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We propose a fast and dephasing-tolerant scheme for the preparation of steady Knill-Laflamme-Milburn
(KLM) state between a pair of Rydberg atoms by dissipation. In this scheme, arbitrary initial state can be
engineered to the KLM state with high fidelity (99.24%). Compared to most schemes based on Rydberg
dissipation dynamics, the time to prepare steady state can be significantly reduced in our scheme (80 μs)
due to the use of strong resonant dipole-dipole interactions. In addition, the scheme can effectively suppress
the dephasing error of the Rydberg atoms caused by interatomic distance fluctuations, which may severely
disrupt the desired systematic dynamics. Thus the present scheme is of interest and deserves further experimental
investigation to enrich the dissipation dynamics based on the Rydberg atoms.
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I. INTRODUCTION

Entanglement plays a central role in quantum mechanics
and has been actively applied to various types of quantum
information processing (QIP) tasks, such as quantum tele-
portation [1–3], quantum cryptography [4–6], and quantum
state sharing [7,8]. Among various methods for producing
entanglement, the dissipative preparation [9–21] is a pre-
ponderant one, since it transforms the stumbling block of
unitary-dynamics preparation, dissipation, into engineering
resource. That is, by using the dissipative preparation, the
fidelity is generally insensitive to the dissipation and therefore
gives rise to higher fidelity, which has been experimentally
demonstrated in macroscopic systems [22], ionic systems
[23,24], and superconducting systems [25].

Recently, due to the superior properties of strong dipole-
dipole interactions and long lifetimes of Rydberg atoms [26],
some interest has been attracted in Rydberg-atom-based dissi-
pative preparation [16,17,19,27–37]. For instance, Carr et al.
[16] extended the Rydberg-atom-based dissipative preparation
to produce Bell states within 50 ms with fidelity 99.8%.
Subsequent works studied multi-dimensional-entanglement
preparation scheme [30] and simplified scheme [31] for the
Rydberg-atom-based dissipative preparation with evolution
times about 300 and 200 ms, respectively. Generally, the
evolution times with tens to hundreds of milliseconds of
above schemes seem too long for some fast QIP tasks and
should be further shorten. Thereby, an alternative scheme, by
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utilizing the electromagnetically induced transparency (EIT)
phenomenon [38], was proposed by Rao et al . [17] with a
shorter evolution time 50 μs. While the scheme may face
some possible difficulties that the simultaneous excitations of
multiple Rydberg states will induce the dephasing noise in the
experiment.

Indeed, the dephasing of Rydberg atoms always be seen as
an obstacle lying on the application of Rydberg-atom-based
QIP. Generally, the atoms in optical tweezers will slightly
vibrate and therefore leads to the atomic dephasing [39]. Such
a phenomenon will bring small change of the dipole-dipole
interaction energy (scaling by 1/R3 or 1/R6) and may se-
riously destroy the desired systematic dynamics when more
than one Rydberg states are excited during the evolution.
For instance, in the experiment [39], the damping of the de-
sired oscillations reached about 50% within only 700 ns (see
Fig. 3(b) in Ref. [39]) due to the atomic dephasing induced by
simultaneously exciting Rydberg atoms.

Here we propose a dissipative scheme to try to address the
issues of long time required and sensitivity to dephasing noise.
Specifically, the bipartite Knill-Laflamme-Milburn (KLM)
state [40], which can be used to significantly improve the
success probability of QIP tasks, is taken here as an example
to illustrate our dynamics. We use the strong resonant dipole-
dipole interaction [36,37,39] (scaling as 1/R3 [41,42]) instead
of the relatively weak van der Waals interaction (scaling as
1/R6 [43]). The big interaction energy allows us to apply
relatively strong driving fields and choose dissipative states
with higher dissipation rates, yielding a shorter evolution time
(80 μs with fidelity 99.24%). Additionally, we avoid multi-
ple Rydberg states excitations for the Rydberg atoms, which
reduces the complexity of the experiment and also attenuates
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the effects of dephasing noise [39]. The numerical simulation
shows that when we consider the interaction energy fluctu-
ation rate as 6% [39], the fidelity in the present scheme is
still high as 97.36% at 80 μs (the infidelity will accumulate
over time), which strongly proves that the present scheme
is effective in suppressing the atomic dephasing. Moreover,
our scheme can also (i) deal with another potential source
of experimental error induced by voltage fluctuation, (ii) be
robust to the Rabi frequencies deviations, and (iii) possesses
fine arbitrariness of the initial state (either any form of pure
states or any form of mixed states can be used to prepare the
target state).

The paper is organized as follows. In Sec. II, we intro-
duce the physical model for the fast and dephasing-tolerant
preparation of steady KLM states in detail, whose dynamic
is studied in Sec. III. In Sec. IV, we give the numerical
simulation of the present scheme by considering atomic de-
phasing, voltage fluctuation, Rabi frequencies deviations, and
arbitrariness of the initial state. Finally the discussion is given
in Sec. V.

