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We study the energy-transfer process in quantum battery systems consisting of multiple central spins and bath
spins. Here with “quantum battery” we refer to the central spins, whereas the bath serves as the “charger.” For
the single-central-spin battery, we analytically derive the time evolutions of the energy transfer and the charging
power with arbitrary number of bath spins. For the case of multiple central spins in the battery, we find the
scaling-law relation between the maximum power Py,, and the number of central spins Np. It approximately
satisfies a scaling law relation Py, o< Nj, where scaling exponent « varies with the bath spin number N from
the lower bound o = 1/2 to the upper bound o = 3/2. The lower and upper bounds correspond to the limits
N — 1 and N > Nj, respectively. In thermodynamic limit, by applying the Holstein-Primakoff transformation,

we rigorously prove that the upper bound is Ppa = 0.72BAV/NN,

372 which shows the same advantage in scaling

of a recent charging protocol based on the Tavis-Cummings model. Here B and A are the external magnetic field
and coupling constant between the battery and the charger.

DOI: 10.1103/PhysRevA.103.052220

I. INTRODUCTION

Energy resources are always an important subject of mod-
ern sciences [ 1], dating back to the fuel-coal energy to nuclear
energy [2], to present renewable energy including wind and
solar energy [1,3,4]. The exploitation of energy resources
significantly involves the study of energy transfer, storage,
and generation. Recently, it attracts enormous attention to
study quantum heat engine [5,6] and refrigeration [7-10],
energy storage and transfer in quantum-mechanical systems.
The latter are named “quantum batteries” [11-25]. Classical
electrical batteries store energy by electric field, which can be
understood in the frame of electrodynamics. In contrast, the
quantum battery usually refers to devices that utilize quantum
degrees of freedom to store and transfer energy. In general,
quantum degrees of freedom and their interplay can endow the
quantum battery with advantages beyond the classical picture.

In the last few years, there have been a variety of methods
to study the quantum battery, including realization schemes,
battery power, and charging processes [26-32]. In these stud-
ies, quantum coherence and entanglement seemed to play a
key role in the manipulation of quantum batteries. Alicki and
Fannes [11] showed that entanglement can help extract more
work in the charging process. However, the role of entangle-
ment in work extraction is still in debate [12,13]. Ferraro et al.
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[14] showed that the quantum advantage of charging power is
manifested by an array of N collective two-level systems in
a cavity in comparison with the N parallel quantum battery
cells of the Dicke model. Andolina et al. [15] considered the
role of correlations in different systems serving as a quantum
battery, including the combination of two-level systems and
quantum harmonic oscillators. There are also other schemes
to realize quantum batteries, for example, using the open
systems [33-38] and external field driving systems [39].

However, there still remain many open questions concern-
ing quantum batteries. These mainly concern the battery’s
largest energy, power, extractable energy, etc. First, the num-
ber of quantum battery cells cannot be increased to infinity in
order to reach infinite power. Therefore it imposes a theoret-
ical and practical challenge to manipulate as many quantum
battery cells as possible due to the decoherent nature of
quantum systems. Second, the number of quantum degrees of
freedom in chargers is usually not big enough such that the
transferred energy is not able to saturate the full cells of a
battery during the charging process.

Nevertheless, both the numbers of quantum degrees of
freedom and coupling strength between the battery and
charger can alter the quality and power of the quantum battery.

This essentially involves the issue of how the storage capa-
bility of a quantum battery depends on the number of cells of
both battery and charger.

In this paper, we study the energy-transfer process in quan-
tum batteries of the multiple central spin model. Here the

©2021 American Physical Society
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FIG. 1. The illustration of charging process of multiple central
spin model working as quantum battery, whereas the bath spins
serves as the charger. Ats < 0, there is no interaction between battery

and charger. While interaction is switched on during the charging
process t € [0, ], the battery is charged.

