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Pauli exclusion operator: An example of Hooke’s atom
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The Pauli exclusion operator (PEO), which ensures proper symmetry of the eigenstates of multi-electron
systems with respect to the exchange of each pair of electrons, is introduced. Once PEO is added to the
Hamiltonian, no additional constraints on the multi-electron wave function due to the Pauli exclusion principle
are needed. For two-electron states in two dimensions (2D) the PEO can be expressed in a closed form in
terms of momentum operators, while in the position representation PEO is a nonlocal operator. Generalizations
of PEO for multi-electron systems are introduced. Several approximations to PEO are discussed. Examples of
analytical and numerical calculations of PEO are given for the isotropic and anisotropic Hooke’s atom in 2D.
The application of approximate and kernel forms of PEO for calculations of energies and states in a 2D Hooke’s
atom are analyzed. The relation of PEO to standard variational calculations with the use of Slater determinant is
discussed.
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I. INTRODUCTION

Two-electron systems, e.g., the He atom, were analyzed
from the early years of quantum mechanics [1–3]. Since the
exact solutions of such situation are not known, the energies
of low states and the corresponding wave functions using the
variational method are usually calculated. To be consistent
with the Pauli exclusion principle [4,5] first the spin state
of the electron pair is selected, which is either a singlet or
a triplet, and then the trial functions of two electrons to be
either symmetric or antisymmetric with respect to exchange of
the two particles is assumed. This approach was successfully
applied to the ground energy of the He atom as well as to its
excited states [6,7].

The Pauli exclusion principle can be introduced to the
variational calculations by choosing the trial function of the
required symmetry with respect to the exchange of electrons.
This approach may not be used in a numerical integration of
the Schrödinger equation of the two-electron systems since
this equation does not include terms which can be related to
the Pauli exclusion principle. Then, if this equation is inte-
grated for two electrons or for two nonfermions having the
same charges and masses as the electrons, then in both cases
the same energies and states are obtained.

However, for the two-electron case some calculated states
do not fulfill the Pauli exclusion principle and such states have
to be eliminated as nonphysical ones. As an example, wave
functions symmetric with respect to the exchange of electrons
are allowed for the singlet, but have to be eliminated for the
triplet.

It can then be stated that, beyond the external potential
and the Coulomb repulsion, there exists an additional spin-
dependent field acting on both electrons which eliminates
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some states from the spectrum of the Hamiltonian Ĥ . The
presence of this field can be included in the model by in-
troducing a spin-dependent operator P̂ responsible for the
existence of the Pauli exclusion principle. The final effect of
the operators Ĥ and P̂ acting on the eigenstate |�(1, 2)〉 of
Ĥ is that the states of the proper electron exchange symmetry
are not altered, but those of the improper symmetry vanish.
Then, by numerically solving the Schrödinger equation with
the operator (Ĥ − P̂) instead of Ĥ

(Ĥ − P̂)|�(1, 2)〉 = E |�(1, 2)〉, (1)

the states fulfilling the Pauli exclusion principle are au-
tomatically obtained and no additional constraints on the
multi-electron wave function due to the Pauli exclusion princi-
ple are needed. The main purpose of this work is to analyze the
operator P̂ [further called the Pauli exclusion operator (PEO)],
in several two-electron systems. We show that in these cases it
is possible to obtain PEO in a closed form. We also discuss the
generalization of PEO for the multi-electron case and propose
several approximations of this operator. Note that PEO exists
in the literature in a different meaning and it was used to
calculate nuclear matter [8–10], see the discussion in Sec. V.

It is impossible to obtain PEO for the He atom for two
reasons. First, the Schrodinger equation for He atom does
not separate into a sum of two one-electron equations, so
the eigenequation in the six-dimensional space has to be
solved numerically. Second, in the presence of the attractive
Coulomb potential of the He nucleus there exist both localized
and delocalized electron states, and it is difficult to be treat the
delocalized states numerically.

There exists a model in which the above problems can
be avoided. This system, called the Hooke’s atom, consists
of two electrons in the field of an N-dimensional harmonic
oscillator [11–15]. In this model the Schrödinger equation
separates into two equations of the center-of-mass and relative
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motion of electrons. For potentials with a radial symmetry,
two one-dimensional equations, which are much easier to
solve numerically, are obtained. For a sufficiently strong har-
monic potential, the spectrum of the Hooke’s atom consists of
the localized states alone. For these reasons we analyze here
the PEO in the Hooke’s atom model and then generalize the
obtained results for the multi-electron case.

The work is organized as follows. In Sec. II we intro-
duce the Pauli exclusion operator for two-dimensional (2D)
two-electron systems. In Sec. III we generalize the PEO for
multi-electron systems and propose several approximations of
the PEO. In Sec. IV we show examples of the PEO in two 2D
Hooke’s atoms and calculate them analytically and numeri-
cally. In the same section we show examples of approximate
formulas for PEO. In Sec. V we discuss the obtained results,
while in the Appendixes we describe a numerical method of
obtaining low- and high-energy states of the Hooke’s atom
and provide auxiliary formulas. The work is concluded by a
summary in Sec. VI.

II. TWO-ELECTRON SYSTEMS

In the atomic units the Hamiltonian of two interacting
electrons in the presence of an external potential U (r) reads

Ĥ = −1

2
∇2

1 − 1

2
∇2

2 + e2

|r1 − r2| + U (r1) + U (r2). (2)

We consider a 2D case. The description given in Eq. (2) is
not complete because the solutions have to be limited to those
fulfilling the Pauli exclusion principle. The two-electron wave
function �(r1, r2) being the eigenstate of Ĥ should be either
symmetric (for the singlet state) or antisymmetric (for triplet
states) with respect to the exchange r1 ⇔ r2. We introduce the
center-of-mass R = (r1 + r2)/2 and the relative motion r =
r1 − r2. In the new coordinates the exchange of electrons does
not affect R but changes the sign of r, i.e., r → −r. Then there
is

�(R,−r) =
{

�(R, r) for singlet,
−�(R, r) for triplets. (3)

In the circular coordinates r = (r, φ) the change r → −r
corresponds to the transformation (r, φ) → (r, φ + π ). We
introduce symmetric (even in r) and antisymmetric (odd in
r) parts of �(R, r, φ)

�(R, r, φ)e = 1
2 [�(R, r, φ) + �(R, r, φ + π )], (4)

�(R, r, φ)o = 1
2 [�(R, r, φ) − �(R, r, φ + π )]. (5)

Because of the existence of the Pauli exclusion principle two
separate eigenproblems for �(R, r, φ)η (with η ∈ {e, o}) are
obtained

Ĥ�(R, r, φ)η = Eη�(R, r, φ)η, (6)

instead of the single problem for �(R, r, φ). We can intro-
duce the spin-dependent operator P̂, which we call the Pauli
exclusion operator (PEO), which, for a given combination
of electron spins, removes the even or odd states from the
spectrum of Ĥ . We define P̂ as [see Eq. (6)]

(Ĥ − P̂)�(R, r, φ) = Ĥ�(R, r, φ)e, (7)

for a symmetric function of spins ŝ1, ŝ2, and

(Ĥ − P̂)�(R, r, φ) = Ĥ�(R, r, φ)o, (8)

for the antisymmetric function of ŝ1, ŝ2. In Eqs. (7) and (8) the
operator (Ĥ − P̂) acts on �(R, r, φ), while the operator Ĥ in
Eq. (6) acts on �(R, r, φ)η. In their spectrums the operators
P̂ and (Ĥ − P̂) contain states having opposite symmetry with
respect to a change r → −r, and the sets of states belong-
ing to both operators are disjointed. A closed form of P̂
for multi-electron systems is unknown, but for two-electron
Hamiltonians in 2D we can express P̂ in terms of differential
operators and as a nonlocal operator in the position represen-
tation.