II. PHYSICAL MODEL FOR THE FAST
AND DEPHASING-TOLERANT PREPARATION

OF STEADY KLM STATES

The KLM state produced here is bipartite, given by [40]

|KLM〉 = 1√
3

(|00〉 + |10〉 + |11〉). (1)

The physical model for preparing the KLM states is shown
in Fig. 1(a), a pair of 87Rb atoms trapped at a dis-
tance of R = 2.673 μm in two optical tweezers, whose
interatomic axis is aligned with a magnetic field (B =
9 G). Here we use the states |p〉 = |61P1/2, mj = 1/2〉,
|r〉 = |59D3/2, mj = 3/2〉, | f 〉 = |57F5/2, mj = 5/2〉, |e〉 =
|9P3/2, F = 2, mF = 0〉, |0〉 = |5S1/2, F = 1, mF = 0〉, and
|1〉 = |5S1/2, F = 2, mF = 0〉 of 87Rb. The pair states |rr〉
and | p̃ f 〉 [| p̃ f 〉 = (|p f 〉 + | f p〉)/

√
2] are almost degenerate

[41,42], with a relatively small energy difference named
‘Förster defect’, which can be quantified as �0 = (Ep f −
Err )/h = 8.5 MHz(h being the Planck’s constant). For elim-
inating the Förster defect, an electric field Fres � 32 mVcm−1

[39] is added to the 87Rb atoms, which compensates the
Förster defect because of different Stark effect between
|rr〉 and | p̃ f 〉. By now, a strict “Förster resonance” is con-
structed well and in this case the dipole-dipole interaction
is strong with Vdip = √

2C3/R3, where C3/h = 2.54 GHz μm3

was ideally given by the theory of [44] and C3/h = 2.39 ±
0.03 GHz μm3 was measured in the experiment [39].

Figure 1(b) shows the level diagrams of atoms for the
present scheme, in which ground state |1〉1 and Rydberg state
|r(p)〉1 is coupled by a laser field with Rabi frequency �1

and blue (red) detuning � in atom 1. As for atom 2, |r〉2

and |1(e)〉2 are resonantly coupled by a laser field with Rabi
frequency �2(�e). Note that |1〉 ↔ |r(p)〉 is indeed a two-
photon transition constructed by a σ+-polarized 480 nm laser
and a σ+-polarized 784 nm laser [see Fig. 1(c)], which has
been experimentally realized [45]. Additionally, the transi-
tions of |0〉1 ↔ |1〉1 and |0〉2 ↔ |1〉2 are driven by two Raman
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FIG. 1. (a) Imagined experimental model diagram. (b) Level
diagrams of atoms. The gray and black curved arrows represent dissi-
pation ways from Rydberg states (|p〉, |r〉, and | f 〉) and intermediate
exited state |e〉 to ground states, respectively. (c) Detailed schematic
about how the two-photon transition and recycling lasers work. Only
two-photon transition |1〉 ↔ |r〉 is plotted because |1〉 ↔ |p〉 is easy
to be analogized. In addition, the dark blue and purple arrows,
respectively representing two π -polarized lasers at about 786 nm
and 773 nm, can recycle all the other Zeeman ground states to |0〉
and |1〉.

laser fields [46] with Rabi frequencies −�ω and �ω, respec-
tively, whose detunings are all δ.

Also, the Rydberg states (|p〉, |r〉, and | f 〉) and intermediate
excited state (|e〉) can decay to ground states with spontaneous
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emission rates �(p,r, f ) and �e, respectively. It is worth men-
tioning that the ground states are not just |0〉 and |1〉 plotted in
Fig. 1(b). Generally, for 87Rb atoms, there are eight ground
states |5S1/2, F = 1, mF = 0,±1〉 and |5S1/2, F = 2, mF =
0,±1,±2〉, and the decay rate of the spontaneous emission to
one of these eight states is proportional to the corresponding
dipole moment between that ground state and |5P3/2, F = 3〉
state. Nevertheless, here we add two π -polarized lasers at
about 786 nm and 773 nm [see Fig. 1(c)] to pump all the
ground states except |0〉 and |1〉 up to |5P1/2〉 because tran-
sition |mF = 0〉 → |mF = 0〉 is forbidden according to the
selection rule. Furthermore, the spontaneous emission rate
state |5P1/2〉 is huge as 36.98 MHz [47], inducing rapidly de-
caying from |5P1/2〉 to ground states and the ground states will
be pumped up again. Therefore, in this setting, it is reasonable
to assume that |0〉 and |1〉 can be the end states of the spon-
taneous emission, and we consider them as representatives of
the ground states [16].

