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Unlike quantum correlations, the shareability of classical correlations (CCs) between two parties of a mul-
tipartite state is assumed to be free since there exist states for which CCs for each of the reduced states can
simultaneously reach their algebraic maximum value. However, when one randomly picks out states from the
state space, we find that the probability of obtaining those states possessing the algebraic maximum value is
vanishingly small. Therefore, the possibility of a nontrivial upper bound on the distribution of CCs that is
less than the algebraic maxima emerges. We explore this possibility by Haar uniformly generating random
multipartite states and computing the frequency distribution for various CC measures, conventional classical
correlators, and two axiomatic measures of classical correlations, namely, the classical part of quantum discord
and local work of work-deficit. We find that the distributions are typically Gaussian-like and their standard
deviations decrease with the increase in number of parties. It also reveals that, among the multiqubit random
states, most of the reduced density matrices possess a low amount of CCs which can also be confirmed by the
mean of the distributions, thereby showing a kind of restrictions on the shareability of classical correlations for
random states. Furthermore, we also notice that the maximal value for random states is much lower than the
algebraic maxima obtained for a set of states, and the gap between the two increases further for states with a
higher number of parties. We report that, for a higher number of parties, the classical part of quantum discord
and local work can follow a monogamy-based upper bound on shareability while classical correlators have a
different upper bound. The trends of shareability for classical correlation measures in random states clearly
demarcate between the axiomatic definition of classical correlations and the conventional ones.
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I. INTRODUCTION

In a multipartite system, the rule according to which a cer-
tain physical property is shared among different subsystems
is assigned by a specific theory. In particular, for a given
theory which can be quantum mechanics [1] or generalized
probabilistic theory [2], the physical characteristics, say, P , of
reduced states of a multipartite state, ρ1...N shared by N parties
situated at different locations can be upper bounded by a fixed
value, thereby establishing the restrictions on shareability of
that physical component. The mathematical formulation of it
reads

N∑
i=2

P (ρ1i ) � U, (1)

where ρ1i is the reduced state of ρ1...N and U is an upper
bound of the shareability condition. Like no-go theorems for
single quantum systems [3–8], constraints proved on sharing
of properties like entanglement, violation of Bell inequalities,
capacities of dense coding and teleportation in a multipartite
quantum system [9–22] play an important role in quantum
information processing tasks.

The unbounded sharing of quantum correlations among a
pair of parties in a multipartite state is forbidden—a concept
known as monogamy of quantum correlations (QCs) [9,23].
In particular, if two of the parties of a multipartite state share
maximal QC, they cannot share any QC with other parties.
Monogamy of QC also has an impact on several quantum

information processing tasks which include quantum cryp-
tography and entanglement sharing in a quantum network
[24–26]. In a seminal paper by Coffman, Kundu, and Wootters
[9], such a qualitative concept of monogamy got a mathemat-
ical form that can be used to check whether a QC measure
follows a monogamy inequality. Specifically, a QC measure,
Q, is said to follow a monogamy relation [27,28] if

δQ = Q1:2...N −
N∑

i=2

Q1i � 0, (2)

where Q1:2...N ≡ Q(ρ1:2...N ), Q1i ≡ Q(ρ1i ), i = 2, . . . , N , of
a multipartite state ρ12...N and δQ can be referred as QC
monogamy score [27]. In other words, although each term in∑N

i=2 Q1i can reach log2 d (excepting measures like negativity
and logarithmic negativity [29]) in a N-qudit system, sharing
of QC is bounded above only by a quantum correlation content
in the 1 : rest-bipartition. Note that the party, 1, has a special
status and can be referred to as a nodal observer. Similar to
such inequality can also be derived with other parties as nodal
observer. It is known that monogamy scores of squared con-
currence [9,30], negativity [29,31,32], and quantum discord
[20,33–37] are non-negative. Moreover, it was shown that all
QC measures for random multipartite quantum states tend to
become monogamous when the number of parties increases
[38–41].

In stark contrast, classical correlations (CCs) do not pos-
sess such restrictions. Specifically, there exists a multipartite
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state for which any CC quantifier between reduced two-party
states can simultaneously reach its maximal value and hence
the upper bound in Eq. (1) scales with the increase in the
number of parties. However, it should be noted that, unlike
QC measure, it is not yet settled when a quantity can measure
reliably the amount of CC present even in a bipartite quantum
state. Over the years, a few measures of CC were proposed—
prominent ones having diverse origins include CC part in
quantum discord (CQD) [33–35], extractable local work (LW)
[42], and a conventional classical correlator (CCC), defined as
tr(σ k ⊗ σ lρ12) for a bipartite state, ρ12 which have been used
in quantum mechanics, ranging from Bell inequalities [43,44]
to many-body physics [45]. CQD and LW are defined opera-
tionally and satisfy some axioms which a bona fide measure
of CC is supposed to obey.

In this paper, we address the following questions:
(1) Can we obtain a nontrivial upper bound [U in Eq. (1)]

on the shareability of CC among bipartite reduced states of
random multipartite systems?

(2) Second, how does the frequency distribution, and
consequently the bound for sharing of CC among bipartite re-
duced states obtained from random multipartite states, change
with the increase in system size?