To find the spectrum of P̂ we introduce two auxiliary oper-
ators P̂e and P̂o. Let P̂e equal P̂ in Eq. (7) and P̂o in Eq. (8).
Let |n〉 and En be the states and energies of Ĥ , respectively.
Here n denotes all quantum numbers describing localized and
delocalized states of Ĥ . Then Ĥ = ∑

n En|n〉〈n|, and

P̂e =
∑

even states

En|n〉〈n|, (9)

P̂o =
∑

odd states

En|n〉〈n|, (10)

where “even” and “odd” states mean that in the summations
we restrict ourselves to states being even or odd functions of r,
respectively. The above form of operators P̂e and P̂o is useful
if all the energies and states of Ĥ are known. Examples of such
calculations are presented in the next section. The operators
P̂e and P̂o are on the same order as Ĥ and they may not
be treated as perturbations to Ĥ . Operator P̂ depends on the
Hamiltonian of the system.

On the left sides of Eqs. (7) and (8) there is the func-
tion �(R, r, φ) while on the right sides there are functions
�(R, r, φ)e or �(R, r, φ)o. To find a more symmetric form of
these equations let us insert P̂e in Eq. (9) into Eq. (7). Then
we have

(Ĥ − P̂e)|�〉 =
∑

n

En|n〉〈n|�〉 −
∑

even states

En|n〉〈n|�〉

=
∑

odd states

En|n〉〈n|�〉. (11)

If |�〉 is an eigenstate of Ĥ with energy E then we obtain from
Eq. (11)

(Ĥ − P̂e)�(R, r, φ) =
{

E
0

}
�(R, r, φ),

{
� = �o

� �= �o

}
. (12)

As seen from Eq. (12), the even parts of �(R, r, φ) are an-
nihilated by the (Ĥ − P̂e) operator, while the odd parts of
�(R, r, φ) satisfy the Schrödinger-like equation. For P̂o we
find

(Ĥ − P̂o)�(R, r, φ) =
{

E
0

}
�(R, r, φ),

{
� = �e

� �= �e

}
. (13)

Equations (12) and (13) can be treated as alternative defini-
tions of the P̂e and P̂o operators.

Consider the functions �, �o, and �e in Eqs. (4) and (5).
Let T̂a be the translation operator T̂aw(r) = w(r + a). Then
we have [16]

T̂a = exp(−iap̂/h̄), (14)
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where p̂ = (h̄/i)∇̂r is the canonical momentum. Applying the
above definition to the φ coordinate in �(R, r, φ) we obtain
from Eqs. (4), (5), and (14)

�(R, r, φ)e = 1
2 (Î + e−iπr p̂φ/h̄)�(R, r, φ), (15)

�(R, r, φ)o = 1
2 (Î − e−iπr p̂φ/h̄)�(R, r, φ), (16)

where p̂φ = (h̄/ir)(∂/∂φ) is the angular component of the
momentum and Î is the unity operator. We introduce two
auxiliary operators

Âe = 1
2 (Î + e−iπr p̂φ/h̄), (17)

Âo = 1
2 (Î − e−iπr p̂φ/h̄). (18)

Then we have from Eqs. (7), (8), and (15) to (18)

(Ĥ − P̂e)�(R, r, φ) = Ĥ[Âo�(R, r, φ)], (19)

(Ĥ − P̂o)�(R, r, φ) = Ĥ [Âe�(R, r, φ)]. (20)

The meaning of Eq. (19) is that the operator (Ĥ − P̂e),
which has only odd states, acting on a general function
�(R, r, φ) gives the same result as the Hamiltonian Ĥ acting
on Âo�(R, r, φ), which is an odd part of �(R, r, φ). Solving
Eqs. (19) and (20) for P̂e and P̂o we find

P̂e = 1
2 Ĥ (Î + e−iπr p̂φ/h̄), (21)

P̂o = 1
2 Ĥ (Î − e−iπr p̂φ/h̄). (22)

Introducing the total spin Ŝ = ŝ1 + ŝ2 we obtain

P̂ = 1
2 Ĥ

(
Î + (−1)2Ŝz e−iπr p̂φ/h̄

)
. (23)

Operators P̂e, P̂o, and P̂ defined in Eqs. (21) to (23) act on
the function �(R, r, φ). The representation of P̂, as given in
Eqs. (21) to (23), exists only in 2D, see the discussion in
Sec. V. Inserting P̂ from Eq. (23) into Eqs. (7) and (8) the
Schrödinger equation for �(R, r, φ)η is not obtained, but the
differential equations of higher order in p̂φ are since

e−iπr p̂φ/h̄ =
∞∑

n=0

1

n!

(−iπr p̂φ

h̄

)n

. (24)

The presence of p̂φ in the exponents in Eqs. (21) to (23)
causes a nonlocality of P̂ in the position representation. Using
the notation |Q〉 = |R, r〉 and dQ = d2Rd2r the matrix ele-
ment of P̂e in Eq. (21) between two |Q〉 states is

〈Q|P̂e|Q′〉 =
∫

dQ′′〈Q|Ĥ |Q′′〉〈Q′′|1

2
(Î + e−iπr p̂φ/h̄)|Q′〉, (25)

and similarly for P̂o. In the position representation Ĥ in Eq. (2)
is a local operator, so that 〈Q|Ĥ |Q′′〉 = ĤQQδ(Q − Q′′). The
translation e−iπr p̂φ/h̄ in Eq. (21) has nonzero elements between
states |R, r, φ〉 and |R, r, φ + π〉, (for 0 � φ < 2π ), i.e., be-
tween states |R, r〉 and |R,−r〉. This gives

〈Q|P̂e|Q′〉 = 1
2 ĤQQδ(R − R′)[δ(r − r′) + δ(r + r′)], (26)

〈Q|P̂o|Q′〉 = 1
2 ĤQQδ(R − R′)[δ(r − r′) − δ(r + r′)]. (27)

From the above equations we have, see Eq. (23),

〈R, r|P̂|R′, r′〉 = 1
2 〈R, r|Ĥ |R′, r′〉 δ(R − R′)

× [δ(r − r′) + (−1)2Ŝzδ(r + r′)]. (28)

In the position representation a nonlocal equation for the
energy levels and wave functions is obtained

Ĥ�(Q) −
∫

d2Q′〈Q|P̂|Q′〉�(Q′) =
{

E
0

}
�(Q), (29)

which resembles the Yamaguchi equation [17]. The second
term in Eq. (29) describes a correction to the two-particle
Hamiltonian Ĥ due to presence of the Pauli exclusion prin-
ciple. Equations (28) and (29) completely describe the system
because they contain all the information necessary to solve
the two-electron problem including the limitations resulting
from the Pauli exclusion principle. Once P̂ is added to the
Hamiltonian, no additional conditions on multi-electron wave
function are needed.