III. DYNAMIC OF THE PHYSICAL MODEL

The total Hamiltonian of the physical model in the interac-
tion picture yields (h̄ = 1 hereafter)

H = �1ei�t |p〉1〈1| + �1e−i�t |r〉1〈1| + �2|r〉2〈1|
+�e|r〉2〈e| + Vdip|rr〉〈p̃ f | + H.c. + Hω,

Hω = �ω(−|0〉1〈1| + |0〉2〈1|) + H.c.

+ δ(|0〉1〈0| + |0〉2〈0|). (2)

The term of Förster resonance, Vdip|rr〉〈p̃ f | + H.c., can be
diagonalized as Vdip(|+〉〈+| − |−〉〈−|) with |±〉 = (|rr〉 ±
| p̃ f 〉)/

√
2. Here we set � = Vdip � �1 and move into a

new picture with a rotating frame R = exp[iVdipt (|+〉〈+| −
|−〉〈−|)], giving rise to (assuming the initial state elements
all made up by ground states)

H ′ = RHR† + iṘR† = H1 + H2 + Hω, (3)

where H1 and H2 are resonant and high-frequency part of H −
Hω, respectively, given by

H1 = �2(|01〉〈0r| + |11〉〈1r| + |p1〉〈pr|) + �1√
2
|1r〉〈+|

+�e(|0r〉〈0e| + |1r〉〈1e| + |pr〉〈pe|) + H.c.,

H2 = �1ei�t (|10〉〈r0| + |p0〉〈10| + |11〉〈r1|
+ |p1〉〈11| + |1e〉〈re| + |pe〉〈1e| + |pr〉〈1r|)
+ 1√

2
e−i�t |−〉(�2〈r1| + �e〈re|)

+ 1√
2

e−i�t (�2|r1〉 + �e|re〉)〈+|

+ �1√
2

e2i�t |1r〉〈−| + H.c. (4)

Note that some terms containing states |e〉1, | f 〉1, | f 〉2, and
|p〉2 have been neglected since they are decoupled to the
system. An intuitive explanation is that there is no correspond-
ing lasers drive other states to |e〉1, | f 〉1, | f 〉2, and |p〉2 [see
Fig. 1(b)]. Further more, we can calculate the effective value

of H2 by time-averaged dynamic [48], a precise method of
second-order perturbation theory, yielding

H2eff =
2∑

u=1

[h†
u, hu]/ωu

= �2
1

�
(|p0〉〈p0| − |r0〉〈r0| + |p1〉〈p1| − |r1〉〈r1|

+ |pr〉〈pr| − |1r〉〈1r| + |pe〉〈pe| − |re〉〈re|)

+ �2
2 + �2

e

2�
(|+〉〈+| − |−〉〈−|)

+ �1�e√
2�

(|+〉〈1e| + |1e〉〈+|)

+ �2
1

4�
(|1r〉〈1r| − |−〉〈−|), (5)

with

h†
1 = �1(|10〉〈r0| + |p0〉〈10| + |11〉〈r1|

+ |p1〉〈11| + |1e〉〈re| + |pe〉〈1e| + |pr〉〈1r|)

+ 1√
2
|+〉(�2〈r1| + �e〈re|)

+ 1√
2

(�2|r1〉 + �e|re〉)〈−|,

h†
2 = �1√

2
|1r〉〈−|, (6)

corresponding to high frequencies � and 2�, respectively.
Therefore, by additionally neglecting some decoupled terms
and assuming �1 � {�2,�e,�ω}, the total Hamiltonian can
be refined as

H ′ � H1 + H2eff + H ′
ω

� �2(|01〉〈0r| + |11〉〈1r|)
+�e(|0r〉〈0e| + |1e〉〈1r|) − �ω(|0r〉〈1r| + |0e〉〈1e|)

+ �1√
2
|1r〉〈+| + H.c. − 3�2

1

4�
|1r〉〈1r|

+ δ(|0r〉〈0r| + |0e〉〈0e|) + H ′
ω, (7)

where H ′
ω contains no excited state (|e〉, |r〉, |p〉, and | f 〉),

reading

H ′
ω = �ω(−|00〉〈10| − |01〉〈11|

+ |00〉〈01| + |10〉〈11|) + H.c.