We report here that the answer to the first question is affir-
mative, and hence a new rule for the shareability of CC among
subsystems emerges for random multipartite states. Investigat-
ing on Haar uniformly generated random multipartite states
[46], we find several counterintuitive results. For systematic
analysis, the shareability for classical correlations is addressed
from two perspectives, which we refer to as “unconstrained”
and “constrained” settings. The constrained one implies that
the sample of random states that we choose for our analysis
possesses a fixed, or a definite range of values of a particular
physical property (classical or quantum) different from the
one under investigation while the unconstrained one does not
have such restrictions. By carrying out our investigations for
N = 3 to 6 multiqubit random pure states, we observe that,
like QC, maximal shareability of CC is also restricted, rather
the algebraic maximum occurs only for sets of states with
vanishingly small measure. In the case of an unconstrained
scenario, the frequency distributions of the shareability con-
straints for random states [i.e., the left-hand side in Eq. (1)]
take the form of a Gaussian, irrespective of the choices of the
CC measures, and the Gaussian-like shapes become narrower
for a greater number of qubits, thereby showing the decrease
in standard deviation with the increase of number of parties.
On the other hand, the mean value of CCC remains almost
constant over increasing system size, while the means of CQD
and LW decrease. Moreover, their maximum values obtained
via numerical simulations decrease with the increase in the
number of parties. We also find a kind of trade-off for maximal
values of CCCs in complementary directions.

In the case of a constrained framework, we consider two
kinds of constraints—for a definite value of CCC in a fixed
direction, we study the behavior of sharing rule for CCC in
complementary direction and we also investigate the conse-
quence on average as well as the maximum value of

∑N
i=2 P1i

for the CC measures when randomly generated states pos-
sess a definite range of genuine multipartite entanglement.

Interestingly, we notice that, with the increase of genuine mul-
tipartite entanglement, the average value for the shareability of
CQD and LW in the subsystems of random multipartite states
diminishes. Such an observation leads to the result that LW
and CQD follow the monogamy-based upper bound with a
very high percentage of random states having a higher number
of parties which CCC fails to satisfy.

The paper is organized in the following way: In Sec. II,
we discuss the classical correlation measures, and the class
of states for which shareability of CC measures reach their
maximum value. Section III deals with the patterns in the
distribution of CC in multiqubit random states while we dis-
cuss how the sharing properties of CC changes when a fixed
amount of other CC measure or a genuine multipartite en-
tanglement measure is present in random states in Sec. IV.
We check whether the monogamy-motivated upper bound on
shareability of CC measures is good in Sec. V, and conclude
in Sec. VI.

II. CLASSICAL CORRELATION MEASURES
AND THEIR ALGEBRAIC MAXIMA

Let us describe briefly three types of classical correlation
(CC) measures and their properties for an arbitrary bipar-
tite shared state ρ12. Unlike entanglement measures [47], the
properties that a “good” classical correlation measure of quan-
tum states should follow are not well understood. However,
there are CC measures introduced in Refs. [33–35] which
follow the following properties: (1) it should be vanishing for
ρ1 ⊗ ρ2, (2) it is invariant under local unitary transformations,
(3) it should be nonincreasing under local operations, and (4)
it reduces to S(ρ1) = S(ρ2) for pure bipartite states |ψ〉12 with
ρ1 and ρ2 being the corresponding local density matrices. We
will also consider another CC measure introduced from the
perspective of thermodynamics and the conventional classical
correlators, appearing in the definition of density matrices
[43], which play an important role in different fields rang-
ing from Bell inequalities [44] to many-body physics [45]
(see also Refs. [48,49]).

We first give the definitions of two classical correlation
measures [35] associated with quantum discord (QD) and one-
way work-deficit where the former do follow the postulates of
CC measure while the latter satisfies the first two and the third
one with modifications. We refer to both these CC measures as
axiomatic measures. The classical correlation part of quantum
discord (CQD) of ρ12 can be defined as

CD(ρ12) ≡ CD
12 = S(ρ1) − min

{Pi}

∑
i

piS(ρ1|i ), (3)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy,

ρ1|i = tr2(I ⊗ Piρ12I ⊗ Pi )

tr(I ⊗ Piρ12I ⊗ Pi )
, (4)

with Pi being the rank-1 projective measurements on the sec-
ond party and pi = tr(I ⊗ Piρ12I ⊗ Pi ). Here the minimization
is performed over all rank-1 projective measurements. A
similar definition emerges when the measurement is done
on the first party. Notice that, in the definition of QD,
the optimization is taken over the most general measure-
ments, i.e., positive operator valued measurements (POVMs).
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However, it was shown via numerical simulations that pro-
jective measurements yield very close to the optimal value
obtained via POVMs. So from the practical viewpoint of com-
putational simplicity, we perform our analysis with projective
measurements.

Motivated by quantum thermodynamics, the classical cor-
relation can also be quantified as local extractable work (LW)
by closed local operations and one-way classical communi-
cation [35,42] consisting of local unitaries, local dephasings,
and sending dephased states from one party to another. Math-
ematically, LW reads

C̃LW(ρ12) ≡ C̃LW
12 = log2 d12 − min

{Pi}
S

(∑
i

piρ1|i

)
, (5)

where pi and ρ1|i are same as in Eq. (4), and d12 = d1d2 is
the dimension of ρ12 with the individual subsystems having
dimensions, d1 and d2. Note that C̃LW can take values up
to log2 d12 and to make it consistent with other measures of
classical correlation, which take values from 0 to 1, we scale
C̃LW with log2 d12 and call it CLW = 1

log2 d12
C̃LW.

Let us now define conventional two-site classical correlator
present in any two-qubit state, given by

ρ12 = 1

4

[
I ⊗ I +

∑
k=x,y,z

(mkσ k ⊗ I + m′kI ⊗ σ k )

+
∑

k,l=x,y,z

Ckl σ k ⊗ σ l

]
. (6)

Here

Ckl = tr(σ k ⊗ σ lρ12), k, l = x, y, z. (7)

represents the two-site classical correlators which leads to
the correlation matrix having diagonal elements Ckk, k =
x, y, z and off-diagonal ones, Ckl , k �= l . mk = tr(σ kρ1), m′k =
tr(σ kρ2), k = x, y, z denote the magnetizations corresponding
to the single site density matrix of ρ12. Note that Ckl does
not follow the properties mentioned above and hence we may
expect to see different universal behavior for random states
than that of CD and C̃LW. Since the classical correlators varies
from −1 to 1, we scale its range from 0 to 1, by taking
the absolute value of the same. Since from now on, we will
always use the absolute values of these correlators, we drop
the absolute bars, and any reference to Ckl

1i means the absolute
value of the quantity, unless mentioned otherwise.