battery consists of Np spins which are displayed in collective
mode during the charging process, whereas the charger has
N bath spins; see Fig. 1. We analyze the dependence of the
energy transfer and the power of the battery on the number Np
of battery spins and the number N of charger spins. We find
that the transferred energy linearly increases with the number
Ng of battery spins when N and Np are comparable, then
saturates to a certain value. The maximum power monoton-
ically increases with respect to the number Np in a power-law
form Pnax o< Nj, where o shows a dependence on the number
of charge spins N. For the limit N < Np, the lower bound
reads a = 1/2. For the case N > Np, the maximum energy
of the battery always linearly increases with the number of
battery spins. For N > Ny and in the thermodynamic limit,
the power-law relation of the maximum power Ppx — NI}'S is
verified by numerical calculation. In the thermodynamic limit,
using the Holstein-Primakoff transformation, we also rigor-
ously prove that Py, = O.7ZB(AWN§‘ ), where the exponent
gives the upper bound « = 3/2. However, for Ny incoher-
ent batteries with single spins, we prove that the maximum
power is given by Pp.x & 0.72BA+/NNjg. Here B and A are
respectively the external magnetic field and coupling constant
between the battery and the charger. It turns out that the
battery power essentially depends on the cell numbers of the
battery and the charger. Our analytical results shed light on
the high-power charging of quantum batteries.

II. THE QUANTUM BATTERY AND THE MODEL

Quantum battery. In this section, we discuss the basic setup
of the quantum battery. The protocol of the underlying quan-
tum battery consists of two parts: the quantum reservoir of
energy-battery Hp and the energy charger Hc. Both the battery
and charger are composed of quantum particles that have dis-
crete energy levels and degeneracies. The charging process is
accomplished by switching on the interaction H; between the
battery and the charger so as to complete the energy transfer;
see Fig. 1. For this purpose, the whole Hamiltonian of this
model is given by

H(t) = Hp + Hc + A(t)H;, (D

where coupling constant A(f) will be used to control the
charging period. The coupling constant equals unity for one
charging period ¢ € [0, 7] and is zero for other times. There
exists energy input and output between the battery and charger
during the charging period from ¢ = 0 to ¢t = t. The energy
transfer, charging speed, and power of the battery essentially

depend on the number of batteries and chargers, the inter-
action strength between them, and other external drives if
possible.

To comply with the terminology used in the previous works
[14,15], we first introduce the definitions of energy and power
of the quantum battery. We consider a system which evolves
unitarily such that the wave function ¥ (¢) describes the state
of system. Meanwhile, the state of battery spins can be de-
scribed by the reduced density matrix of the battery, pp(t) =
tre[|¥ (2)) (¥ (2)|], where tre denotes the trace over the spins
in the charger. The energy of the battery is defined as the
expectation value of the Hamiltonian Hp,

Ep(t) = tr[Hppp(t)]. )

Here pp denotes the reduced density matrix of the battery.
The transferred energy of the quantum battery is given by
AEg(t) = Eg(t) — Eg(0), where Eg(0) is the energy before
the charging process. Meanwhile, the charging power of the
battery is defined as

Pg(t) = AER(1)/1. 3)

Since the unitary evolution of the whole system during the
charging period, the energy will flow between charger and
battery back and forth. It is not necessary to track the energy
and power at every moment. Usually, one chooses the maxi-
mum energy as a measure of the capability for storing energy
Eqax = max[AEg(t)], and accordingly the maximum power
reads Ppa.x = max[Pg(t)].

It has been demonstrated [14] that collective battery cells
of two-level systems coupled to a cavity mode can enhance
the energy transfer by manipulating the detuning between
the two-level systems and the cavity mode. They argue that
the collective evolution proceeds through states characterized
by quantum entanglement among the battery cells. In gen-
eral, we naturally expect the existence of such a quantum
advantage generated during the time evolution of the whole
many-particle systems of the Hamiltonian (1). Here we aim
to investigate the scaling laws of the maximum energy Ep,x
and the maximum power Py.x with respect to the numbers
of battery spins. Similarly, in our work, the multiple central
spins are prepared in a collective way, so that there also exists
a certain form of quantum advantage in the system considered
below. Such scaling laws reveal coherent nature between the
battery and the charger, as well as the quantum entanglement
among the spin qubits in the battery induced by the unitary
evolution.

The model. To realize a high-power quantum battery, we
consider the multiple central spin model with the Hamiltonian
(1) given by

Hgp = BS, )
He = hY-, (5)
Hy =AY 4+S7J%) + 2487 (6)

Here, for our convenience, we denote the large spin operators
o _ Vs o _ _ —_ VW o -
Se=>"" s a={z,+, -}, and J = ZFI t¢ for the bat

i=1"i>

tery and charger, respectively. We adopt different notations for
central spins s¢ and bath spins 7 to avoid misunderstanding.
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They are both the spin-% operators. We regard the central spins
as the storage cells of the quantum battery and the bath spins
as charging energy carriers. The energy can be exchanged
between the battery and the charger through the spin-exchange
interaction term H;, see also Fig. 1. H; contains the spin
flip-flop interaction and the Ising-type interaction, which are
respectively denoted A and A, i.e., the exchange coupling
constant and anisotropic parameter. We also set the coupling
strength A = 1 for our rescaled units in the whole paper.' The
parameters B and £ are the effective external magnetic fields
for the central spins and bath spins, respectively. Ng is the
number of central spins, and N is the number of bath spins.