+ δ(2|00〉〈00| + |01〉〈01| + |10〉〈10|). (8)

Here, the condition, �1 � {�2,�e,�ω} is applied to ob-
tain the effective Hamiltonian. We diagonalize the relatively
huge part of Eq. (7), �1√

2
|1r〉〈+| + H.c., as �1√

2
(|E+〉〈E+| −

|E−〉〈E−|) with |E±〉 = (|1r〉 ± |+〉)/
√

2. In such a situation,
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H ′ becomes

H ′ � �2

[
|01〉〈0r| + 1√

2
|11〉(〈E+| + 〈E−|)

]

+�e

[
|0r〉〈0e| + 1√

2
|1e〉(〈E+| + 〈E−|)

]

−�ω

[
1√
2
|0r〉(〈E+| + 〈E−|) + |0e〉〈1e|

]
+ H.c. + δ(|0r〉〈0r| + |0e〉〈0e|)

− 3�2
1

8�
(|E+〉 + |E−〉)(〈E+| + 〈E−|)

+ �1√
2

(|E+〉〈E+| − |E−〉〈E−|) + H ′
ω. (9)

From Eq. (9) and Fig. 2, it is clear that state 1√
2
(|E+〉 +

|E−〉), i.e., |1r〉, is decoupled to states |11〉, |1e〉, and

|0r〉, with huge detuning like ( �1√
2

− 3�2
1

8�
)|E+〉〈E+| − ( �1√

2
+

3�2
1

8�
)|E−〉〈E−|. Hence the final effective Hamiltonian yields

Heff = Hp + H ′
ω,

Hp = �2|01〉〈0r| + �e|0r〉〈0e| − �ω|0e〉〈1e| + H.c.

+ δ(|0r〉〈0r| + |0e〉〈0e|), (10)

where Hp is the pumping Hamiltonian that continuously
drives the ground state |01〉 to excited states |0r〉, |0e〉, and
|1e〉, and H ′

ω [see Eq. (8)] is the ‘shuffling Hamiltonian’,
constantly disrupting the distribution of the ground states.

We firstly focus on the pumping Hamiltonian Hp. For
comparison, we plot schematic diagrams of Hp driven sys-
tem, Rydberg anti-blockade system [49–54], and Rydberg
blockade system in Figs. 3(a), 3(b), and 3(c), respectively.
From Fig. 3(a), it is clear that, among four ground states,
only |01〉 can be pumped up to single-Rydberg state |0r〉
(coupled to |0e〉 and |1e〉), and then decays to the ground
states. These excitation and dissipative processes will repeat
many times until the target state is achieved. The Rydberg
anti-blockade effect shown in Fig. 3(b) induces a similar
process as Hp driven system, however, with a drawback that
double-Rydberg states |rr〉 is involved in the evolution. In
the current experimental scheme [39], due to the finite tem-
perature of the atoms in the tweezers, there is a inevitable

|00⟩ |01⟩ |10⟩ |11⟩

| ⟩

| ⟩ | ⟩Ω2

Ω
−Ω

|00⟩ |01⟩ |10⟩ |11⟩

| ⟩

ΩeffΩeff

|00⟩ |01⟩ |10⟩ |11⟩

| ⟩

Ω

| ⟩ | ⟩ | ⟩

FIG. 3. Illustrations of (a) Hp driven system, (b) Rydberg anti-
blockade system, and (c) Rydberg blockade system. The curved
arrows represent dissipation ways caused by spontaneous emission
of the excited states.

fluctuation distance between 87Rb atoms, specifically, δR =
170 nm when R � 9 μm(δVdip/Vdip � 3δR/R ∼ 6%). Such
a phenomenon will destroy the accuracy of the effective
Hamiltonian (like Heff = �eff |01〉〈rr| + H.c.) of the Rydberg
anti-blockade system since �eff and δVdip may be of the same
order of magnitude (detailed discussion shown in Sec. IV B.).
In contrast, Hp driven system in the present scheme can avoid
this problem because only single-Rydberg state is pumped.

Additionally, for the Rydberg blockade effect shown in
Fig. 3(c), one can find that, only single-Rydberg states (|0r〉,
|r0〉, |r1〉, and |1r〉) are stimulated, which indicates that the
Rydberg blockade system is not sensitive to the fluctuations of
atomic distance, as well. Nevertheless, the Rydberg blockade
effect generally pumps ground states without strict selectivity.
For instance, in Fig. 3(c), all ground states can be stimulated
to the single-Rydberg states, hence leading to instability of
all the ground states. On the contrary, system driven by Hp in
the present scheme can construct the stability of |00〉, |10〉,
and |11〉 and is useful for the preparation of steady KLM
states.

To illustrate the stability, the populations of ground states
driven by (without dissipation) the effective pumping Hamil-
tonian Hp and original pumping Hamiltonian H − H ′

ω shown
in Eqs. (2, 8) versus time are plotted in Fig. 4. As shown in
Fig. 4, the populations of |00〉, |10〉, and |11〉 driven by the
Hamiltonian Hp, are almost invariable. While the population
of |01〉 driven by the Hamiltonian Hp, varies versus time
significantly, which coincides with Eq. (10) and Fig. 3(a). In
addition, the original pumping Hamiltonian H − H ′

ω driven
populations match the Hp driven populations well, with tiny
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FIG. 4. Populations of (a) |00〉, (b) |01〉, (c) |10〉, and (d)
|11〉 vs time, under the effective pumping Hamiltonian Hp

driven and original pumping Hamiltonian H − H ′
ω driven. The

relevant parameters read, �2 = 2π × 290.35 kHz, �e = 1.5�2 =
2π × 435.53 kHz, �1 = 24�2 = 2π × 6.97 MHz, and Vdip = � =
27�1 = 2π × 188.15 MHz.

differences in Figs. 4(c) and 4(d) induced by incomplete sat-
isfaction of condition Vdip � �1 � {�2,�e}.