Equations (26) to (28) suggest that in the position repre-
sentation in one (1D) and three dimensions (3D) the PEO
for two-electron systems have similar forms. The examples
in Sec. IV confirm this observation.

III. MULTI-ELECTRON SYSTEMS

In this section we generalize the PEO for systems having
more electrons. The results are more formal and abstract than
those obtained for two-electron systems. Below we provide
a definition of PEO for an arbitrary multi-electron Hamilto-
nian, but the remaining definition will relate to three-electron
systems.

A. General results

Let 	̂i j be the operator exchanging positions of two
particles

	̂i j |rir j〉 = |r jri〉. (30)

This operator can be expressed as an infinite series of position
and momentum operators. In 1D there is [18]

	̂i j =
∞∑

n=0

(
1

n!

)( i

h̄

)n

(
 p̂x )n(
r̂x )n, (31)

where 
r̂x = r̂ jx − r̂ix and 
p̂x = p̂ jx − p̂ix. The series for
	̂i j in 2D and 3D are given in Appendix A.

Let |σiσ j〉 be a state of two electron spins. The operator �i j

exchanging the spins is, see Appendix A,

�̂i j = 1
2 + 2(σ i · σ j ). (32)

Then the operator exchanging two electrons is

χ̂i j = 	̂i j�̂i j . (33)

Let |n〉 be a state vector of k � 2 electrons

〈r1σ1, . . . , rkσk|n〉 = �(r1σ1, . . . , rkσk )

= �(1, . . . , k). (34)
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Then we define PEO as

(Ĥ − P̂ )�(1, . . . , k) = Ĥ

(
k∏

i=1, j>i

χ̂i j�(1, . . . , k)

)
. (35)

The physical meaning of P̂ is that the operator (Ĥ − P̂ ) acting
on unrestricted function �(1, . . . , k) gives the same result as
the Hamiltonian Ĥ acting on a function that is antisymmetric
with respect to the exchange of all pairs of electrons. Note
that P̂ in Eq. (35) is defined in a different way than P̂e and P̂o

in Eqs. (7) and (8), see the discussion in Sec. V. By solving
Eq. (35) we obtain

P̂�(1, . . . , k) =
[

Ĥ

(
Î −

k∏
i=1, j>i

χ̂i j

)]
�(1, . . . , k). (36)

Equation (36) generalizes Eqs. (19) and (20) for the multi-
electron case. Let {|n〉} and {En} be the complete sets of states
and energies of multi-electron Hamiltonian Ĥ , respectively.
Let {|na〉} be a subset of {|n〉} including states antisymmetric
with respect to the exchange of all pairs of electrons (riσi ) ⇔
(r jσ j ) for 1 � i, j � k. Then the PEO is

P̂ =
∑

n

En(|n〉〈n| − |na〉〈na|) =
∑

n/∈{na}
En|n〉〈n|. (37)

As seen from Eq. (37), the spectral resolution of PEO includes
all states of Ĥ except those that are antisymmetric with respect
to the exchange of all pairs of electrons. Equation (37) gener-
alizes Eqs. (9) and (10) for multi-electron systems. To find the
analog of Eqs. (12) and (13) we insert Eqs. (34) and (37) into
Eq. (35) and obtain

(Ĥ − P̂ )|n〉 =
[

En

0

]
|n〉, (38)

where the upper identity holds for |n〉 ∈ {|na〉} and the lower
one for |n〉 /∈ {|na〉}. As follows from Eq. (38), the operator
(Ĥ − P̂ ) annihilates states |n〉 of improper symmetry with re-
spect to the exchange of all pairs of electrons, while the states
of proper symmetry satisfy the Schrödinger-like equation.

B. Approximations

Since it is difficult to obtain the exact form of PEO for
multi-electron systems, we describe here several possible ap-
proximations of P̂ . The natural approximation to P̂ is the
truncation of an infinite series in Eqs. (31), (A5), and (A6) to a
large but finite number of terms. Then a high-order differential
equation that can be solved by standard methods is obtained.
Attention should be paid to the domain of series convergence
in Eqs. (31), (A5), and (A6). An alternative expression for the
permutation operator is given in Ref. [19].

In the second approach we may approximate in Eq. (36) the
exact operator

∏k
i=1, j>i χ̂i j by a simpler one using results from

the previous section. Consider the four-electron case, the func-
tion �(r1, r2, r3, r4), and disregard the electrons’ spins. Let
us introduce two pairs of center-of-mass and relative-motion
coordinates, see Eq. (3). Then we can obtain a set of functions
in the form

�i j,kl (Ri j, ri j, Rkl , rkl ), 1 � i, j, k, l � 4, (39)

and each of them satisfies Eq. (29) with PEO similar to that
in Eq. (28) for appropriate pairs of coordinates. Each of the
functions in Eq. (39) is symmetric or antisymmetric in two
pairs of variables (instead of all pairs), but having all sets of
function �i j,kl the true function � may be approximated.

In the third approximation we replace the exact Hamilto-
nian Ĥ entering to PEO in Eq. (38) by a simpler one Ĥ0, as,
e.g., that of k � 2 free electrons in a harmonic potential. Let
|�〉 be the k-electron state and P̂0 be the PEO corresponding
to Ĥ0. Then we have

(Ĥ − P̂ )|�〉 
 (Ĥ − P̂0)|�〉. (40)

Using Eq. (37) we find

(Ĥ − P̂ )|�〉 
 Ĥ |�〉 − λ

⎛
⎝∑

na
0

Ena
0

∣∣na
0

〉〈na
0

∣∣
⎞
⎠|�〉 = E |�〉,

(41)

where λ is a parameter, |na
0〉 are the antisymmetric states of Ĥ0

with respect to the exchange of all pairs of electrons, and Ena
0

are the corresponding energies. The summation in Eq. (41) is
restricted to a finite number of states. The presence of λ in
Eq. (41) allows us to switch on the approximate PEO to the
Schrödinger equation. If the obtained function � has proper
symmetry with respect to the exchange of all pairs of electrons
then both � and the corresponding energy E weakly depend
on λ since, in this case, the second term in Eq. (41) vanishes or
is small. If the calculated function � has improper symmetry,
then both � and E strongly depend on λ because, in this case,
the second term in Eq. (41) is large and it strongly influences
� and E . The described approach gives a practical method
of finding multi-electron states having proper symmetry with
respect to the exchange of all pairs of electrons. An example
of such calculations for Hooke’s atom is shown in the next
section.

