. 1(b)].

Our results can be extended to more complicated network
topologies.

The criterion from Refs. [16,17] states that one has to find
a decomposition of �(v) into blocks Ym according to

find: Ym � 0, (2)

subject to: Ym = �mYm�m and �(v) =
M∑

m=1

Ym, (3)

where �m = ∑
i∈Cm

Pi, with Pn being the projector onto Vn;
so �m is effectively a projector onto all spaces affected by the
source m. To give an example, we depict this decomposition
for the case of the triangle network in Fig. 1(a). Note that the
formulation in Eqs. (2) and (3) is different from (but clearly

equivalent to) the formulation in Ref. [17]. The advantage of
our reformulation is that it allows to establish a link to the
theory of quantum coherence.

When characterizing quantum coherence, one starts with
a fixed basis {|φi〉} of the Hilbert space. The coherence of a
quantum state is then given by the amount of off-diagonal
elements of its density matrix, if expressed in this basis
[19,22]. A pure state |ψ〉 is said to have coherence rank k,
if it can be expressed using k elements of the basis {|φi〉}, and
a mixed state has coherence number k, if it can be written as
a mixture of pure states with coherence rank k or less, but
not as a mixture of pure states with coherence rank k − 1
or less [20–22,27,31]. This can be extended to the notion of
block coherence [28] by taking a set of orthogonal projectors
{Pi} such that any vector |ψ〉 can be decomposed as |ψ〉 =∑

i |ψi〉, where |ψi〉 = Pi|ψ〉. The vector |ψ〉 is said to have
block coherence rank k if exactly k terms in the decomposition
do not vanish. The convex hull of rank one operators |ψ〉〈ψ |
with block coherence rank k or less we denote as BCk . Then,
an operator X has block coherence number k + 1 if it is in
BCk+1 but not in BCk . In general we have the inclusion BC1 ⊂
BC2 ⊂ · · · ⊂ BCN . Note that the notions of coherence rank
and coherence number are well studied and several criteria
and properties are known [22].

Having this in mind, it is clear that Eqs. (2) and (3) are
nothing but a reformulation of the notion of multisubspace
coherence for the covariance matrix and we arrive at the first
main result of this paper:

Observation 1. If a covariance matrix �(v) has block co-
herence number k + 1 with respect to the projectors �m, then
it cannot have originated from a k-complete network.

IV. NETWORKS WITH DICHOTOMIC MEASUREMENTS

For dichotomic measurements, that is, measurements with
two outcomes, one can expect from our discussion after
Eq. (1) that the covariance matrix can be simplified. Indeed,
with our feature map the blocks of the covariance matrix
are always of the form (�αβ )i j = (pi j − qir j ), where pi j is a
probability distribution, and qi = ∑

j pi j and r j = ∑
i pi j are

its marginals. These blocks have vanishing row and column
sums, so (1, . . . , 1)T is a (left and right) eigenvector with
eigenvalue zero. For the dichotomic case, the blocks are 2 × 2
matrices, so only one nonzero eigenvalue remains, and we
must have �αβ ∝ (1 − σx ). So we have:

Observation 2. Consider a network of N vertices,
where each node performs a dichotomic measurement.
Then the covariance matrix �(v) is of the form
�(v) = C ⊗ (1 − σx ), where C is an N × N matrix.

So, for evaluating the criterion for k-completeness in the
case of dichotomic measurements, one just has to check the k-
level coherence of the matrix C. While this is, in general, still
hard, the solution can directly be written down for the simplest
nontrivial case of k = 2 [27]. Namely, it is known that a matrix
X has coherence number less than or equal to two if and only
if the so-called comparison matrix M(X ) defined by

(M[X ])i j =
{|Xii| if i = j

−|Xi j | if i �= j
(4)

is positive semidefinite. Thus, we have:
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Observation 3. If the comparison matrix M(C) coming
from the covariance matrix has a negative eigenvalue, then
the observed probability distribution is incompatible with a
network of bipartite sources.

V. EXAMPLE OF A GHZ-TYPE DISTRIBUTION

Consider the family of distributions that have previously
been studied in Refs. [17,34]

P(x1, . . . , xN )

= pδ(N )
0 + qδ

(N )
1 + (1 − p − q)

1 − δ
(N )
0 − δ

(N )
1

2N − 2
, (5)

where δ
(N )
i = ∏N

j=1 δix j . For p = q = 1
2 this corresponds to

measuring locally σz on an N-particle Greenberger-Horne-
Zeilinger (GHZ) state |GHZ〉 = (|00 . . . 0〉 + |11 . . . 1〉)/

√
2.