As stated earlier, we aim to investigate the pattern in the
distributions of

∑N
i=2 CD

1i ,
∑N

i=2 CLW
1i , and

∑N
i=2 Ckl

1i , as well as
their nontrivial upper bounds for random multipartite states,
ρ12...N by varying the number of parties. We are also inter-
ested to compute the corresponding statistical quantities like
different moments of the distributions and compare them.
Unlike QCs, we first notice that each quantity in the sum can
simultaneously take the maximum value, unity for qubits. In
the next section, we identify classes of multipartite states for
which the algebraic maxima of CC measures can be obtained.
However, we want to study whether the algebraic maximum
value of these quantities can also be reached for randomly
generated states.

A. Class of states maximizing classical correlation measures

Before continuing our study with random states, let us
determine the class of states for which all individual two-party
classical correlations in a multiqubit state simultaneously
reach algebraically maximal values. Specifically, we identify
states which maximize

∑N
i=2 C1i. For two-qubit states, since

each C1i can be unity,
∑N

i=2 C1i can, in principle, reach N − 1.
For all the CC measures discussed above, it is indeed pos-
sible to saturate that bound for a certain types of states. To
illustrate this, we consider product states, |0〉⊗N and |1〉⊗N

as well as the Greenberger-Horne-Zeilinger (GHZ) state [50]
|GHZ〉 = 1√

2
(|0〉⊗N + |1〉⊗N ), which also possesses the max-

imal amount of genuine multiparty entanglement [51]. Note
that, for the GHZ state, all bipartite reduced states with party
1 as the nodal observer read as ρ1i = 1

2 |00〉〈00| + 1
2 |11〉〈11|,

for i � 2, while all single-party reductions are the same which
is the maximally mixed state, i.e., ρ j = 1

2I2 for all j ∈ [1, N].
(1) For the classical correlator(s) Czz

1i = |〈σz ⊗ σz〉1i| =
|tr (σz ⊗ σzρ1i )| = 1 for the |GHZ〉 state. Naturally, we also
get the same results for the states |0〉⊗N and |1〉⊗N . Thus,
we have

∑N
i=2 Czz

1i is N − 1, the algebraic maximum for
all three states. Let us now consider the covariance of Czz

1:i
given by C̃zz

1:i = |〈σz ⊗ σz〉1i − 〈σz〉1〈σz〉i| for both |0〉⊗N and
|1〉⊗N . Now, 〈σz ⊗ σz〉1i = 〈σz〉1〈σz〉i = 1. Therefore, we get
C̃zz

1i = 0, identically. On the contrary, since for the GHZ state,
〈σz〉1 = 〈σz〉i = 1

2 tr (σzI ) = 0, we obtain C̃zz
1i (|GHZ〉) = 1.

Hence, we have
∑N

i=2 C̃zz
1i = N − 1 only for the GHZ state.

Similar analysis can also be performed for other classical
correlators and corresponding states can be identified.

(2) Classical part of QD (CQD). Let us compute CQD of
ρ1i for the |GHZ〉 state. When a measurement is performed
on the second party (i.e., the ith party) in the {|0〉, |1〉} basis,
we get pure postmeasurement states |0〉 and |1〉 with equal
probabilities. Hence the second term of Eq. (3) vanishes,
thereby maximizing the total quantity. Furthermore, the first
term of Eq. (3) is unity since, as pointed earlier, all single-
party reduced density matrices are maximally mixed states.
Therefore, CD

1i (|GHZ〉) = 1, and consequently by summing
over i, we get the algebraic maximal value.

(3) Local work. The second term in the definition of CLW
12

in Eq. (5) takes the minimum value of zero for any pure
product state |ψ〉1 ⊗ |ψ〉2. Therefore, for any N-qubit pure
completely product states ⊗N

k=1|ψ〉k , CLW
1i = 1

2 (2 − 0) = 1.
Consequently, we get

∑N
i=2 CLW

1i = N − 1.
Note that, although we can possibly provide additional

examples that give the algebraic maximal values, we unfor-
tunately cannot provide an exhaustive set of states with this
property. We think this, in general, is a difficult problem.
Furthermore, note that numerical analysis would not help
since the probability of a randomly generated state to reach
the algebraically maximal value is vanishingly small.

Remark. In the Hilbert-Schmidt representation of a two-
qubit state, the Bloch coefficients Ckl , k, l = x, y, z, form the
elements of the correlation matrix. Any one of the nine co-
efficients does not contain any “quantum” properties, since a
separable state also can possess exactly the same value of the
given Bloch coefficient. However, when one takes all Bloch
coefficients, i.e., the entire correlation matrix, of course it has
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FIG. 1. Frequency distribution of
∑

i Cxx
1i . The fraction f of states

(vertical axis) is plotted against
∑

i Cxx
1i (horizontal axis) with a bin

size of 0.01. Total number of random states generated for the analysis
for each N is 106. Note here that the covariance of

∑
i Cxx

1i also gives
the similar frequency distribution, having almost the same mean and
standard deviation. All the axes are dimensionless.

quantum properties and cannot be dubbed as merely classical.
For example, the trace of the absolute values of the correlation
matrix, N = Cxx + Cyy + Czz, is directly connected to the av-
erage teleportation fidelity, F = 1

2 (1 + N/3) [52]. Therefore,
this by no means can be considered as classical. So, what
we understood was that taking multiple Bloch coefficients
simultaneously is tricky when we want to exclusively probe
classical properties. So we resort to the use of single Bloch co-
efficients as a measure of classical correlation. As mentioned
before, using covariances, we find that the classical correlation
of |00〉 is zero (C̃zz

1i = 0). However, surprisingly, both variants
of CC (single Bloch coefficients and the covariance-based
ones) produced the same qualitative statistical features for
Haar uniformly generated random states, as shown in Fig. 1.
We present the results for the single Bloch coefficients for
their wide applicability in various areas in quantum informa-
tion science.