We introduce the Dicke state [n) = |5, n — %), which is
the eigenstate of J* and J*. The Dicke state can be expressed
as

In) = » Jn)s )

1 .
N Z lji, ...
N ji<-<jn
L) = ‘L'; e ‘L';| 1), and the normalization coef-
ficient Cy; is a combination number #ln),, and | |}) denotes
the down spins as the reference state. The Dicke state is a

highly entangled many-body quantum state. The action of the
above spin operators on state |n) are given by

here | ji, .. .

N
Yin) = (=5 +n)m,
J7|n> =V bN,n|n - 1)7
JIn) = /by psiln + 1),

where we denote the coefficient by, = n(N —n+1). For
the large spin operator of the battery S, they have similar
properties through replacing N by Np and replacing the spin
operators T by s%, respectively. We consequently introduce
the state basis of the whole system |m, n) for the degree of
the battery m € {0, 1, ..., Np} and the degree of the charger
n € {0,1,...,N}. The Hamiltonian of the whole system H
can be diagonalized by the recurrence relation developed in
Ref. [41]. For the special case Np = 1, we can analytically
obtain the whole dynamical evolution of spin polarization; see
the Appendix.

III. NUMERICAL AND ANALYTICAL RESULTS

We first consider the numerical study of the general form
of the quantum battery (1). We assume the initial state as

[Po) = [@0)p ® |bo)c- ®)

Usually, the battery spins are in lowest states while the charger
is in the higher excited states. For performing our numerical

For the unit of other parameters, we compared them with the A
to obtain their units. At present, superconductor qubits may serve
as quantum battery platforms to observe the results of this work
since spin-exchange interactions can be realized experimentally. In a
practical experiment, spin-exchange coupling usually takes the units
time™', for instance, in Ref. [40], they set the Hamiltonian as H/h
and the spin-exchange coupling J,, .41 &~ 1/60 ns~!.

study, we choose the initial state as |®g) = [0, N) = | U, ).
The wave function of system evolves with time, namely,

[V (1)) = exp (—iH1)|Po). (€))

By Eq. (2), we may calculate the evolution of the energy of
battery as a function of time 7.

A. Special case Nz = 1

At the beginning of this section, we first study the results
of the special case Ny = 1 with [®¢) = | |)p ® |¢o)c in order
to get intuitive recognition of the energy transfer. Usually one
can choose the states of bath spins as the Fock state or spin
coherent state. Here we consider the Fock state for the initial
state of the bath spins

[©o) =1 {) ® |n), (10)

where the bath spin state |n) represents n flipped spins among
the N spins. The time evolution of the wave function can be
obtained from the Hamiltonian H with Egs. (4)-(0), i.e.,

[y (@) = e [PFO] Dn— 1) + P{@O)] DIm)]. (1)

Here the global phase 6 can be omitted and the two probability
amplitudes are given by

2./by A Q,t
P;’ = YN g
Q, 2

and

Pn . Al’l . Qnt + QI‘LZ
= 1— SIn COS .
YT, 2 2

The wave function satisfies the normalization condition
|P¥|2 + |Pf|2 = 1. In the above equations, we denoted the
parameters

Ay=B—h+Q2n—1-N)A,

Q, = /A2 + 4by A2,

Using the wave function (11), the charging energy and the
power of quantum battery are obtained explicitly:

4by A2 Qut
AEp(t) = 32’2;% sin? (T) (12)

dby A% ., (Ut

Q1 sin > ) (13)
The detailed calculation can be found in the Appendix, and
see also the calculation for the Jaynes-Cummings (JC) model
[15]. Based on this result, we briefly present a discussion on
the energy transfer of the quantum battery below.