The covariance matrix for this distribution reads

C = �1 + χ |1〉〈1|, (6)

where � = 2N−2(1 − p − q)/(2N − 2), χ = 1
4 [1 − (p −

q)2] − � and |1〉 = ∑N
n=1 |n〉. From Eq. (4) we can conclude

that C has coherence number less or equal two if and only
if the matrix M(C) = (� + 2χ )1 − χ |1〉〈1| is positive
semidefinite. This matrix has eigenvalues λ1 = � + 2χ and
λ2 = � − (N − 2)χ . It follows that C is incompatible with a
2-complete network if

q > p + κ −
√

4κ p + (κ − 1)2, (7)

where κ = [(N − 1)2N−2]/[(N − 2)(2N−1 − 1)]. This crite-
rion was already observed in Ref. [17], however only
numerical evidence for its optimality was found. Applying our
Observation 3, it also becomes evident that this criterion is
indeed the optimal solution of the relaxation in Eqs. (2) and
(3) for the GHZ-type distributions in Eq. (5). This relies on
the fact that the criterion in Eq. (4) is necessary and sufficient
to characterize two level coherence of an operator. We empha-
size that if the criterion is not violated, this does not imply the
compatibility with any 2-complete network.

VI. MULTILEVEL COHERENCE WITNESSES

Another possibility to detect the coherence number of a
covariance matrix, and thus, ruling out large classes of states
to be compatible with a network structure, are coherence
witnesses. To illustrate the idea, let us consider again the
GHZ-type distribution from Eq. (5). Due to the simple struc-
ture of the corresponding covariance matrix C in Eq. (6) we
can completely characterize its multilevel coherence prop-
erties and so the underlying distributions according to their
network topologies for arbitrary N . To that end, let us first
recall the concept of coherence witnesses. Consider an arbi-
trary pure state |ψ〉 = ∑M

i=1 ci|i〉. A (k + 1)-level coherence
witness is given by Wk = 1 − 1∑k

i=1 |c↓
i |2 |ψ〉〈ψ |, where c↓

i de-

note the coefficients ci reordered decreasingly according to
their absolute values [27]. This means that tr[Wk�] � 0, if �

has coherence number k or less. For the maximally coherent
state |ψ+〉 = (

∑N
i=1 |i〉)/

√
N this witness is of the form Wk =

FIG. 2. (a) For the triangle network we compare the criterion in
Eq. (7) (solid line) to the monogamy criterion in Eq. (10) (dashed
line), the entropic constraint (dot-dashed line) from Refs. [32,33],
and the inflation criterion (dotted line) from Ref. [10]. (b) Results
of the GHZ-type distribution in Eq. (5) using Eq. (8) for N = 5 and
k = 4, 3, 2. Everything above the lines is detected to be incompatible
with the respective network structure.

1 − |1〉〈1|/k. This witness can easily be proven to be opti-
mal for the family of states �(μ) = μ|ψ+〉〈ψ+| + (1 − μ) 1N .
These states are, up to normalization and suitable choice of the
parameter μ, equivalent to the covariance matrix C in Eq. (6).
Thus we obtain tr[WkC] = (1 − 1/k)� + (1 − N/k)χ . From
this, it directly follows that C is incompatible with a k-
complete network, if

q > p + η −
√

4ηp + (η − 1)2, (8)

with η = (N − 1)2N−2/[(N − k)(2N−1 − 1)]. The results are
shown for the case N = 5 and k = 4, 3, 2 in Fig. 2(b). Fur-
thermore, we note that this technique can be applied to large
networks where an approach based on SDPs would become
infeasible, due to the rapidly growing number of terms in
Eqs. (2) and (3), which grows as

(N
k

)
.

VII. NETWORKS BEYOND
DICHOTOMIC MEASUREMENTS

In the case of more than two outcomes per measurement,
the block coherence number of the covariance matrix needs
to be tested. For the case of networks involving only bipartite
sources we have the following:

Observation 4. Let �(v) ∈ BC2 be a covariance matrix
with block coherence number two. Whenever the signs of
some off-diagonal blocks are flipped such that the matrix
remains symmetric, the resulting matrix will also remain pos-
itive semidefinite.

To see this, note that any matrix with block coherence
number two can be written as a convex combination of pure
states with coherence rank two, i.e., |ψ〉 = Pi|ψ〉 + Pj |ψ〉. For
any such state, adding a minus sign in the density operator
corresponds to the transformation Pi|ψ〉 + Pj |ψ〉 �→ Pi|ψ〉 −
Pj |ψ〉, under which the density operator remains positive
semidefinite.