A possible generalization of Eq. (41) is to treat the sec-
ond term in this equation as a kernel operator that ensures
the antisymmetry of the resulting function � for some set
of states, e.g., low-energy ones. Let |Q〉 = |r1, . . . , rk〉 and
�(Q) = �(r1, . . . , rk ). Then we have from Eq. (41)

〈Q|Ĥ − P̂|�〉 
 Ĥ�(Q) − λ

∫
K̂ (Q′, Q)�(Q′)dQ′

= E�(Q). (42)

Comparing Eqs. (41) and (42) we find

K̂ (Q, Q′) =
∑

na
0

Ena
0

〈
Q

∣∣na
0

〉〈
na

0

∣∣Q′〉. (43)

The idea of the kernel approach is that K̂ (Q, Q′) in Eq. (42)
can be any mathematical operator without physical meaning.
As an example, when in Eq. (43) the energies Ena

0
are replaced

by a constant value Ec and the summation limited to nmax

terms, the simpler expression

K̂1(Q, Q′) = Ec

nmax∑
na

0

〈
Q

∣∣na
0

〉〈
na

0

∣∣Q′〉 (44)

is obtained, which also selects states having proper symmetry
with respect to the exchange of all pairs of electrons. However,
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the kernel in Eq. (44) works correctly only for states having
similar energies to those corresponding to functions 〈Q|na

0〉 in
Eq. (44). The example of the kernel approach to Hooke’s atom
is given in the next section.

Finally, we discuss the approximation in which the ex-
pected value of (Ĥ − P̂ ) over a trial function |�a〉 that is
already antisymmetric with respect to the exchange of all pairs
of electrons is calculated. Assuming that 〈�a|�a〉 = 1 we can
obtain from Eq. (37)

〈�a|P̂|�a〉 = 0, (45)

since in this case the trial functions |�a〉 are a linear combi-
nation of states |na〉 that are antisymmetric with respect to the
exchange of all pairs of electrons, while P̂ does not include
these states in its spectral resolution, see Eq. (37). Then

〈�a|Ĥ − P̂|�a〉 ≡ 〈�a|Ĥ |�a〉 = Ea, (46)

where Ea is approximated energy. A practical consequence of
Eqs. (45) and (46) is that, when energies and states of the
multi-electron system with the trial function in the form of
Slater determinant are calulated variationally, then the PEO
identically vanishes and there is no need to introduce it to the
calculations.

IV. EXAMPLES OF P̂ OPERATORS FOR HOOKE’S ATOM

Here we show two examples of P̂ for two-electron sys-
tems and rederive analytically or numerically the results of
Eqs. (26) to (28) by explicit summations over even or odd
states of the Hamiltonian spectrum, see Eqs. (9) and (10).

We consider first the Hooke’s atom in 2D whose Hamil-
tonian is given in Eq. (2) with U (ri ) = kr2

i /2 and i = 1, 2,
where k > 0 is the harmonic potential strength [11–15]. Then
Ĥ separates into two parts ĤR and Ĥr depending on R
and r, respectively. The eigenfunctions of Ĥ are �(R, r) =
F (R) f (r), where F (R) and f (r) satisfy equations(

−1

4
∇2

R + kR2

)
F (R) = ERF (R), (47)(

−∇2
r + 1

r
+ 1

4
kr2

)
fm,n(r) = Em,n fm,n(r), (48)

where Em,n is the energy of nth state with the angu-
lar momentum number m. The center-of-mass motion, as
given in Eq. (47), is described by the 2D harmonic oscil-
lator. For the relative motion in Eq. (48) we set: fm,n(r) =
gm,n(r)eimφ/

√
2π , where gm,n(r) are solutions of(

− d2

dr2
− 1

r

d

dr
+ m2

r2
+ 1

r
+ k

4
r2

)
gm,n(r) = Em,ngm,n(r).

(49)

Consider the operator P̂o in Eq. (10). Since ĤR in Eq. (47)
is not affected by P̂o we concentrate on Ĥr. Let |m, n〉 be an
eigenstate of Eq. (48), and 〈r|m, n〉 = f (r). Then we have

P̂o =
∞∑

m=−∞

∞∑
n=1

E2m+1,n|2m + 1, n〉〈2m + 1, n|

= Ĥ

( ∞∑
m=−∞

∞∑
n=1

|2m + 1, n〉〈2m + 1, n|
)

. (50)

In the position representation there is

〈r|P̂o|r′〉 = 1

2π

∫
d2r′′〈r|Ĥ |r′′〉

∞∑
m=−∞

ei(2m+1)(φ′′−φ′ )

×
∞∑

n=1

g2m+1,n(r′′)∗g2m+1,n(r′). (51)

We first calculate the sum over n. The functions gm,n(r) are
normalized using the weight function wg(r) = r. Consider
functions hm,n(r) = √

rgm,n(r) normalized using the weight
function wh(r) = 1. They are eigenfunctions of the equation,
see Eq. (49),(

− d2

dr2
+ m2 − 1/4

r2
+ 1

r
+ k

4
r2

)
hm,n(r) = Em,nhm,n(r).

(52)

For fixed m, functions hm,n(r) form a complete set of states of
the Hermitian operator in Eq. (49), so there is

∞∑
n=1

h2m+1,n(r′′)∗h2m+1,n(r′) = δ(r′ − r′′), (53)

which gives

∞∑
n=1

g2m+1,n(r′′)∗g2m+1,n(r′) = δ(r′ − r′′)
r′′ , (54)

and the result of the summation over n does not depend on m.
Consider now the sum over m in Eq. (51). Let ξ = φ′′ − φ′.
Then we have

1

2π

∞∑
m=−∞

ei(2m+1)ξ = eiξ

2π

∞∑
m=−∞

eim(2ξ ) = eiξ

2
δ(ξ − Nπ ), (55)

which gives (φ′′ − φ′) = 0 or (φ′′ − φ′) = π since (φ′ −
φ′′) ∈ [0, 2π ). In Eq. (55) we used the following identity:∑∞

m=−∞ eimξ = 2πδ(ξ − 2Nπ ) with N integer. Then we ob-
tain

〈r|P̂o|r′〉 =
∫

d2r′′〈r|Ĥ |r′′〉

×
[

1

2
δ(φ′′ − φ′) + eiπ

2
δ(φ′′ − φ′ + π )

]

×
[

1

r′′ δ(r′′ − r′)
]
. (56)

There is 〈r|Ĥ |r′′〉 = δ(r − r′′) since the Hamiltonian is a local
operator. Using the identity δ(r − r′) = (1/r)δ(r − r′)δ(φ −
φ′) for the 2D delta function Eq. (27) is obtained. The gen-
eralization of this approach to 1D and 3D Hooke’s atoms is
straightforward.