Notice that we keep these states out from our analysis
since we are only concerned about properties of random multi-
qubit states. When states are chosen randomly, the probability
that one picks states from these classes is vanishingly small.
Hence, a new upper bound lower than the algebraic maxima
may emerge for almost all states (as sampled by Haar uni-
form generation [46]), since all the measure-zero states would
naturally be eliminated from our analysis. The next section
focuses on the possibility of any form of restriction on the
distribution of classical correlations among bipartite reduced
states of random multiparty quantum states.

III. TRENDS OF SHAREABILITY OF CLASSICAL
CORRELATIONS FOR UNCONSTRAINED

RANDOM STATES

We first generate three-, four-, five- and six-qubit pure
states Haar uniformly [46] and compute their possible two-
party reduced density matrices shared between the nodal
observer and other parties, i.e., in our case, ρ1i, i = 2, . . . , N

TABLE I. Statistical data for the distribution of the fraction f
of states obtained for

∑N
i=2 Cxx

1i . The mean, standard deviation,
and the maximum value of

∑N
i=2 Cxx

1i for randomly generated
states are denoted respectively by “Mean,” “Sd,” and “Max val.” The
total number of randomly generated state is 106.

N

3 4 5 6

Mean 0.546 0.589 0.559 0.497
Sd 0.281 0.258 0.214 0.170
Max val 1.856 2.101 2.026 1.441

obtained from a pure state, |ψ〉12...N . From these generated
states, we estimate sum of their CCs without imposing any
additional condition on its properties and perform the analysis
for the classical correlators, the classical part of quantum
discord, and the local work of quantum work deficit.

A. Rule for distributing classical correlators in random
multipartite states

We begin by looking at the CCCs, Cαβ , where α, β ∈
{x, y, z}, as defined in Eq. (7). Our analysis reveals that all the
Cαβ display qualitatively and quantitatively similar features,
and so without loss of generality, we focus on a particular one,
say Cxx.

Let us enumerate below the observations of the distribu-
tions for

∑
i Cxx

1i as depicted in Fig. 1 and Table I:
(1) We trace out the fraction f of randomly generated

states which possess
∑

Cxx
1i values in a range denoted by a

step size of 0.01 among 106 samples, i.e.,

f = Number of states having values α <
∑

Cxx
1i � α + 0.01

Total number generated states
,

where α is a fixed value of
∑

i Cxx
1i , and 0.01 is the bin size

in this case which will be changed depending on the analysis.
We find that f depicts “Gaussian”-like features for all chosen
number of qubits, i.e., N � 6.

(2) Mean and standard deviation. With the increase of N ,
the standard deviation of the f distribution decreases, thereby
making it more spiked, as shown in Fig. 1. However, mean of
the distribution remains almost constant with N (see Table I).

(3) Algebraic maximum. For three-qubit random states, we
can find states for which

∑3
i=2 Cxx

1i is very close to its algebraic
maximum, 2. However, for larger N values, the maximal value
obtained for

∑N
i=2 Cxx

1i is much lower compared with the alge-
braic maximum N − 1, as can be seen also from the Table I.

Role of observable incompatibility

So far, all CCCs Cαβ

1i involved in the sum
∑N

i=2 Cαβ

1i have
been the same, i.e., they possess the same α and β values for
all i � 2. However, one may ask how the distribution changes
if α and β change with i. In particular, it will be interesting to
know how the distribution of f or the maximal value changes
when the classical correlators for different i values do not
commute.

For illustration, in the three-party case, we consider Cyx
12 +

Cxx
13 . We find that, although the f distribution does not vary
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FIG. 2. Maximum of Ckx
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13 (y axis) vs θ (x axis) where k is
the unit vector, (cos θ, sin θ, 0). Red points represent maximal values
of Ckx

12 + Cxx
13 for different θ and the blue line is the best fit, depicting

the decreasing nature with the increase of noncommutativity as mea-
sured by θ . Dotted line is the upper bound obtained in Eq. (14). All
the axes are dimensionless.

much from Cxx
12 + Cxx

13 , the maximal value of the sum of the
correlators decreases as operators become more incompatible
in the sense of noncommutativity.

Toward checking it, we now investigate how the maximal
value varies upon changing the commutativity of the opera-
tors, i.e., when the operators become noncommuting from the
commuting ones. For a quantitative analysis, we compute the
f distribution for Ckx

12 + Cxx
13 , where the direction k is defined

by the unit vector (cos θ, sin θ, 0). The corresponding local
operator for the direction k is defined by cos θσx + sin θσy.
Note that θ = 0 represents the commuting case, while θ =
π/2 refers to the maximum noncommuting cases. As θ in-
creases, i.e., when the amount of incompatibility between
two operators increases, we observe that the maximal value
of Ckx

12 + Cxx
13 decreases, see Fig. 2. We now attempt to pro-

vide an upper bound of Ckx
12 + Cxx

13 , following the ideas in
Refs. [18,53,54]. For this, we first consider two projectors A
and B and construct an operator M = A〈A〉 + B〈B〉. We now
have the following:

〈M〉 = 〈A〉2 + 〈B〉2,

〈M2〉 = 〈M〉 + 〈A〉〈B〉〈{A, B}〉, (8)

where {A, B} = AB + BA. Using the non-negativity of the
variance 〈M2〉 − 〈M〉2 � 0 and approximating 〈A〉〈B〉 = 1,
we arrive at the relation, given by

〈M〉2 − 〈M〉 − 〈{A, B}〉 � 0. (9)