To demonstrate the power of this Observation, let us con-
sider again the GHZ-type distribution, but now with three
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FIG. 3. Analysis of the GHZ-type distribution with three out-
comes per measurement in Eq. (9) using Observation 4. The blue
surface represents the normalization constraint.

outcomes per measurement,

P(x1, x2, x3) = pδ(3)
0 + qδ

(3)
1 + rδ(3)

2

+ (1 − p − q − r)
1 − δ

(3)
0 − δ

(3)
1 − δ

(3)
2

33 − 3
. (9)

A straightforward calculation provides a regime where this is
incompatible with the triangle network, see Fig. 3.

VIII. CHARACTERIZING NETWORKS WITH
MONOGAMY RELATIONS

Another possibility to characterize networks is to evalu-
ate monogamy relations for the coherence between different
subspaces [28]. The idea is that the amount of coherence that
can be shared between one subspace and all other subspaces
is limited if a certain block coherence number is imposed.
To be more precise, for a trace one positive semidefinite
block matrix X = [Xαβ]N

α,β=0 with block coherence number

k it holds that
∑N

β=1 ‖X0β‖tr �
√

k − 1
√

tr[X00](1 − tr[X00]).
If we consider the normalized matrix matrix C̃ = C/tr[C],
evaluating such a monogamy relation provides a necessary
criterion for C to have coherence number k. For the matrix
in Eq. (6) this gives

� −
(√

N − 1√
k − 1

− 1

)
χ � 0. (10)

Hence, if this inequality is violated then the observed corre-
lations are not compatible with a k-complete network. This is
also shown in Fig. 2(a) for the triangle network. Although this
test is in this case not as powerful as the analytical solution,
it is easy to evaluate especially for large networks, since it
requires only computing traces of smaller block matrices.

IX. FURTHER REMARKS

So far, we provided criteria to show that correlations are
incompatible with a k-complete network. It would be interest-
ing to derive also sufficient criteria for being compatible with
a given network structure. In the framework of Ref. [17] this
is not directly possible, as the criterion in Eqs. (2) and (3) is
a convex relaxation of the original problem. Still, coherence

theory allows to identify scenarios where the covariance ma-
trix can be certified to have a small block coherence number k,
so the covariance matrix approach must fail to prove incom-
patibility with a k-complete network.

Here we can make two small observations in this direction:
(i) The following results from Ref. [27] can be directly applied
to networks with dichotomic outcomes. Namely, if we have
for the normalized matrix C̃ � N−k

N−1�(C̃), where � is the fully
decohering map, mapping any matrix to its diagonal part, then
C̃ has coherence number k, implying that the test in Eqs. (2)
and (3) for (k + 1)-complete networks will fail. Furthermore
we have that if tr[C̃2]/tr[C̃]2 � 1/(N − 1), then C̃ is two-level
coherent. (ii) In the general case, if Mb(�) � 0, where Mb(�)
is the block comparison matrix defined by (Mb[�])αβ =
(‖�−1

αα ‖)−1 for α = β, and (Mb[�])αβ = −‖�αβ‖ for α �= β,
with ‖X‖ denoting the largest singular value of the block X ,
then � ∈ BC2. A detailed discussion is given in Appendix.

X. CONCLUSION

In this work we have established a connection between
the theory of multilevel coherence and the characterization
of quantum networks. To be precise, we showed that a recent
approach based on covariance matrices leads to a well-studied
problem in coherence theory; consequently, many results from
the latter field can be transferred to the former. This provides a
useful application of the resource theory of multilevel coher-
ence outside of the usual realm of quantum states.

There are several interesting problems remaining for future
work. First, it would be highly desirable to extend the covari-
ance approach to the case where each node of the network can
perform more than one measurement. This will probably lead
to significantly refined tests for network topologies. Second, it
seems to be promising to study the coherence in networks on
the level of the resulting quantum state, and not the covariance
matrix. This may shed light on the question which types of
network correlations are useful for applications in quantum
information processing. Third, it would be interesting to see
if the covariance matrix approach can also be extended to
generalized probabilistic theories.
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APPENDIX: SUFFICIENT CONDITIONS FOR BLOCK
COHERENCE NUMBER TWO

Let the block matrix X = [Xαβ ] > 0, with Xαβ ∈ Cd×d , be
partitioned as follows:

X =

⎡
⎢⎢⎢⎣

X11 X12 · · · X1K

X21 X22 · · · X2K
...