In the second example we calculate numerically the op-
erator P̂o in a system in which the functions f (r, φ) do not
separate into products of two one-dimensional functions. Con-
sider the model similar to the Hooke’s atom in Eq. (49) but
with a nonradial external potential. Its Hamiltonian is given
by Eq. (2) with U (ri ) = kxx2

i /2 + kyy2
i /2 and i = 1, 2. The
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potential strengths kx, ky > 0. Introducing center-of-mass and
relative motion coordinates we obtain(

−1

4
∇2

R + kxX 2 + kyY
2

)
F (R) = ERF (R), (57)(

− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂φ2
+ 1

r
+ 1

4
kyr2 + qr2 cos(φ)2

)
f (r)

= Er f (r), (58)

where q = kx − ky characterizes the anisotropy of the external
potential. To find P̂o we expand functions f (r, φ) in Eq. (58)
into the set of eigenstates gm,n(r)eimφ/

√
2π of the Hooke’s

atom, see Eq. (49),

f (r, φ) =
mmax∑

m=−mmax

nmax∑
n=1

bm,ngm,n(r)eimφ, (59)

where bm,n are the expansion coefficients, mmax = 16 and
nmax 
 250. The presence of Hooke’s atom functions in
Eq. (49) ensures orthogonality of the basis. We used 8054
basis functions gm,n(r), which are calculated by the shooting
method, see Appendix B. We introduce a mapping (m, n) → i
which labels the basis functions gm,n(r) with a single index i.

The eigenenergies and eigenstates of the Hamiltonian in
Eq. (58) are obtained by solving the problem of the finite-size
matrix

∑
i′ Hii′ai′ = Eai, where ai are uniquely obtained from

bm,n by the mapping i → (m, n). Using the inverse mapping
(m, n) → i we have

Hii′ = Eiδi,i′ + qcm,m′

∫ ∞

0
[r2gm,n(r)gm′,n′ (r)]rdr, (60)

where for fixed m the functions gm,n are normalized∫ ∞
0 gm,n(r)gm,n′ (r)rdr = δn,n′ . The selection rules for φ inte-

grals are

cm,m′ = 1

2π

∫ 2π

0
ei(m−m′ )φ cos(φ)2dφ

= 1

2
δm,m′ + 1

4
δm,m′±2. (61)

The nonzero elements of Hii′ are those with m′ = m and
m′ = m ± 2. Let { f e

l (r, φ)} be a set of states of Hii′ obtained
from even functions g2m,n(r)e(2m)iφ/

√
2π , and { f o

l (r, φ)}
be a set of states of Hii′ obtained from odd functions
g2m+1,n(r)e(2m+1)iφ/

√
2π . Then

P̂η(r, r′) = Ĥ (r, r) Sη(r, r′), (62)

where

Sη(r, r′) =
∑

l

f η

l (r, φ)∗ f η

l (r′, φ′), (63)

and η ∈ {e, o}. Note that for l → ∞ there is
Se(r, r′) + So(r, r′) → δ(r, r′). In our calculations we
take 4146 f e

l (r, φ) functions and 3908 f o
l (r, φ) functions,

respectively.
In Fig. 1 we plot the sums Sη(r, r′) in Eq. (63) for r′ =

1 and several (φ − φ′) values, where 1 is a unit vector in
arbitrary direction. In our calculations we take ky = 4 and
kx = 9.61, which gives q = 1.4025, see Eq. (48). In Fig. 1(a)
there is (φ − φ′) = 0 and both sums Sη(r, 1) tend to δ(r − 1),
where r = |r|. We also plot the unnormalized function g0,1(r).

FIG. 1. Dimensionless sums So(r, 1) and Se(r, 1) given in
Eq. (63) calculated numerically for nonsymmetric two-dimensional
Hooke’s atom in Eq. (58) for several values of relative phases (φ −
φ′). The dashed lines represent sums So(r, 1) + Se(r, 1) approxi-
mating delta function δ(r − 1). In panel (a) the dotted line indicates
ground-state function g0,1(r) of two-dimensional Hooke’s atom in
Eq. (48).

It is seen that Sη are more localized than g0,1(r) which justifies
treating Sη(r, 1) as approximations of the δ(r − 1) function.

By increasing (φ − φ′) in Figs. 1(b) and 1(c) the sums
Sη(r, 1) gradually decrease, but they do not vanish be-
cause they are truncated to a finite number of terms. For
(φ − φ′) = π in Fig. 1(d), the sum Se(r, 1) tends to δ(r − 1),
while the sum So(r, 1) tends to −δ(r − 1), so their sum prac-
tically cancels out (dotted line). The above results obtained
numerically in Fig. 1 for a nonseparable function f (r, φ)
illustrate the general formulas in Eqs. (26) to (28).

We emphasize two approximations related to Fig. 1. First,
the summations over angular states are limited to 0 � m � 16,
and the results may be incomplete because we omitted basis
functions with higher m. Second, for fixed m we take n 
 250
radial functions gm,n(r) and claim that they are sufficient to
approximate combinations of delta functions in Eqs. (26) and
(27). Both issues are clarified in Figs. 2 and 3.

In Fig. 2 we show normalized functions g0,1(r) (ground
state), g16,1(r), and g16,200(r). As seen from Figs. 2(b) and
2(c), functions having m = 16 practically vanish at r = 1 and
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FIG. 2. Functions gm,n(r) of 2D Hooke’s atom given in Eq. (49)
calculated numerically for three m, n values. Function g0,1(r) corre-
sponds to the ground state of the system.

they give negligible contributions to Sη(r, 1) for 0 � r � 2,
see Eq. (63). This result confirms the validity of truncating
the summation over m states to m � 16 in Fig. 1. Selecting
larger r′ and r one has to include states with larger m.

FIG. 3. (a)–(c) Dimensionless sums S(x, x′) given in Eq. (64)
for 1D harmonic oscillator functions calculated numerically for four
Nmax values and x′ = 1. (d) Sum S(x, 1) calculated for Nmax = 500
compared with rescaled sum Se(r, 1) + So(r, 1) defined in Eq. (63)
and shown in Fig. 1(a), dashed line. The scaling factor is c = 0.1.