Up to now, one can know that any state that only contains
these three basis |00〉, |10〉, and |11〉 may be the steady state of
the system driven by Hp. The KLM state, [|KLM〉 = (|00〉 +
|10〉 + |11〉)/

√
3], is the steady state, but not the unique one,

which means different initial states will be driven to different
final steady states by Hp. Hence we introduce the “shuffling
Hamiltonian” H ′

ω, to ensure the KLM state is the unique
steady state. In the ground state basis {|00〉, |01〉, |10〉, |11〉},
H ′

ω yields

H ′
ω =

⎛
⎜⎝

2�ω �ω −�ω 0
�ω �ω 0 −�ω

−�ω 0 �ω �ω

0 −�ω �ω 0

⎞
⎟⎠, (11)

by setting δ = �ω. The master equation of H ′
ω driven system

reads

ρ̇(t ) = −i[H ′
ω, ρ(t )]. (12)

Note that the master equation in Eq. (12) does not include
decoherence part because there are no exited state during
the evolution driven by H ′

ω. The steady state ρ(t f ) under
H ′

ω driven should satisfy ρ (r)(t f ) = 0 with r and t f being
the derivation order (any positive integer) and the final time,
respectively, which holds when ρ̇(t f ) = −i[H ′

ω, ρ(t f )] ≡ 0.
Thereupon, the eigenstates of H ′

ω,

|φ1〉 = 5 − √
5

20
[−(3 +

√
5)|00〉 − (1 +

√
5)|01〉

+ (1 +
√

5)|10〉 + 2|11〉],

|φ2〉 = 5 + √
5

20
[−(3 −

√
5)|00〉 − (1 −

√
5)|01〉

+ (1 −
√

5)|10〉 + 2|11〉],
|φ3〉 = 1√

3
(|00〉 + |10〉 + |11〉) = |KLM〉,

|φ4〉 = 1√
15

(|00〉 − 3|01〉 − 2|10〉 + |11〉), (13)

are all the steady states of the system driven by H ′
ω, but only

|φ3〉, i.e., the KLM state, just includes bases |00〉, |10〉, and
|11〉 and that be the steady state of the system driven by
Hp as well. Thereupon, the KLM state is the unique steady
state of the system driven by the effective Hamiltonian, Heff =
Hp + H ′

ω.

IV. NUMERICAL SIMULATION

A. Ideal situation

The original Hamiltonian and effective Hamiltonian are
respectively submitted to the master equation

ρ̇(t ) = i[ρ(t ), •] +
16∑

l=1

Llρ(t )L†
l − 1

2
[L†

l Llρ(t ) + ρ(t )L†
l Ll ],

(14)

where the big dot, •, represents different Hamiltonians and
Ll (l = 1, 2, . . . , 16) indicate Lindblad operators yielding (ı =
0, 1 and j = 1, 2)

Lı+1+8(j−1) =
√

�e/2|ı〉j 〈e|, Lı+3+8(j−1) =
√

�r/2|ı〉j 〈r|,
Lı+5+8(j−1) = √

�p/2|ı〉j 〈p|, Lı+7+8(j−1) = √
� f /2|ı〉j 〈 f |,

(15)

which describe the spontaneous emissions from |e〉, |r〉,
|p〉, and | f 〉 to |0〉 and |1〉. In addition, initial state here
is a mixed state ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| +
|11〉〈11|)/4. Notice that ρ(0) is not the only initial state to
implement the present protocol. Indeed, arbitrary initial states
made up by ground states components can be driven to the
KLM states here. The relevant parameters are

�e = 2π × 1.31 MHz, �r = 2π × 5.0 kHz,

�p = 2π × 2.1 kHz, � f = 2π × 5.6 kHz,

�ω = 2π × 145.18 kHz,

�2 = 2�ω = 2π × 290.35 kHz,

�e = 1.5�2 = 2π × 435.53 kHz,

�1 = 24�2 = 2π × 6.97 MHz,

Vdip = � = 27�1 = 2π × 188.15 MHz, (16)