(i) Resonant case B = h, A = 0, the charging energy is
given by

Pp(t) = AEp(t)/t =B

AEp(t) = Bsin?(y/by ,At). (14)
After an approximation, the maximum power is given by
Prnax & 0.72BA\/by . (15)
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FIG. 2. The charging energy of quantum battery AEg(t) (blue
solid line), the energy of charger AE.(¢) (dashed red line), and the
interaction energy E;(¢) (dashed green line) are shown as function
of ©,¢/2. (a) Charger and quantum battery are at resonance for B =
h=1and A = 0. (b) Charger and quantum battery are at resonance
for B=h =1 and A = 5. (c) Charger and quantum battery are off
resonance for B =15, h =1, and A = 0. (d) Charger and quantum
battery are off resonance for B=15, h =1, and A = 5. In panels
(a)—(d), we set A =1, N = 10, and n = N/2 = 5. In panels (a) and
(b), the interaction energy are always equal to zero for the whole
time regime and the energy can be totally transferred from charger to
battery.

From the expression of AFEg(t), the maximum transferred
energy and the consumed time are given by

T
2A/byn

From the definition of by ,,, we may obtain the minimum time
to transfer the maximum energy, namely, Ty, =

Enax =B,  Tmin = (16)

BwER
where we set n = % This means that the quantum battery
is able to store the maximum energy in the shortest time for
the initial state with n = (N + 1)/2 flipped bath spins.

(i) Nonresonant case B# h or A # 0. In this case,
we observe that the charging energy of quantum battery
|AEg(t)/B| < 1 and interaction energy E;(t) = (H;) # 0.

In Figs. 2(a) and 2(b), we show the results of the battery
and charge at the resonance. There is no interaction energy
between the battery and charger in Fig. 2(a). For Fig. 2(b),
we chose B=h, A =5, n=N/2 =35, the terms involving
the factors (N/2 — n) and (B — h) in the charging energy of
quantum battery vanish [see Appendix Eqgs. (A7) and (A8)].
In this case, the maximum energy intake is limited by N
due to conservation of energy. Figures 2(c) and 2(d) present
the nonresonant case, for which there exists an interaction
energy between the battery and charger. This indicates that the
transferred energy from the charger to the quantum battery is
essentially subject to the interaction form. In this scenario, the
maximum transferred energy strongly depends on A, B, and
h.

B. Arbitrary N case

For an arbitrary number Np of battery spins, the eigen-
function is constructed by |@) =Y, > cunlm,n). After
substituting the above ansatz into the eigenvalue equation, the
superposition coefficients c,, , are determined by the follow-
ing recurrence equation:

WmnCm,n + A\/ bNB,mbN,n+lcm—1,n+l +A\/ bNE,1n+1bN,ncm+l,n—l

=Ecyn, a7

where the coefficient by, ,, = m(Ng —m+ 1) is defined
as by, previously, and w,, = B(—% + m) + h(—%’ +
n) + 2A(—% + m)(—% + n). Here, for the battery, m €
{0,1,...,Np} and for the charger n € {0, 1, ..., N}. How-
ever, the recurrence equation (17) with two variables m, n
is very difficult to solve analytically. To study the energy
transfer, we exactly diagonalize the Hamiltonian to obtain
the time evolution of the system. Without losing the essential
properties of the battery, we consider the interaction energy
between charger and battery as zero by choosing the param-
eter A =0 and B =h =1 in our numerical calculation. We
show that, for this case, the Hamiltonian can map to the Tavis-
Cummings model [42—44]. In addition, the system is prepared
in the initial state |®g) = | |}, ), i.e., m = 0and n = N. The
time evolution of the energy and power of the battery can be
obtained numerically and analytically.

For a classical battery device, the electric current is static
so that a charging process can be complete in a certain time.
However, for the quantum battery, the energy transfer is es-
sentially subject to dynamical evolution and depends not only
on the devices but also on the charging time. Let us first
understand how the charging process depend on the number
of the battery spins when the number of charger spins is
fixed. If the battery spins are taken as the Fock state like that
for the charger spins, the dynamical evolution of the battery
involves the highly entangled Dicke state |m), m = 1,...Np
in charging process. Such a setting leads to a collective charg-
ing of the multiple central spin quantum battery, similar to
the two-level system coupled to the single cavity mode, i.e.,
the Dicke model [14]. By using Holstein-Primakoff trans-
formation, we prove that our model can be mapped to the
Tavis-Cummings model, see Eq. (20) in the analytical study
section. Meanwhile, the Tavis-Cummings model is related
to the Dicke model by the rotating wave approximation, see
Ref. [14]. Therefore, we naturally expect the existence of a
general scaling relation between the battery power and the
number of battery spins Np in the quantum battery of the
Tavis-Cummings-like model. After performing numerical cal-
culations, we find that the maximum power takes the form