To show that finite sums Sη in Fig. 1 approximate the
combinations of delta functions we consider the set of func-
tions {ψn(x)} being states of the one-dimensional harmonic
oscillator with the potential U (x) = x2. Let

S(x, x′) =
Nmax∑

n

ψn(x)ψn(x′) → δ(x − x′). (64)

We calculate S(x, x′) numerically using the recursion re-
lation [20]

√
n+1

2 ψn+1(x) = xψn(x) − √ n
2ψn−1(x) with the

initial conditions ψ0(x)=π−1/4 exp(−x2/2) and ψ−1(x)=0.
In Fig. 3 we show S(x, 1) for several values of Nmax. As
seen in Figs. 3(a), 3(b) and 3(c), when increasing Nmax the
sums S(x, 1) tend to δ(x − 1). In Fig. 3(d) we compare the
sum S(x, 1) for Nmax = 500 with the rescaled sum Se(r, 1) +
So(r, 1) for (φ − φ′) = 0 shown in Fig. 1(a). Both curves
are close to each other up to a scaling factor c = 0.1, which
confirms the delta-like character of the curves shown in Fig. 1.

As the third example we calculate the states and energies
of the symmetric 2D Hooke’s atom described in Eq. (49) with
the use of Eqs. (41) and (42). We analyze odd states of Ĥ ,
so we apply the P̂o operator, see Eq. (10). In the position
representation |Q〉 = |R, r〉 Eqs. (41) and (42) read

Ĥ�(Q) − (
Ĥ0 − P̂o

0

)
�(Q)

= Ĥ�(Q) − λ
∑

ne
0

Ene
0

〈
Q

∣∣ne
0

〉 ∫ 〈
ne

0

∣∣Q′〉�(Q′)d2Q′

= E�(Q), (65)

and R, r are the center-of-mass and relative-motion coordi-
nates, respectively. The superscript e in Eq. (65) denotes even
states and energies of Ĥ0 since the odd ones were eliminated
by P̂o

0 . Let

�(R, r) = 1√
2π

F (R)gm,n(r)eimφ, (66)

〈
R, r

∣∣na
0

〉 = 1√
2π

F (R)ψ2 j,l (r)e2i jφ, (67)

where F (R) satisfies Eq. (47), gm,n(r) is the solution of
Eq. (49), ψ2 j,l (r) and ε2 j,l are functions and energies of
the 2D harmonic oscillator, respectively, m, j describe angu-
lar momentum, and n, l label the discrete states. Functions
ψ (r) = ψ2 j,l (r)e2i jφ in Eq. (67) are even: ψ (r) = ψ (−r). We
approximate P̂0 in Eq. (65) by restricting the summations to a
few low-energy states j = 0,±1 and n = 0, 1, 2. For a given
m and n one has from Eq. (65)

Ĥrgm,n(r)
eimφ

√
2π

− λ

2∑
l=0

1∑
j=−1

ε2 j,lφ2 j,l (r)
e2i jφ

√
2π

×
∫ ∞

0
φ2 j,l (r

′)gm,n(r′)r′dr′
∫ 2π

0

ei(m−2 j)φ′

2π
dφ′

= Em,ngm,n(r)
eimφ

√
2π

, (68)

where Ĥr is defined in Eq. (49) and we use
∫ |F (R′)d2R′|2=1.

The kernel corresponding to Eq. (68) is, see Eqs. (43)
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and (44),

K̂ (r, r′) =
2∑

l=0

1∑
j=−1

ε2 j,lφ2 j,l (r)φ2 j,l (r
′)

e2i j(φ−φ′ )

2π
. (69)

Now we discuss solutions of Eq. (68) for various values
of m and we analyze three cases: m = ±1, m = 0,±2, and
|m| > 2. Consider first two odd states with m = ±1. Since the
second integral in Eq. (68) vanishes for m = ±1 we obtain

Ĥrgm,n(r) = Em,ngm,n(r), (70)

i.e., Eq. (49). The solutions of Eq. (70) do not depend on λ.
If in Eq. (68) one uses the kernel K̂1(r, r′) of the form, see
Eq. (44),

K̂1(r, r′) = Ec

1∑
j=−1

φ2 j,0(r)φ2 j,0(r′)
e2i j(φ−φ′ )

2π
, (71)

then for gm,n(r) one also obtains Eq. (70). In Eq. (71) the
sum over l is limited to a single term with l = 0 and Ec is
an arbitrary energy.

Consider now three even states with m = 0,±2. Then the
sum over j in Eq. (68) reduces to a single term with 2 j = m
and one has

Ĥrgm,n(r) − λ

2∑
l=0

εm,lφm,l (r)
∫ ∞

0
φm,l (r

′)gm,n(r′)r′dr′

= Em,ngm,n(r). (72)

Equation (72) is the differential-integral equation for unknown
function gm,n(r), and it resembles Eq. (29). In Eq. (72) the
function gm,n(r) does not vanish and it depends on λ. This
also occurs when in Eq. (68) one replaces the kernel K̂ (r, r′)
by K̂1(r, r′) in Eq. (71).

Consider now the exact operator P̂ instead of P̂0. Then we
set in Eq. (72) ψ j,l (r) → gm,n(r) and ε j,l → Em,n. For m =
0,±2 we have

Ĥrgm,n(r) − λEm,ngm,n(r) = Em,ngm,n(r). (73)

For λ = 1 the left-hand side of Eq. (73) vanishes, which
gives gm,n(r) ≡ 0, as expected from Eq. (38) for the exact P̂
operator.

Finally, for |m| > 2 Eq. (70) is obtained both for odd and
even m since the approximate PEO in Eq. (68) contains only
states with angular momenta |m| � 2. This also occurs for
kernel K̂1(r, r′) in Eq. (71).

From the above results we reach the following conclusions.
First, by a properly chosen set of 〈Q|na

0〉 states in Eqs. (41),
(43), and (65) we can construct an approximate operator P̂0

that does not alter odd (or even) states of the Hamiltonian
and strongly affects the states of the opposite symmetry. Sec-
ond, the use of simpler kernel in Eqs. (44) and (71) leads to
qualitatively similar results to those obtained for the kernel in
Eqs. (42) and (69). Third, the parameter λ can be used as a tool
for distinguishing states having proper or improper symmetry
with respect to the exchange of all pairs of electrons. Finally, if
one uses an approximate kernel in Eqs. (44) or (71), then they
work correctly for some states only, in the above example only
for those with |m| � 2.

V. DISCUSSION

In this work we introduced the PEO that ensures the ap-
propriate symmetry of multi-electron eigenstate, see Eqs. (7)
and (8). For two-electron systems we showed three alternative
representations of PEO. In Eqs. (9) and (10) we expressed
PEO in terms of infinite sums over subsets of states belonging
to the spectrum of the Hamiltonian. Using this method we
calculated PEO for isotropic and anisotropic Hooke’s atom.

For 2D two-electron systems it is possible to express P̂ in
a closed form in terms of momentum operators, see Eqs. (21)
to (23). In the position representation P̂ is a nonlocal operator,
and the states of the two-electron Hamiltonian should be cal-
culated from the nonlocal Yamaguchi equation rather than the
Schrödinger equation, see Eqs. (28) and (29).