Since 〈M〉 � 0, the above condition reduces to

〈M〉 � 1
2 (1 +

√
1 + 4〈{A, B}〉). (10)

Again, using the Cauchy-Schwarz inequality, we have

|〈A〉| + |〈B〉| �
√

2
√

〈A〉2 + 〈B〉2 =
√

2
√

〈M〉. (11)

Using Eq. (10), we finally obtain

|〈A〉| + |〈B〉| � 1 +
√

1 + 4〈{A, B}〉. (12)

If we now put A = (cos θσx + sin θσy) ⊗ σx ⊗ I2 and B =
σx ⊗ I2 ⊗ σx, we get

〈{A, B}〉 = 2 cos θ〈I2 ⊗ σx ⊗ σx〉
+ sin θ〈({σx ⊗ σy}) ⊗ σx ⊗ σx〉 � 2 cos θ. (13)

Furthermore, the above substitution makes |〈A〉| = Ckx
12 and

|〈B〉| = Cxx
13 . Finally, pulling everything together, Eq. (12)

becomes

Ckx
12 + Cxx

13 �
√

1 + √
1 + 8 cos θ. (14)

To test the quality of this bound, we plot it in Fig. 2 along with
our numerical findings. The above bound turns out to be good,
as can be clearly seen in Fig. 2.

Although the mean of the frequency distribution is inde-
pendent of θ , the reduction in maximal value is due to the
lowering of the standard deviation of the distribution induced
by increasing incompatibility. The behavior obtained above
remains qualitatively similar for any two noncommuting op-
erators, say Ck1k2

12 and Cl1l2
13 in the sum while the maximal value

remains same for two commuting operators in
∑N

i=2 Cαβ

1i . For
example, we find that the maximum of Cxk

12 + Cxx
13 matches

with that of Cxx
12 + Cxx

13 since Cxk
12 commutes with Cxx

13 . This
further reinforces the conclusion that the reduction of the
maximal value is due to the incompatibility of operators. Such
a reduction of maximal values for incompatible operators is
observed for higher N values as well.

B. Equivalent shareability rule for classical part
of discord and local work

We now concentrate our analysis on the classical part of
QD and local work. As we have argued, the classical corre-
lators have a completely different origin than the CQD and
LW and hence we may expect some qualitative differences be-
tween classical correlators and CQD or LW with the increase
of N . Finally, we also compare the trends of f obtained for
CQD and LW.

The statistical analysis leads to the emergence of some
important features which we now list below:

(1) f distribution. The shape of the frequency distribution
of

∑N
i=2 CD

1i and
∑N

i=2 CLW
1i for N � 6 is similar to that ob-

tained from classical correlators, as seen by comparing Figs. 1
and 3.

(2) Mean from CQD and LW. Unlike the classical correla-
tors, for which the mean of the f distribution remains almost
invariant upon changing N , the mean of the f distribution for
the CQD and LW decreases monotonically upon increasing N
(compare Tables II and III). Surprisingly, we find that means
of the distribution obtained from CQD and LW behave even
quantitatively similarly.

(3) Standard deviation of the distribution from CQD and
LW. Like the classical correlators, the standard deviation of
the distribution decreases progressively upon increasing N .

(4) Algebraic maxima. The maximal value of
∑N

i=2 CD
1i

and
∑N

i=2 CLW
1i decreases sharply upon increasing N . This

prompts us to ask whether we can put an upper bound to the
sum for random multiqubit pure states. The question will be
addressed in the subsequent sections.
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FIG. 3. (a) Frequency distributions of
∑

i CD
1i , and (b)

∑
i CLW

1i for N = 3 to 6 parties. The other specifications are the same as in Fig. 1.

Interestingly, note that the trends of the frequency distribu-
tions for classical correlators are quite different from that of
the classical part of quantum discord and local work while the
similarities in the distributions are observed for CQD and LW
even when they are defined from two disjoint notions. It might
be worthwhile investigating whether obeying (or disobeying)
the postulates of classical correlations has some bearing on
the differences or similarities in the observed features.

C. Features for other measures of classical correlation

Apart from the CC measures discussed above, we also
consider two other measures of CC. The first one is just the
squares of the classical correlators, (Ckl )2, instead of taking
their absolute values to ensure their non-negativity. Taking it
as a measure of CC, we find that it possesses qualitatively
similar features as obtained by using the absolute values.
However, in this case, the frequency distribution is highly
skewed to the left (see Fig. 4), especially for a small number of
parties. This is due to the fact that squaring has actually made
the correlation values smaller since they are already (typi-
cally) less than unity. It also explains why the mean values of
the frequency distribution are smaller compared with the case
with absolute values of the correlations. When the absolute
values are considered, it does not suffer from unnecessary
value reduction, and hence supports our choice of considering
absolute values to scale the values of the quantity from 0 to 1.

The second one is the maximal mutual information be-
tween local measurement results performed on a two-party

TABLE II. Mean and standard deviation of the frequency distri-
bution are obtained for

∑
i CD

1i with different values of N � 6. The
maximum of the sum is also computed by increasing N . The other
specifications are same as in Table I with the exception that the
number of states sampled for each N is 105.

N

3 4 5 6

Mean 0.989 0.848 0.587 0.373
Sd 0.291 0.289 0.117 0.073
Max val 1.946 2.207 1.337 0.925

state ρ, and is defined as follows:

CI = max

a,
b

I (
a ⊗ 
b ρ), (15)

where I (AB) = H (A) + H (B) − H (AB) denotes the mutual
information content of the measurement statistics, with
H (.) = ∑

i pi log2 pi being the Shannon entropy. We now
compute the frequency distribution of

∑N
i=2 CI

1i and, by com-
paring Figs. 1 and 5, find the statistical properties to be almost
identical to those obtained by other CCCs.