where the value of �1 is reliable in the experiment [45]
and the value of Vdip corresponds to the atomic distance
R = 2.673 μm. Also, the values of �e, �r , �p, and � f ap-
proximately correspond to the lifetimes of specific Rb atom
states [47,55]. Based on the parameters, we plot the fidelities
for the present scheme versus time via full Hamiltonian and
effective Hamiltonian in Fig. 5(a). It is visualized in Fig. 5(a)
that the full Hamiltonian drives the system to the final state
as exactly the effective Hamiltonian does. The fidelity for the
fast and dephasing-tolerant preparation of steady KLM states
reaches 99.24% at 80 μs, shorter than 1.36 ms in the previous
Rydberg-atom-based KLM preparation scheme of Ref. [35].
Meanwhile, when the initial states are not mixed states but
pure states, the fidelities driven by the original Hamiltonian
are shown in Fig. 5(b), in which one can find the fidelities all
reach above 99% in 80 μs.
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FIG. 5. (a) Fidelities vs time with blue solid line (marking with
triangles) and orange dash line (marking with circles) corresponding
to full Hamiltonian driven and effective Hamiltonian driven systems,
respectively. (b) Fidelities driven by the original Hamiltonian vs.
time when the initial states are pure states |00〉, |01〉, |10〉, and |11〉.
Relevant parameters are shown in Eq. (16).

B. Atomic dephasing

As mentioned in Sec. I, the optical tweezers in the practical
experiment may not exactly fix atoms in specific positions.
That is, the real atomic distance may have a little fluctua-
tion, which is δR/R = 1.89% reported in the experiment [39].
Considering Vdip = √

2C3/R3, such a fluctuation in atomic
distance may cause δVdip/Vdip � 3δR/R ∼ 6% and further re-
sult in the inaccuracy of the effective Hamiltonian.

Specifically, if the Rydberg antiblockade effect is utilized
in the present scheme, the effective pumping Hamiltonian
reads

H ′
p = �eff |01〉〈rr| + H.c., (17)

with �eff = 2�2
1

�
, which is utilized in the scheme of Ref. [35]

for the preparation of KLM states. When δVdip/Vdip is small
enough, the modified effective Hamiltonian under the atomic
dephasing can be given by

H ′′
p = �eff |01〉〈rr| + δVdip|rr〉〈p̃ f | + H.c. (18)

According to the parameters relation used in Eq. (16), � =
27�1, Vdip = �, such that, �eff = 2�

729 and δVdip = −36�eff ∼
36�eff (δ = −0.1 ∼ 0.1), one can find that the dynamical evo-
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FIG. 6. Fidelity (at 80 μs) vs δVdip/Vdip. The initial states for all
the points are ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4
and the relevant parameters follows Eq. (16) with differences �1 =
40�2 and � = 15�1.
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FIG. 7. Fidelity (at 80 μs) vs �c. The initial states for all
the points are ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4
and the relevant parameters exactly follow Eq. (16). Observe that
the influence of �c is so tiny that the fidelity exceed 99.24% (when
�c = 0) at some points �c �= 0.

lution driven by H ′′
p is completely different from that by H ′

p.
Therefore the effective pumping Hamiltonian H ′

p is disabled
when the atomic dephasing happens.

Hence, when multi-Rydberg states are stimulated during
the evolution of system, the atomic dephasing will seriously
decrease the efficiencies or fidelities of some Rydberg-atom-
based QIP tasks [16,32,35,39,56,57]. A specific comparison
is given in Fig. 8 of the scheme of Ref. [58], the fidelities
of single-Rydberg-states-populated gates and multi-Rydberg-
states-populated gates are respectively 97.06% and 49.65%
when δVdip/Vdip = 10%.

In fact, for the steady state preparation works, the com-
parison of fidelity between single-Rydberg-state-populated
schemes and multi-Rydberg-state-populated schemes will not
be as pronounced. For instance, although the effective pump-
ing Hamiltonian H ′

p in Eq. (17) is disabled, the multi-Rydberg
states can dissipate to the ground states to finally keep |01〉
unstable, which can be further used to complete the steady
KLM states preparation. However, from Eq. (18) and relation
δVdip = −36�eff ∼ 36�eff , one can find that there is a detun-
ing between |01〉 and |rr〉, which will reduce the population of
|rr〉 during the evolution and thus slow the dissipative speed.
In this case, the evolution time will be extended. Ergo, it is
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FIG. 8. Fidelities (at 80 μs) vs (a) η1, (b) η2, (c) ηe, and (d)
ηω. Similarly, the influence of ηq is so slight that at some points
ηq �= 0, the fidelity exceed which at point ηq = 0. The initial states
of all the points are still ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| +
|11〉〈11|)/4 and the relevant parameters follow Eq. (16).
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FIG. 9. Fidelity (at 80 μs) vs δ′/δ. The initial states of all
the points are ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4
and the relevant parameters follow Eq. (16).

needed to avoid simultaneous excitations of Rydberg atoms in
the preparation of steady state.