...
. . .

...

XK1 XK2 · · · XKK

⎤
⎥⎥⎥⎦. (A1)

052405-4



CHARACTERIZING QUANTUM NETWORKS: INSIGHTS … PHYSICAL REVIEW A 103, 052405 (2021)

Definition 5 (from Ref. [35]). Let X be partitioned as in
Eq. (A1). If the matrices Xαα on the diagonal are nonsingular,
and if

(∥∥X −1
αα

∥∥)−1 �
K∑

β=1
β �=α

‖Xαβ‖, (A2)

then X is called block diagonally dominant. Here ‖Y ‖ denotes
the largest singular value, so for the positive Xαα the expres-
sion ‖X −1

αα ‖−1 is the smallest eigenvalue of Xαα .
Observation 6. If X is positive and block diagonally dom-

inant, then the block coherence number is smaller or equal to
two, bcn(X ) � 2.

Proof. Suppose X satisfies the hypothesis. Define 2 × 2
block matrices

Gαβ =
[|Xαβ | Xαβ

X †
αβ |X †

αβ |

]
, (A3)

where |Xαβ | =
√

X †
αβXαβ and the support of Gαβ is the sub-

space α, β. Clearly, the Gαβ are positive semidefinite and have
block coherence number two. Next, consider the matrix D =
X − ∑K

α=1

∑
β>α Gαβ . Since X > 0 it is also Hermitian, and

thus, Xβα = X †
αβ , precisely as for Gαβ . From this we can con-

clude that the off-diagonal blocks of D vanish and the diagonal
blocks are given by Dαα = Xαα − ∑K

β = 1, β �= α |Xαβ |. Fur-

thermore, observe that λmin(Xαα ) � ∑K
β = 1, β �= α λmax(Xαβ ) �

λmax(
∑K

β = 1, β �= α
Xαβ ), where the first inequality is due

to Eq. (A2) and the second inequality is straightforward. This
proves that, besides being block diagonal, D is also positive
semidefinite. Thus X can be written as a positive sum of a
block incoherent matrix D and matrices Gαβ of block coher-
ence number two, from which the statement follows. �

The next concept that is needed is the so-called comparison
matrix, which is defined as follows.

Definition 7 (from Ref. [36]). Let X be partitioned as in
Eq. (A1) and Xαα nonsingular. Then the block comparison

matrix Mb[X ] is defined by

(Mb[X ])αβ =
{(∥∥X −1

αα

)∥∥−1
for α = β

−‖Xαβ‖ for α �= β
. (A4)

From this definition it is evident that if the comparison
matrix Mb[X ] exists and is (strictly) diagonally dominant, then
X itself is (strictly) block diagonally dominant.

Definition 8 (M matrix). Let the matrix A = (ai j ) be a real
matrix such that ai j � 0 for i �= j. Then A is called a nonsin-
gular M matrix if and only if every real eigenvalue of A is
positive.

Definition 9 (Def. 3.2. in Ref. [36]). If there exist nonsin-
gular block diagonal matrices D and E such that Mb[DXE ]
is a nonsingular M matrix, then X is said to be a nonsingular
block H matrix.

Lemma 10 (Lemma 4. in Ref. [36]). If X is a nonsingular
block H matrix, then there exist nonsingular block diagonal
matrices D and E such that DXE is strictly block diagonally
dominant.

Theorem 11. Let X be partitioned as in Eq. (A1) and pos-
itive semidefinite (but not necessarily strictly positive). If
Mb(X ) � 0, then X has bcn(X ) � 2.

Proof. The proof follows the idea of Ref. [27]. First, define
the operator Xε = X + ε1, for ε � 0. Then, for ε > 0 we have
that Mb[Xε] = M[X ] + ε1 > 0. Evidently, since Mb[Xε] is a
real matrix with nonpositive off-diagonal entries and further-
more has only strictly positive eigenvalues it is a nonsingular
M matrix, according to Def. 8. Then, according to Def. 9 Xε

is a nonsingular block H matrix. From the proof of Lemma
10 in Ref. [36] we can conclude that there exists a block
diagonal matrix Dε > 0 such that DεXεDε is strictly block
diagonally dominant. Then it follows from Observation 6
that strictly block diagonally dominant matrices can have at
most block coherence number two. We find that bcn(Xε ) =
bcn(DεXεDε ) � 2, and since the block coherence number is
lower semicontinuous we have bcn(X ) = bcn(limε→0+ Xε ) �
limε→0+ bcn(Xε ) � 2. �
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