IV. DISTRIBUTIONS OF CLASSICAL CORRELATIONS
FOR CONSTRAINED RANDOM STATES

Let us now move to the investigations of the shareability
of classical correlations for randomly generated multipartite
states when a fixed amount of a particular physical property
that can be both classical or quantum is available. Moreover,
we examine how the maximal values of the CC measures can
depend on the constraints, i.e., the choice and the range of
the physical quantity of the random states. Like before, we
perform our analysis for 3 � N � 6.

A. Conventional classical correlators under constraints

We now impose constraints either by fixing the range of
the sum of bipartite CCC in transverse direction or by fixing
the content of the genuine multiparty entanglement [51,55]
of the randomly generated states. The latter can also answer
the role of classical correlators on a multipartite entanglement
measure.

TABLE III. Mean and standard deviation of f for
∑

i CLW
1i

and the maximum of it are tabulated. For other specifications, see
Table II.

N

3 4 5 6

Mean 0.937 0.741 0.503 0.316
Sd 0.183 0.172 0.128 0.079
Max val 1.877 1.962 1.380 0.883
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FIG. 4. Frequency distribution of
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i=2(Cxx
1i )2. The fraction f of

states (vertical axis) is plotted against
∑N

i=2(Cxx
1i )2 (horizontal axis)

with a bin size of 0.01. Total number of random states generated for
the analysis for each N is 105. All the axes are dimensionless.

Fixed ranges of CCC. Let us first reveal how restrictions on
classical correlators in a fixed direction effect the distribution
of correlators in the transverse direction for multiqubit ran-
dom states. Without loss of generality, we choose to study the
distribution of Cyy for a fixed values of Cxx. In particular, we
consider how the average and maximum value of

∑N
i=2 Cyy

1i

depends on a given amount of
∑N

i=2 Cxx
1i possessed by the

random pure states. We lay out our findings below:
(1) Three-party states. For N = 3, we find that both the

maximum and average of Cyy
12 + Cyy

13 decreases with the in-
crease of a quantity, Cxx

12 + Cxx
13 , see Fig. 6(a). It suggests that

sum of bipartite classical correlators in transverse directions
play a complementary role as confirmed by the behavior of
both average and maximal values. A similar feature is ob-
served for N = 4. It is important to note that such a dual
behavior can also be seen if we choose any two noncommut-
ing classical correlators. This feature can be also viewed as a
consequence of “correlation complimentarity” as analyzed in
Sec. III A 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

ƒ

∑i=1
N  CI

1i

N = 3
N = 4
N = 5
N = 6

FIG. 5. Frequency distribution (f) of
∑N

i=2 CI
1i (vertical axis) vs∑N

i=2 CI
1i (horizontal axis) as defined in Eq. (15). All other specifica-

tions are same as in Fig. 4.

(2) Higher number of parties. On the contrary, a qualita-
tively different behavior is observed when N � 5; specifically,
we observe that when the sum of the bipartite correla-
tors in a particular direction grows, the average of the
sum of bipartite correlators in the transverse direction re-
mains almost constant, see Figs. 6(c) and 6(d). Note that
the maximal value of

∑
i Cyy

1i also shows an initial increase
with the increase of

∑
i Cxx

1i but then displays the opposite
behavior.

The above results reveal that, unlike the unconstrained
case, the features of these classical correlators in this con-
strained scenario strongly depend on the number of qubits
of the sampled random states. For N = 3, when the maximal
value is close to the algebraic maximum, we get a strong
“complementarity-type” behavior while a completely differ-
ent picture emerges with higher values of N . Such an absence
of complementarity relation between CCCs in transverse di-
rections for random states can be a consequence of the fact
that the gap between the allowed maximal value of

∑
i Ckk

1i
and the algebraic maximum value for random states increases
with N and at the same time, the standard deviation decreases
(see Table I).

Fixed ranges of GGM. Let us now consider the random
states which are segregated based on their genuine multiparty
entanglement content (as measured by generalized geometric
measure [51,56]). Specifically, we compute

∑
i Cxx

1i for all the
random states having GGM values between say, α and β,
where α and β are fixed by the bin values, i.e., β − α = 0.01
in our case and finally, we compute the average as well as the
maximum of

∑
i Cxx

1i . Note here that, among Haar uniformly
generated states, the mean of GGM goes towards its maximum
value with the increase of number of parties [38–41]. It im-
plies that the bipartite content of entanglement decreases with
N . On the other hand, the observations for the distributions of
bipartite classical correlators in random multipartite states are
as follows (see Fig. 7):

(1) We find that the average value of
∑

i Cxx
1i is almost

independent of the GGM content of sampled random states.
In this respect, notice that the average value remains almost
constant also for the unconstrained case, see Table I. The
feature of the constancy of the average value is independent
of the number of qubits, N . It is also important to stress
that, although the mean of multipartite entanglement increases
with N , and hence

∑
i E (ρ1i ) decreases, with E being any

entanglement measure, the effects of such behavior cannot be
captured only by

∑
i Cxx

1i .
(2) Unlike the average values, the maximal value of∑
i Cxx

1i for a fixed GGM does not follow any strict pattern.
However, it also does not change considerably with the GGM
values of the sampled random states.

We will contrast this behavior with that obtained for the
other CC measures considered in this paper in subsequent
sections.

B. Classical part of quantum discord and local work
for a fixed quantum correlation

Classical discord for a fixed content of local work. Let us
fix the sum of the amount of local work from various bipartite
cuts of a multiparty state, i.e., when the value

∑N
i=2 CLW

1i lies
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between α and β with β − α being taken as 0.01, we find the
average and the maximal value of

∑N
i=2 CD

1i .
Our analysis reveals an emergence of a universal feature

independent of the total number of qubits, N .
(1) Average of CQD with LW constraints. For a fixed

amount of
∑N

i=2 CLW
1i , we observe that the average of

∑N
i=2 CD

1i
remains almost constant for high N . The change in average
can only be seen with N = 3, as shown in Fig. 8.