Prnax o B(N)Ng, (18)

where the exponent « is strongly affected by the number of
charger spins and the initial state, while 8 is a function of
the number of the charger spins N. Here the scaling exponent
o essentially reflects the collective nature of the battery in
transferring energy.
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FIG. 3. The maximum (a) energy and (b) power of the multiple
central spin model vs the number N of battery spins for different
charger settings N. The dashed lines in panel (b) show the numerical
fitting of the power relation (18) in a logarithmic scale for Ng €
[20, 80], i.e., N =5, o = 0.5013, B = 4.3706 (red line); N = 10,
o = 0.5067, B = 9.9668 (green line), and N = 15, = 0.5172, 8 =
15.9241 (blue line), which agree with the numerical results shown
in the corresponding symbols. This confirms the lower bound of
the scaling exponent of the maximum power « — 1/2. Here we set
A=1,B=h=1, A =0 with the initial state n = N, and m = 0.

1. For the case N < Npg

Using the above setting and initial state, i.e., m =0, n =
N, we first compute the time evolution of energy and max-
imum power. A more detailed explanation on the numerical
calculation is given in the Appendix.

In Fig. 3, we show the maximum energy and maximum
power as a function of the number Ny of battery spins for
the different numbers of charger spins N = 5 (red circles),
N =10 (green squares), and N = 15 (blue triangles). In
Fig. 3(a), we observe that the maximum energy E, varies
with the number of battery spins Np € [1, 80]. The maximum
energy increases linearly with respect to the number of bat-
tery spins Ny when Ny € [1, N] and saturates to a constant
value when Ng > N. The maximum energy clearly shows a
kink. In Fig. 3(b), we observe that the maximum power Ppax
increases monotonically with respect to the battery spins Np
for different numbers of charger spins. The logarithmic plot of
the maximum power P, directly gives the scaling exponent
o which fits the relation (18) for the region Np € [20, 80] and
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FIG. 4. The rescaled (a) maximum energy and (b) maximum
power vs the number Ng of battery spins for different number N
of charger spins. The dashed lines in panel (b) show the numerical
fitting of the power relation (18) in logarithmic scale for Ny € [1, 50],
ie., N =100, o = 1.4075, B = 7.0056 (red line); N = 200, o =
1.4434, B =9.4058 (green line), and N = 300, o = 1.4540, B8 =
11.3456 (blue line), which agree with the numerical results showing
in the corresponding symbols. This agreement confirms the upper
bound of the scaling exponent of the maximum power o« — 3/2 in
thermodynamic limit. Here we setA = 1,B = h = 1, A = 0 with the
initial state n = Ng, and m = 0.

Np > N, see Fig. 3(b), Table I, and the Appendix. In Table I,
we show the scaling exponent « and coefficient 8 for three
different N, which confirm the lower bound of the scaling
exponent of the maximum power, i.e., ¢ — 1/2, in the region
N < NB.

2. For the case N > Ng

In Fig. 4, we demonstrate the maximum energy and the
power-law relation (18) of the battery maximum power for
N > Ng. Here, the number of quantum battery spins is N €
[1, 50], and the number of charger spins is N = 100 (red cir-
cles), N = 200 (green squares), and N = 300 (blue triangles).
We choose the initial state n = Ny and m = 0, as suggested
by the analytical result (31). We observe that the rescaled
maximum energy En.x/Np does tend to saturate, see Fig. 4(a).
Figure 4(b) shows a plot of the maximum power Pp,x on a
logarithmic scale. Numerical fitting indicates o ~ 1.45. We
observe that the numerical fit of the scaling exponent o with
Eq. (18) is in good agreement with the analytical limit given in

TABLE I. The lower and upper bounds of the scaling exponent « obtained from numerical fitting of the Eq. (18) vs the number of charger
cells N. For the upper bound, a comparison with the analytical result (31) in the thermodynamic limit is presented.

Lower bound Upper bound Thermodynamic limit
N 5 10 15 100 200 300 100 200 300
o 0.5013 0.5067 0.5172 1.4075 1.4434 1.4540 1.5 1.5 1.5
B 4.3706 9.9668 15.9241 7.0056 9.4058 11.3456 7.2 10.1823 12.4708
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FIG. 5. Logarithmic contour plot of the maximum power vs the
numbers of the battery spins Ny and charger spins N. It clearly shows
different values of power scaling exponent « in the regimes N < Np
and N > Np. Here we set A =1, B =h = 1, A = 0 with the initial
state n = N, and m = 0, and consider the ranges Np € [1, 40] and
N € [1,200]. However, in Fig. 4, the initial condition n = Np was
used.