Here we plot the fidelity for the fast and dephasing-tolerant
preparation of steady KLM states versus atomic dephasing
rate δVdip/Vdip in Fig. 6, from which one can see that at point
δVdip/Vdip = 6% as the experimental observation [39], the fi-
delity is 97.36%. Even when δVdip/Vdip = ±10%, the fidelity
is still high as 95.00% (91.98%).

C. Voltage fluctuation

As shown in Fig. 1(a), the experimental model needs
an electric fields Fres � 32 mVcm−1, generated by electrodes
with a certain voltage, to ensure the Förster resonance. With
reference to the experiment [39], the voltage applied to the
electrodes will fluctuate a few mVs, inducing fluctuation in
Fres and further in detuning (<1 MHz) of |rr〉 and | p̃ f 〉.
For simulating such a phenomenon, the original Hamiltonian
shown in Eq. (2) can be modified as

Hc = H + �c|rr〉〈rr|, (19)

and further be submitted into Eq. (14). Then we can plot
the relation between the fidelity for the fast and dephasing-
tolerant preparation of steady KLM states versus �c in Fig. 7,
where one can see that the fidelity barely decreases when �c

varies. At point �c = ±2 MHz, the fidelity reaches 99.258%
(99.226%), which is acceptable in the experiment.

FIG. 10. (a) Fidelity and (b) corresponding evolution time vs
Gp(p = 5m−1 + n). The relevant parameters are the same as that
shown in Eq. (16).

D. Rabi frequencies deviations

In many experimental scenarios, the Rabi frequencies may
not be adjusted exactly, generally with several deviations.
Such that the real value of Rabi frequency in the experiment
should be rewritten as

�′
q = (1 + ηq)�q (20)

with q = 1, 2, e, ω and ηq being the deviation rate of �q. For
testing whether the present scheme is robust to the deviations
of Rabi frequencies or not, we plot the fidelity (driven by
the original Hamiltonian) for the fast and dephasing-tolerant
preparation of steady KLM states versus ηq in Fig. 8, from
which one can find that the fidelity is robust against the devia-
tions of Rabi frequencies. Specifically, all the fidelities remain
in 98.8% ∼ 99.3% when deviations rates change from −10%
to 10%.

It is noteworthy that in Sec. III, we have set the small detun-
ing δ = �ω = 2π × 145.18 kHz, which is generally adjusted
with a little deviation about dozens of kHzs, according to the
experiment [46] [see Fig. 2(c) of this reference.]. Therefore
the fidelity versus the detuning deviation, δ′/2π = −14.5 ∼
14.5 kHz, is plotted in Fig. 9, in which the fidelity is still
high as 98.91% (99.01%) when δ′/δ = ±0.1. This demon-
strates that the present scheme is also robust to the deviation
of δ.

E. Arbitrariness of the initial state

In fact, the producing of desired initial states in many
schemes are also problems. Such that the arbitrariness of the
initial state can be used as an index to test the experimental

TABLE I. Groups of random numbers {α1, α2, α3}.

G1 = {0.5497, G2 = {0.9172, G3 = {0.2858, G4 = {0.7572, G5 = {0.7537,

0.6892, 0.2638} 0.7482, 0.1455} 0.4505, 0.1361} 0.0838, 0.8693} 0.2290, 0.5797}
G6 = {0.3804, G7 = {0.5678, G8 = {0.0759, G9 = {0.0540, G10 = {0.5308,

0.9133, 0.5499} 0.1524, 0.1450} 0.8258, 0.8530} 0.5383, 0.6221} 0.9961, 0.3510}
G11 = {0.7792, G12 = {0.9340, G13 = {0.1299, G14 = {0.5688, G15 = {0.4694,

0.0782, 0.5132} 0.4427, 0.4018} 0.1067, 0.0760} 0.9619, 0.2399} 0.0046, 0.1233}
G16 = {0.0119, G17 = {0.3371, G18 = {0.1622, G19 = {0.7943, G20 = {0.3112,

0.7749, 0.1839} 0.8173, 0.2400} 0.8687, 0.4173} 0.0844, 0.0497} 0.3998, 0.9027}
G21 = {0.5285, G22 = {0.1656, G23 = {0.6020, G24 = {0.2630, G25 = {0.6541,

0.2599, 0.9448} 0.8001, 0.4909} 0.4314, 0.4893} 0.9106, 0.3377} 0.1818, 0.9001}
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FIG. 11. (a) Fidelity vs Vdip/�1 and �1/�2 at 80 μs. (b) The
3000 power of fidelity vs Vdip/�1 and �1/�2 at 80 μs, which is
exhibited here for visually finding the points with higher fidelities.

feasibility of a scheme. From the analysis in Sec. III, we can
find that any initial states made up by ground states elements
can be driven to the KLM states. For proving it, the initial state
is parameterized as

|ψ (0)〉 = cos α1|00〉 + sin α1 cos α2|01〉
+ sin α1 sin α2 cos α3|10〉
+ sin α1 sin α2 sin α3|11〉, (21)

with αk (k = 1, 2, 3) being a random number in the range of
0 − 1. Notice that only ground states elements are considered
here, since the other elements are all include excited states and
will decay to the ground states elements.