In two-electron systems the spectrum of the Hamiltonian
contains only symmetric or antisymmetric states. This is
not valid in multi-electron cases since, for the antisymmet-
ric states, the solutions of the Schrödinger equation may be
symmetric for the exchange of some pairs of electrons and
antisymmetric for the others. Only the application of the Pauli
exclusion principle selects states of Ĥ that are antisymmetric
for the exchange of all pairs of electrons.

The PEO can be generalized for multi-electron systems and
it can be defined in two alternative forms: either in terms of
operators χ̂i j [(see Eq. (33)] or by spectral resolution, [see
Eq. (36)]. The χ̂i j operators can be represented as a product of
an infinite power series of position and momentum operators
and electron spins. In this representation PEO depends on
the product of χ̂i j for all pairs of electrons. In the second
representation P̂ is an operator that includes all states and
energies of the Hamiltonian except states being antisymmetric
with respect to the exchange of all pairs of electrons. For
two-electron systems both forms of PEO reduce to the results
in Sec. II. Note that PEO cannot be represented in a closed
form for more than two electrons.

Several approximate formulas for P̂ were proposed in
Sec. III. The most promising ones for multi-electron systems
are based on the approximate forms of P̂0 calculated for
simpler systems as, e.g., for a set of free electrons in the
harmonic potential, see Eq. (41). Another possibility is to
treat P̂0 as a kernel operator that ensures antisymmetry of
the calculated wave function, see Eq. (42). This kernel may
be treated as a mathematical object without clear physical
meaning. Calculated energies and states of the 2D Hooke’s
atom confirm the effectiveness of these approximations.

It is interesting to compare the results obtained with the
use of PEO to variational methods for trial functions taken in
the form of Slater determinants. As shown in Eq. (45), once
the wave function |�a〉 is already antisymmetrized there is
P̂|�a〉 = 0, and it is not necessary to introduce PEO. Varia-
tional calculations with the use of trial function in the Slater
form are the most common method of calculating the energies
and states of multi-electron systems. In practice this method is
the best compared to other approaches. The conclusion is that
for variational calculations with the Slater determinants PEO
is not needed.

However, if one goes beyond variational calculations or if
a trial variational function is not antisymmetric in all pairs of
electrons, then one encounters the problem of ensuring the

052221-8



PAULI EXCLUSION OPERATOR: AN EXAMPLE OF … PHYSICAL REVIEW A 103, 052221 (2021)

antisymmetry of the multi-electron function. This problem
could be solved either ex-post, by eliminating spurious solu-
tions that are not antisymmetric with respect to the exchange
of all pairs or electrons, or by adding PEO to the Hamiltonian
that ensures antisymmetry of the resulting wave function. As
pointed out above, it seems to be impossible to find the exact
PEO for arbitrary systems, but the application of the approx-
imate forms of PEO proposed in Sec. III may be sufficient to
obtain a wave-function fulfilling antisymmetry requirement.

The fundamental difference between the PEO method and
commonly used methods, as e.g., the configuration interaction
(CI) method is as follows. In the PEO approach one does not
take any assumption of the wave function, but the PEO en-
sures proper antisymmetry of the resulting wave function. Any
additional operator is not introduced in the CI method, but
the multi-electron wave function as a combination of Slater
determinants is assumed. Therefore, the PEO method is, in
some sense, “opposite” to the commonly used methods based
on Slater determinants. In both approaches, if w takes the
exact PEO or exact antisymmetric trial function then identical
results are obtained. However, since, in practice, approximate
methods are always used, as e.g., those in Sec. III, it may
turn out that in some problems one method is superior to the
other. As an example, for the 2D Hooke’s atom the used PEO
gives exact energies and states, see Eq. (70), but the variational
method based on Slater determinants leads to approximate
results.

In this work we concentrate on the analysis of the PEO for
the 2D Hooke’s atom, which is simpler than Hooke’s atom
in 3D. In the later case the Hamiltonian also separates into
parts depending on the center-of-mass motion and the relative
motion. The states of the Hooke’s atom Hamiltonian in 3D
have the form �(r) = gl,n(r)Yl,m(�,φ), where Yl,m(�,φ) are
the spherical harmonics in the standard notation. Functions
gl,m(r) are the solutions of the equation(

− d2

dr2
− 2

r

d

dr
+ l (l + 1)

r2
+ 1

r
+ k

4
r2

)
gl,n(r)

= El,ngl,n(r), (74)

where l = 0, 1 . . . is the angular momentum number and El,n

are the energies. Functions gl,n(r) in Eq. (74) are similar to
gm,n(r) in Eq. (49), see Fig. 2. In 3D the transformation r →
−r does not change the r = |r| coordinate, but changes the
angular functions

Yl,m(�,φ) → Yl,m(π − �,φ + π ) = (−1)lYl,m(�,φ).

(75)

Then, similarly to the 2D case, the states with even l are sym-
metric with respect to the exchange of electrons, while those
with odd l are asymmetric. In 3D one may not express P̂ in
terms of the differential operator because the transformation
� → π − � cannot be expressed in terms of the translation
operator, see Eqs. (14) and (23). However, the representation
of PEO in Eqs. (26) to (28) is valid also in the 3D Hooke’s
atom model.

There exist two systems having two interacting electrons,
i.e., the He atom and the Li ion. In these systems the external
potential acting on the electrons is the Coulomb potential of

the nucleus. The Schrödinger equations of both systems do
not separate into the center-of-mass and relative motions, and
to find eigenvalues or the eigenstates one has to use approxi-
mate methods, e.g., variational calculations, molecular orbital
approximations, or perturbation methods [6,7]. These meth-
ods work correctly for low-energy states but their accuracy
decreases for high energies. For this reason it is practically
impossible to calculate the PEO for the He atom and Li ion
by summating the eigenstates in Eqs. (9) and (10). However,
the results in Figs. 1 and 3 suggest that for both systems
the position representation of PEO is also given in Eqs. (26)
to (28). Note, that for the 3D He atom with the L = 0 the
motion of electrons and nucleus is confined to a plane fixed
in configuration space, see the review article in Ref. [7]. In
this case the PEO is given by Eq. (23), as well as for the
hypothetical 2D He atom.

Let us briefly discuss some issues related to the spin part
of the wave function for multi-electron systems. Consider first
the three-electron case as, e.g., the Li atom and assume that the
Hamiltonian of the system does not depend on electron spins.
In such a case the wave function of the system is a product
of the position-dependent and spin-dependent functions. For
three spins there is 23 spins- combination, and they form
four quartets and four doublets [21]. The quartet states are
symmetric with respect to the exchange of the three pairs of
spins, but the doublets are not, so to ensure proper symmetry
of the three-electron wave function a combination of doublets
should be taken. For the k-electron system there is 2k spins
combination, and for large k it is practically impossible to treat
spins exactly, so one may either treat them classically or apply
further approximations.