(2) Maximum under constraints. The pattern of
max

∑N
i=2 CD

1i with respect to
∑N

i=2 CLW
1i is more drastic

as compared with the average of the distribution. The pattern
can be divided into two parts—for low values of

∑N
i=2 CLW

1i

(�1), max
∑N

i=2 CD
1i increases with the increase of

∑N
i=2 CLW

1i
while, interestingly, a complementarity-type relation emerges
when

∑N
i=2 CLW

1i � 1. Specifically, in a latter case, we get a
decrease in max

∑N
i=2 CD

1i values which ultimately become
vanishingly small when the sum of local works goes close
to its maximal values, see Fig. 8. Such a behavior can also
be understood from the examples illustrated in Sec. II A and
when max

∑N
i=2 CD

1i and max
∑N

i=2 CLW
1i are studied for a

given value of multipartite entanglement.
Fixed multipartite entanglement reveals dual nature of

CQD and LW. For a given amount of GGM in random
three-, four-, five-, and six-qubit states, we observe a dual
pattern in the maximum values for bipartite distributions of

classical discord and local work, especially for N = 3 [com-
paring Figs. 9(a) and 9(d)]. In particular, the maximal values
of

∑N
i=2 CD

1i increase monotonically with increasing values
of GGM, while we get the opposite feature for

∑N
i=2 CLW

1i .
Maximum of

∑
CLW

1i always decreases with the increase of
GGM. Let us now move to the average values of

∑
i CLW

1i
and

∑
i CD

1i with GGM. For N � 4,
∑

i CLW
1i always decreases

while
∑

i CD
1i remains almost constant to a low value with the

increase of GGM. As mentioned earlier for random states,
it is known that mean GGM increases with N and therefore
one may expect low bipartite entanglement with increasing
N . We find that

∑
i CD

1i and
∑

i CLW
1i also follows the same

trend as one may expect for bipartite entanglement. Moreover,
comparing Figs. 7 and 9, it can again be established that the
distributions of CCC among subsystems of random multipar-
tite states are quite distinct compared with that of the CQD
and LW.

Remark. The properties when the constrained case is rean-
alyzed using CI (maximal mutual information between local
measurement results) remains almost identical to the statisti-
cal features obtained for the CCCs.

V. BOUNDING CLASSICAL CORRELATIONS

As shown in Sec. II A, there always exists a quantum state
for which the sum of bipartite classical correlations

∑N
i=2 C1i
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dimensionless.

reaches the sum of the maximum of individual classical cor-
relations. However, the results obtained in Secs. III and IV
for Haar uniformly generated states strongly suggest that the
measure-zero subset of states possibly possesses the algebraic
maximum value and therefore, for almost all states of the state
space,

∑N
i=2 C1i can be bounded by a smaller value than the

algebraic maximum. Moreover, we observe that, with increase
in the number of parties, maximal values for all the classical
correlation measures decrease and the gap between the alge-
braic maxima and the maxima for random states increases.

Here we want to focus again on the upper bound of CC
measures, motivated from the concept of monogamy of quan-
tum correlations. It is clear from the examples presented in
Sec. II A that CCs, in general, do not satisfy monogamy rela-
tion, thereby making it different from QC measure. However,
we intend to take a much more closer look at it for random
states, since the results indicate that, for high values of N , the
upper bound, C1:rest, on the shareability of CC measure, may
not be a bad bound for randomly generated quantum states.
In particular, we construct a score for classical correlations
as well, purely via a formal analogy, examine the distribution
of monogamy scores for any classical correlation measure C
given by δC = C1:rest − ∑N

i=2 C1i and track the percentage of
random states that do not satisfy the constructed monogamy
relation.

A. Monogamy-based upper bound for classical correlators

As the prototypical classical correlator, we take Czz. First,
note that, for Czz

1:rest, the “rest” defines an N − 1 qubit state
formed by the parties, 2, 3, . . . , N . Therefore, the second z
in the superscript of Czz

1:rest represents the spin-z operator for
the 2N−1 dimensional system which in turn corresponds to a
spin of s = 2N−1−1

2 . For spin s, the magnetization along the z
direction is measured by �z(s), whose matrix elements in the
computational basis are given by

[�z(s)]i j = 2(s − i)δi j = 2(s − j)δi j, (16)

where 0 � i, j � 2s. It defines a diagonal matrix with en-
tries diag {2s, 2s − 2, 2s − 4, . . . ,−2s + 2,−2s}. Note that
the maximal value of �z(s) is 2s. Thus, we scale and define

Czz
1:rest = 1

2s

∣∣tr(ρ12...N σ z
1 ⊗ �z

23...N (s))
∣∣. (17)

Having laid out the tools, we now compute the monogamy
score for δCzz = Czz

1:rest − ∑N
i=2 Czz

1i for N = 3, 4, 5, and 6. Our
investigations from the frequency distribution of δCzz reveal
that all randomly generated states are nonmonogamous, ir-
respective of the values of N . Moreover, with increasing N ,
the f distribution of monogamy scores also does not change
much and, as mentioned, all the randomly generated state
remain nonmonogamous, i.e., ubiquitously follow a polygamy
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relation. Furthermore, note that our conjectured �z(s) cannot
be written as a sum of local magnetizations ⊕N

i=2σ
z
i . This sug-

gests that our proposed bound, as inspired from monogamy,

is not a particularly good one in this case, as also depicted in
Fig. 10. We will contrast the results with classical discord and
local work in the subsequent section.
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FIG. 10. Monogamy-motivated upper bounds from CC measures. From left to right: the frequency distribution f on the vertical axis is
plotted for δCzz , δCD , and δCLW . N also varies from 3 to 6. All axes are dimensionless.