We choose 25 groups random numbers of {α1, α2, α3},
represented by Gp(p = 1, 2, . . . , 25) and shown in Table I.
These 25 random initial states are submitted into Eq. (14) with
original Hamiltonian shown in Eq. (2). Subsequently we plot
the fidelity and corresponding evolution time for the fast and
dephasing-tolerant preparation of steady KLM states versus
Gp(p = 5m−1 + n) in Figs. 10(a) and 10(b), respectively. It is
clear in Fig. 10 that the fidelities for various random initial
states are all higher than 99.14% with evolution times about
66–78 μs.

F. The tradeoff between fidelity and time

Firstly, we choose parameters conditions

�2 = 2�ω, �e = 1.5�2, �e = 9�ω,

Vdip = 2π × 188.15 MHz, �r = 2π × 5.0 kHz,

�p = 2π × 2.1 kHz, � f = 2π × 5.6 kHz, (22)

to plot the fidelity versus Vdip/�1 and �1/�2 at 80 μs in
Fig. 11 and find two points with relatively high fidelities:
{Vdip/�1 = 27, �1/�2 = 24, 99.24%} and {Vdip/�1 = 26.5,
�1/�2 = 22.5, 99.27%}. We consider these two points as the
optimal points and the former one is used in Eq. (16).

Furthermore, we can search the other optimal points with
different evolution time by plotting corresponding contour
maps like Fig. 11. For the simplicity, the other contour maps
of the fidelities with different evolution time are not placed
here. While the final optimal results are shown in Table II,
from which one can find that the fidelity slowly increase as
the evolution time substantially extending. For instance, the
fidelity can reach 99.9% with the evolution time increasing to

TABLE II. Optimal fidelities with corresponding time.

Vdip/�1 �1/�2 Time Fidelity

11 9.5 10 μs 96.30%
16.5 11 20 μs 98.05%
24.5 13 40 μs 98.94%
27 24 80 μs 99.24%
26.5 22.5 80 μs 99.27%
28 33 160 μs 99.62%
48 49 400 μs 99.78%
59 64 800 μs 99.85%
82 81 1200 μs 99.90%

1200 μs. On the other hand, the fidelity is very close to to 99%
when the evolution time is 40 μs.

V. CONCLUSION

We proposed a scheme for fast and dephasing-tolerant
preparation of steady KLM states. The Förster resonance
effect was utilized here to build strong dipole-dipole interac-
tion (2π×188.15 MHz), leading to a shorter evolution time
(80 μs). In addition, we avoided simultaneously stimulating
multiple Rydberg states during the whole preparation process.
Such that the influence of the atomic dephasing noise is slight
in the present scheme.

Specifically, the present scheme has several advantages as
follows.

(i) Fast. Compared with evolution time of the repre-
sentative work [35] of Rydberg-atom-based steady KLM
preparation, 1.36 ms, the present scheme is faster (80 μs, see
Fig. 12) and perhaps seems more suitable for some rapid quan-
tum information tasks based on the Rydberg atoms [59–74].

(ii) Tolerance to the atomic dephasing. As is known that the
atomic dephasing always plays a role of a stumbling block in
various Rydberg-atom-based processes [16,32,35,39,56,57].

FIG. 12. Comparative diagram of operation time between the
present scheme and the scheme of Ref. [35]. Note that we choose the
same dipole-dipole interaction energy, Vdip = 2π × 188.15 MHz, to
plot this comparative diagram and the parameters relations we used
here to plot the fidelity curve of the scheme of Ref. [35] is the same
as that in Fig. 5 in Ref. [35], i.e., Vdip = 90� = 18000γ . The initial
states are all ρ(0) = (|00〉〈00| + |01〉〈01| + |10〉〈10| + |11〉〈11|)/4.
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In the present scheme, we successfully suppressed the influ-
ence caused by the atomic dephasing. When considering the
dephasing rate δVdip/Vdip = 6% follows the real experimental
scenario [39], the fidelity is still high as 97.36%.

(iii) Robust to the deviations of Rabi frequencies. The
fidelity maintain as 98.8%–99.3% when the deviation rates
vary from −10% to 10%.

(iv) Arbitrariness of the initial state. The initial state of
the present scheme can be any states, which all lead fidelities
higher than 99.14%.

Thereby, the present scheme is suitable for experimentally
producing the KLM states and may enrich the research of
dissipative preparation in the Rydberg-atom-based system.

Sincerely, we hope the scheme can be considered applying
in the upcoming experiments.
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