Eq. (31), as also seen in Table I. If N and N both take the ther-
modynamic limit, and N > Nj, the scaling exponent indeed
approaches o — 1.5, which is consistent with the analytical
result (31).

In Fig. 5, we further demonstrate the power-law relation
(18) of the maximum power with respect to the numbers of
battery spins Ng and charger spins N, where we set the initial
state n = N and m = 0 and consider the ranges N € [1, 40]
and N € [1, 200].

This figure confirms the observations shown in Figs. 3
and 4. The plot of Py displays two clearly distinct planes
separated by the condition N = Np. For a fixed value of N,
the slope of the down-turned plane reflects the value of « at
N < Npg, whereas the slope of the upward plane indicates the
value of « for the case N > Np. It is worth noting that here
we use the initial condition n = N, while in Fig. 4 n = Ny was
used.

Our numerical results show that the collective battery (mul-
tiple battery spins) enables the enhancement of the power
through increasing the number of battery cells when the
charger resources are large enough. This is quite in contrast
with the single central spin battery, i.e., Ng = 1. In the next
section, we present an analytical proof of these two bounds.

C. Analytical study

To get a comprehensive understanding of the lower and
upper bounds of the scaling exponent found by numerics in
the last section, we now present a rigorous calculation of
the maximum energy and power of the quantum battery of
Tavis-Cummings type. If we apply the Holstein-Primakoff
transformation to both the bath and battery spins, the whole
Hamiltonian of system (4)—(6) can be mapped to the Tavis-

Cummings model [42-44], where the Np central spins are
regarded as Np two-level atoms.

For N > 1, Ng > 1, we apply transformation for charger
spins

J* =+Nda'\/1—data/N,
J-=JVNJ/1- a‘a/Na,
N 1l
JZ:_E +a'a. (19)

Without losing generality, we can obtain the Tavis-Cummings
model for the case A =0

N _
Hye = BS* + h(a*a - E) +AVNSta+S-ah). (0)

And we continue to apply the Holstein-Primakoff transforma-
tion to battery spins:

St = VNgb'\/1 — bib/Np,
S~ = V/Nz\/1 — bib/Ngh,

N
S = —7’3 +b'b. 1)

In the above formulas, a (b) and a' (b") both are annihilation
and creation operators of bosons. Substituting Egs. (19) and
(21) into the Hamiltonian (4)—(6), we can obtain

H~ B(—% + bTb) + h(—g + a*a)
+A+/NN(a'b + ab"). (22)

Here we neglected the terms a’a/N and b'h/Np since N > 1,
Ng > 1, while we set A =0 in the H; to simplify our an-
alytical study. Later, based on the whole Hamiltonian (22),
we will analytically derive the scaling laws of the maximum
energy and the maximum power with respect to the numbers
of battery and charger spins. In this model, the total particle
number is conserved and thus we have [H, a’a + b'b] = 0.
Without losing a generality, we can choose a Hamiltonian of
the following form for B = h:

H; = AV/NgN(a'b + ab"). (23)

We take the initial state as before: |®g) = |m, n) = |m)p ®
|n)c, and the quantum battery is in the lowest state, namely,
m — 0. The maximum charging energy of the quantum bat-
tery is influenced not only by the energy levels of the battery
and charger but also by the choice of their initial states. In
quantum optics, the energy levels of photons can be infinite.
For multiple central spins, the maximum transferred energy
AEB X BNB

We reasonably choose n — m ~ N, i.e., the charger con-
tains enough energy to charge the battery to a level of the
maximum energy. The wave function at time ¢ is given as the
previous expression | (¢)) = exp(—iH;t)|Py). By definition,
the charging energy of the quantum battery is given by

AEp(t) = By (0)[bbly (1) — (Polbb|Po)].  (24)
Let us further define the operator

F=0b'b—da. (25)
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Its time evolution is given by
F(1) = (®ole™Fe " |dy). (26)

After carefully calculating the recurrent commutation rela-
tions between the operators H; and F, we obtain the following
expression:

A . 1 &
B ™t = B 4y " —[iHt, [iHyt, ..., [iHyt, F]- - 1]
n!