B. An upper bound for classical part of quantum discord
and local work from monogamy

When monogamy-based upper bounds CD
1:rest and CLW

1:rest on∑
CD

1i and
∑

CLW
1i are employed in the case of the classical

part of QD and local work, it seems to work much better com-
pared with the case of classical correlators, especially when
the random states contain more qubits. The analysis shows
yet another point of qualitative difference between the usual
classical correlators and the axiomatic classical correlation
measures, see Fig. 10.

We track the quality of the bounds by examining the f
distribution of the monogamy scores and by computing its
statistical parameters of the distribution, see Tables IV and
V. In particular, we are interested in the percentage of states
that satisfy the monogamy inequality, i.e., the percent of states
for which δCD � 0 and δCLW � 0. Since both classical discord
and local work behave almost identically, we list our general
observations for both these quantities below:

(1) Mean and standard deviation of monogamy score.
Unlike classical correlators, the mean monogamy score
progressively shifts from negative to positive values upon
increasing N from 3 to 6 while the standard deviation does
not follow any strict pattern in these cases (see Fig. 10).

(2) Percentage of states satisfying monogamy. For N = 3,
we find that only a few states satisfy the monogamy rela-
tion. However, as N increases to 6, almost all random states
(≈99%) satisfy the monogamy relation. It suggests that our
imposed monogamy-based bound works better when the num-
ber of qubits in the generated random states grows. Here it is

TABLE IV. Mean and standard deviation (Sd) of the distribution
for the monogamy score of the classical part of discord, δCD with a
step size of 0.01. M denotes the percent of monogamous states ob-
tained from randomly generated states. The total number of random
states simulated for the analysis for each N is 105.

N

3 4 5 6

Mean −0.254 0.0172 0.344 0.593
Sd 0.190 0.272 0.113 0.074
M 6.792 54.606 99.458 100.00

important to note that the monogamy score for QD and WD
also increases with N and reaches close to the maximum value
with the increase of N [40,57].

(3) Connecting monogamy-based bound with genuine mul-
tipartite entanglement. Furthermore, if one looks at the data
from the f distribution of the classical discord and local work
by laying it out on the grids of genuine multipartite entan-
glement content of the random pure states, we observe an
interesting feature. Specifically, when N increases, we know
that random states possess more genuine multipartite entan-
glement on average [38,39]. We observe a strong correlation
of the GGM enhancement as N increases, with proclivity of a
major percentage of randomly generated states satisfying the
monogamy relation for axiomatic CC measures, as depicted in
Fig. 11, i.e., high genuine multipartite entangled states satisfy
the monogamy of CQD and LW.

VI. CONCLUSION

In a multipartite state, shareability of quantum correlations
(QC) among its two-party subsystems is restricted while such
a distribution of classical correlations (CC) among parties
is not forbidden. In particular, classical correlation content
can be maximum simultaneously for all the bipartite reduced
density matrices of a multipartite state. It raises a natural
question whether all states chosen Haar uniformly from a state
space also possess the similar feature. Specifically, our aim
was to find out the shape of the distribution for the sum of
CC measures obtained from the reduced density matrices of
random multipartite states. We also addressed the question of
whether the maximum value for shareability of CC is different
for random states than that obtained via a class of states.

TABLE V. Similar analysis as in Table IV is performed for the
monogamy score of LW, δCLW .

N

3 4 5 6

Mean −0.182 0.042 0.310 0.522
Sd 0.145 0.155 0.121 0.075
M 7.154 65.835 98.264 99.998
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FIG. 11. Scatter plot for comparing δCD and δCLW with GGM. We find that, with the increase of N , higher GGM values (ordinate) reveals
the monogamous nature of δCD (abscissa in left panel) and δCLW (abscissa in right panel). Circles, squares, triangles, and diamonds correspond
to N = 3, 4, 5, and 6. All axes are dimensionless.

To investigate it, we considered three kinds of classical
correlation measures—conventional classical correlators, CC
measure appearing in the definition of quantum discord, and
extractable local work in quantum work-deficit. The last two
definitions of CC measures obey certain axioms while the first
one arises from the measurements performed on two spatially
separated systems. Our results showed that, although these
axiomatic classical correlation measures have some distinct
dissimilarities with classical correlators, the overall behavior
of these measures follow a uniform pattern. To study the
behavior, we have chosen two directions—we considered the
pattern of the distributions obtained for the sum of a given
classical correlation measure distributed among two parties
of random multipartite states, and we call the situation an
unconstrained one. Second, we studied the distribution of
classical correlation measures when the states possess a fixed
amount of other classical correlation or genuine multipartite
entanglement, referred to as the constrained scenario. For our
analysis, we generated Haar uniformly random three-, four-,
five-, and six-qubit states. In the unconstrained case, we found
that their distributions have Bell-like shapes with one long-
sided tail, and the mean of the distributions is almost constant
for classical correlators with the increase in the number of
parties, while the average values of the distribution for the
axiomatic CC measures decrease when the number of qubits
vary. In the case of classical correlators, we also showed that
the noncommutativity in the directions on which classical
correlators are defined played an important role in the pattern
of shareability of classical correlators.

In the constrained case, we observed that average and
maximum values of shareability for conventional classical

correlators does not depend on the genuine multipartite
entanglement content although two noncommuting classical
correlators depend on each other. Interestingly, we found
that, for a given genuine multipartite entanglement, the
maximal value of local work and the classical part of quan-
tum discord showed a dual nature in the sense that, when
one increases, the other decreases, especially for three-party
states.

Counterintuitively, we observed that the maximal value of
CC measures, both from the axiomatic and the conventional
one, of random multipartite states can be far from the alge-
braic maximum that CC measures can reach for a certain class
of states. Such an observation tempted us to check whether
the monogamy-based bound can also be an upper bound for
CC measures. We believe that the results obtained here reveal
a distinct rule for the distributions of classical correlation
measures among subsystems of a global multipartite system.
These restrictions are different from the constraints in share-
ability known for quantum correlation measures.
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