In Sec. II we assumed a spin-independent two-body Hamil-
tonian. In real systems one often meets spin-dependent
interactions, usually related to the spin-orbit (SO) coupling. In
practical realizations of Hooke’s-like systems in quantum dots
the SO is common, see Refs. [22–24]. In the standard notation
there is ĤSO = αL̂ · Ŝ. Then, for L > 0 the wave functions of
electrons do not separate in position-only and spin-only parts
and we may not use the approach in Sec. II. The general
formalism in Sec. III as well as the approximate methods
are valid also for systems with spin-dependent interactions
including SO.

For the two-electron systems in Sec. II the PEO is defined
as an operator that removes even or odd states from the Hamil-
tonian spectrum. Then the function |�〉, being the solution
of (Ĥ − P̂)|�〉 = E |�〉, includes odd or even states only. For
the multi-electron systems in Sec. III the PEO is defined as
an operator that removes antisymmetric states with respect
to the exchange of all pairs of electrons from the Hamilto-
nian spectrum. Then the function |�〉, being the solution of
(Ĥ − P̂ )|�〉 = E |�〉, includes antisymmetric states only. The
difference between both definitions is that even or odd states
of the two-electron system relate to the relative motion of
electrons, while for multi-electron systems the antisymmetry
relates to the exchange of two electrons including their posi-
tions and spins.

PEO in the literature appear previously in calculations of
nuclear matter properties [8–10]. In the approach of the au-
thors of Ref. [10], the Ĝ matrix satisfies the Bethe-Goldstone
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equation

Ĝ = v + v
Q̂

ε
Ĝ, (76)

where Ĝ is the reaction matrix, v is the two-nucleon interac-
tion, ε is re-scaled energy, and Q̂ is PEO in nuclear matter
which prevents two particles from scattering into intermediate
states with momenta below the Fermi energy. In some aspects
this approach is similar to ours since the authors introduced
an operator responsible for the Pauli exclusion principle, but
PEO in the previous approach excluded some states from real
or virtual scattering. In our approach PEO ensures proper
symmetry of the multi-electron wave function.

VI. SUMMARY

In this work we introduce the PEO which ensures proper
symmetry of the states of multi-electron systems with
respect to the exchange of each pair of electrons. Once
PEO is added to the Hamiltonian, no additional constraints
due to the Pauli exclusion principle need to be imposed
to the multi-electron wave function. PEO is analyzed
for the two-electron Hamiltonian and we found its three
representations. We concentrated on PEO in 2D in which
it can be expressed in a closed form. Some properties of
PEO in 3D and 1D for two-electron states are discussed.
PEO are calculated analytically or numerically for symmetric
and antisymmetric Hooke’s atoms. We generalized PEO for
multi-electron systems; its two alternative forms are obtained.
Several approximations of PEO to multi-electron systems
were derived. Kernel-based methods were proposed, and they
seem to be the most promising approximations of PEO for
practical calculations. It is shown that once the wave function
|�a〉 is already antisymmetric with respect to the exchange
of all pairs of electrons, P̂|�a〉 identically vanishes. For this
reason, in variational calculations employing trial functions in
the form of Slater determinants there is no need to introduce
PEO. However, if we go beyond the variational calculations,
we should introduce PEO to ensure antisymmetry of the
resulting wave functions. We believe that the approach based
on exact, approximate, or kernel forms of PEO may be useful
in calculating energies and states of multi-electron systems.

APPENDIX A: AUXILIARY IDENTITIES

The spin-exchange operator �̂i j is defined by its action on
four two-spin states

�̂i j |↑↑〉 = |↑↑〉, (A1)

�̂i j |↑↓〉 = |↓↑〉, (A2)

�̂i j |↓↑〉 = |↑↓〉, (A3)

�̂i j |↓↓〉 = |↓↓〉. (A4)

Operator �̂i j in Eq. (32) satisfies all of the above equations.

In 3D the particle exchange operator is given in
Eq. (23) of Ref. [18] and for completeness we quote this
expression

	̂i j =
∞∑

n=0

(
1

n!

)( i

h̄

)n n∑
l=0

l∑
m=0

(
n
l

)(
l
m

)

× ( p̂ jx − p̂ix )n−l (r̂ jx − r̂ix )n−l

× ( p̂ jy − p̂iy)l−m(r̂ jy − r̂iy)l−m

× ( p̂ jz − p̂iz )m(r̂ jz − r̂iz )m. (A5)

By taking limit 
x̂i j → 0 in Eq. (A5) one obtains the particle
exchange operator in 2D

	̂i j =
∞∑

n=0

(
1

n!

)( i

h̄

)n n∑
l=0

(
n
l

)
( p̂ jx − p̂ix )n−l (r̂ jx − r̂ix )n−l

× ( p̂ jy − p̂iy)l (r̂ jy − r̂iy)l . (A6)

Alternative expressions for 	̂i j are given in Ref. [19].

APPENDIX B: SHOOTING METHOD

The eigenenergies and eigenstates of Hooke’s atom in
Eq. (49) are found using the shooting method [25]. As the
initial guesses for the energies we use those of the two-
dimensional harmonic oscillator equal to En = √

(k/4)(2n +
1), n = 0, 1, . . . m and k = 4. Then we iteratively bracket the
true energies of Ĥ by analyzing the behavior of gm,n(r) at large
r. The advantage of the shooting method is that it is equally
accurate for low- and high-energy states. Only functions with
m � 0 were calculated since g−m,n(r) = gm,n(r). We tabulate
the normalized states of Eq. (49) from n = 1 (ground state) to
n = 250 and from m = 0 to m = 16.

We solve Eq. (49) using the DVERK procedure which is the
sixth-order Runge-Kutta method [26,27]. The accuracy of the
calculations has been verified by checking the orthogonality
of all pairs of gm,n(r) and gm′,n′ (r) functions with m = m′
and n �= n′. In each case the accuracy below 10−5 has been
obtained.

For small r there is g0,n(r) 
 c0(1 + r) with c0 > 0, and
the initial conditions for the DVERK procedure are g0,n(0) =
1, g′

0,n(0) = h, where h is the integration step, and h 

0.001 − 0.01 rB. For m > 0 and small r there is gm,n(r) ∝
rm, and the initial conditions for the DVERK procedure are
gm,n(0) = 0, g′

m,n(0) = mhm−1. For large m the last condition
is unstable numerically, and it is replaced by gm,n(r0) = gc,
g′

m,n(r0) = mgc/r0, gc 
 10−5, and gm,n(r) = 0 for r < r0.
Here r0 > 0 and its values for gm,n(r) are obtained by analysis
of gm−1,n(r) for small r. Generally, r0 gradually increases
with m.
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