-y m(ZtA«/NBN)M“ (a'b — ab")

l N
2tA/NgN)*"F
+ mX:(:) am)! ( BN)
= isin(2Av/NzNt)(a'b — ab’)
+ cos(2A+/NgN1)F. (27)
Substituting Egs. (27) and (25) into Eq. (26), we further obtain
the simple expression

F(t) = (m — n) cos(2A~/NpNt). (28)

Moreover, the total particle number N = b7b + a’a is a con-
served quantity, i.e., [Hj, N] =0.

Therefore, we have N(¢) = (Y (1)|N|¥ (1)) = m + n. It fol-
lows that

N+ F
(YOI DIy (1)) = w
=" ;r e 2_ " cos (2A/NaN1).

Thus, the charging energy and the power of the quantum
battery are given by

AEg(t) = B(n — m) sin>(Av/NgNt), (29)
2
Py(e) = Bn — my T AVIND (30)

respectively.

It is straightforward to obtain the maximum power that
is given by Ppax = B0.72A/NgN(n —m) for a time t =
1.16/(A+/NgN).

As mentioned in the previous section, we demand n — m ~
Ngp and N > N, thus the maximum power is given by

Puax = 0.72BAVNN,?, 31)

which reveals a significant advantage of this charging proto-
col, leading in turn to the upper bound of the scaling exponent
a = 3/2. We observe that, in the early charging process, the
power reaches the maximum whereas the energy does not
reach the maximum. This means that the maximum power
Prax XN, ;/ ? can indeed occur in the early time of the charging
process, when the flipped spin (b'b) in the battery is much less
than the number Np of battery cells. Therefore the Holstein-
Primakoff transformation is valid for our analytical results.
On the other hand, for the limit N — 1, the maximum
power shows a lower bound of such advantage, see Fig. 3(b).
The evolution of the system can be easily obtained for
N =1 with the initial state |m, 7). The energy AEp =

Bsin®(y/by, mi1At) and power Pg = Bsin(,/by, mi1At)/t,

so that the maximum of the power is given by P &
0.72B,/by, m+1A for the charging time 1.16/,/by, m+1A. Ac-
cording to the previous setting, the initial state of the battery
spins are in the lowest state m — 0, which gives /by, m+1 =
/N and leads to Pp.x o «/Ng. This is consistent with the
numerical result given in Fig. 3(b), i.e., the scaling exponent
o varies from the lower bound « = 1/2 to the upper bound
3/2 when the number of charger spins N changes from small
to the thermodynamic limits, i.e., N >> 1 and Ng > 1, while
the condition N > Np holds.

IV. CONCLUSION

We have studied numerically and analytically the high-
power quantum battery through the multiple central spin
model. The advantage of a quantum battery has been demon-
strated through the maximum power of the quantum battery
Prax = O.72BA«/IVN§‘ that exhibits a universal power-law de-
pendence of the battery cells (spins) under the condition
Np < N. Such a power-law relation is analytically derived
by the quantum battery of the Tavis-Cummings type. We
have also observed that the power-law exponent of the battery
power depends on the number N of charger spins, namely,
the scaling exponent « varies with the bath-spin number N
from the lower bound o = 1/2 to the upper bound o = 3/2.
From the maximum power (15) of the single central spin
battery, we see clearly the maximum power of N incoherent
quantum batteries of single central spin systems is given by
Poox = 0.72BA~/NNj3. Therefore, a quantum advantage is re-
vealed from the maximum power (31) of the quantum battery
of Np central spins. In the latter case, coherence of the Np
central spins is naturally created by the interaction between
the battery and charger spins. In the Appendix, we present
the analytical results of the quantum battery with Nz = 1 and
an introduction to our numerical method. Our results display
the role of how both the charger and battery are capable of
enhancing the quantum advantage of Tavis-Cummings-type
systems. Our rigorous results of dynamical energy transfer
shed light on the design of quantum batteries.
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APPENDIX A: THE EXPLICIT FORMS OF THE
CHARGING ENERGY

For the special case Ny = 1, the Hamiltonian can be writ-
ten as a 2 x 2 matrix in the bases | |)|n), | 1)|n — 1), where
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n=12,...,N,

(B—” +(m—1=N/2)A by A )
H, = 2 B—h .
by A - —(m—=N/2)A

(A1)
It is easy to diagonalize above small matrix H analytically to
obtain the evolution operator U (¢) = exp(—iHt). The wave
function can be derived by |y (¢)) = U(t)|Py). The Hamil-
tonian can be written as H, = (A,/2)6; + /bn.,A6, + C,
here C is constant. The evolution operator U (¢) can be ob-
tained by using property of Pauli matrix namely exp(ifi -
6)=cos(@) +isin@)r-6. It is U(t) = cos(2,t/2) —
i $in(Rut /2)[(An/ 206, + 2(/br.nA/R0)5: ], Where

Ay=B—h+Qn—1-N)A,

Q, = /A2 +4by ,A%.

p@) = W) (W)l

By acting with the evolution operator U (¢) on the initial state
| {)|n), we finally obtain the time-dependent wave function.

We explicitly rewrite the wave function for the Ny = 1 case
(11) as

Y @) = e [P )ln — 1) + P0)] L)In)].

Here the global phase 6 can be omitted and the two amplitudes
are given by

(A2)

2{/bn A
Y

Y,
sin ,
Q, 2
P AN, [t n Q,t
=[—SIn| — COoS .
\ Q, 2 2

The wave function satisfies the normalization condi-
tion, namely, |P?(t)|2 + |Pf(t)|2 =1. And the param-
eters are denoted A,=B—h+2n—1—-N)A, Q,=
(A2 +4by ,A*)!/2. The density matrix for the system can be
obtained as

P?(t) = —

= P{OP{ ()" IN)In — 1){n — 1I{| + PLOP] ) IN)In — D){nl(}|

+P{(OPY ()| )In) (n — 1[(1] + PL@OPT @) ) n) (nl(L]. (A3)
Then the reduced density matrices pp and p¢ are given respectively as
pp(t) = tre[[W (@) (V)]
= PLOPL@)" M) (M + PP} () 1L) (L], (A4)
pc(t) = trp[[W () (W ()]
= P{()P{(t)"|n — 1){n — 1| + P} ()P} (t)"|n)(n]. (AS)

After some simple algebra, we derive the energy of the quantum battery, the energy of charger, and the energy of interaction
between charger and battery by substituting the above density matrix into the definition (2):

Eat) = wlHyon(0)] = B| 22 oo () _ 1 (A6)
=tr = : sin - =
B BPB Q% 1 ) 3
Ec(t) = ulHepc®)] = | ( Ny ) v oo (S (A7)
=tr = - — sin ,
C cPc y T Q2 )
N 4by ,A? Qut
Ei(t) = tr[H p(1)] = A(E - n) —(B-— h)lsvz;rgl sin’ ( 2” ) (A8)
[
APPENDIX B: EXACT DIAGONALIZATION AND FITTING such that J%, J~, J* are written as (N + 1) x (N + 1) matrix,
THE SCALING LAW for example, and J* and J~ are given by
In this Appendix, we present in details the exact diagonal- i (_ﬂ + n) form = n
ization method. According to the action of larger spin operator ) = { 20 for others (B4)
on the Dicke state, we have ' '
and
_ ) Vbna, form=n-—-1
D = { 0, for others, (BS)

N
J¥ln) = (_3 + ”) n), (B1) respectively. At the same time, the operators S¢, S~, St can be
written as (Ng + 1) x (Np + 1) matrices, too. By combining
J7In) = /by aln — 1), (B2) the matrices J and S, we obtain the matrix form of the whole
N Hamiltonian (4)—(6). Thus the dimension of the Hamiltonian
J7n) = /by py1ln + 1), (B3)  in the Dicke basis is (N + 1)(N + 1). For N < 50, and
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N < 300, the Hamiltonian can be diagonalized directly to ob-
tain the evolving operator U (dt) = exp(—iHdt) with suitable
time step dt.

The time-dependent wave function can be obtained nu-
merically |y (¢)) = U(dt)---U(dt)|Py). Then, according to
Egs. (2) and (3), the energy and power can be computed.

Scaling relation

The scaling relation of the maximal power of battery reads

Prnax ¢ B(N)N . (B6)

By taking the logarithm, we use linear fitting to obtain the
scaling exponent o

In (Prax) = In (Np) + In (B(N)),

where § is a constant for a fixed N. Since the total energy is
conserved, the energy reaches a saturation point for Nz > N,
see Fig. 3(a). Therefore we used the data after the saturation
point to fit the scaling relation (B7) within the region Np €
[20, 80] in Fig. 3(b). Whereas, for the case N > Np, we fit the
scaling relation (B7) for the region Np € [1,50] and N > Np
in Fig. 4(b). We find that it agrees with our analytical relation
(31) in the thermodynamic limit; see the main text.
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