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Motion of classical charged particles with magnetic moment in external plane-wave
electromagnetic fields
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We study the motion of a charged particle with magnetic moment in external electromagnetic fields utilizing
covariant unification of Gilbertian and Amperian descriptions of a particle magnetic dipole moment. Considering
the case of a current loop, our approach is verified by comparing classical dynamics with the classical limit
of relativistic quantum dynamics. We obtain the motion of a charged particle in the presence of an external
linearly polarized electromagnetic (laser) plane-wave field incorporating the effect of spin dynamics. For specific
laser-particle initial configurations, we determine that the Stern-Gerlach force can have a cumulative effect on

the trajectory of charged particles.
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I. INTRODUCTION

In the context of high-intensity laser-matter interaction,
including particle acceleration, much attention is being paid
to the classical dynamics of charged particles, in particular
electrons and positrons. We consider here the contribution
of the Stern-Gelrach force due to magnetic moment, further
advancing the work of Wen et al. [1]. Since this force is much
smaller compared to the Lorentz force, and a well-defined
dynamical formulation was presented only recently [2], much
work remains to be done.

Our theoretical formulation is building upon this covari-
ant unification of Amperian and Gilbertian dynamics and the
study of neutral particle dynamics in the presence of the
Stern-Gerlach force [3,4]. The study of Stern-Gerlach particle
dynamics along this conceptual approach was initiated by
Good [5] and Nyborg [6]; see Ref. [7] for a review of this
work.

We begin by presenting the formulation of the model for
particle motion and spin dynamics in Sec. II, showing how the
magnetic moment force effect on the particle’s translational
motion is included. Our Stern-Gerlach force is a natural ex-
tension of the Thomas-Bargmann-Michele-Telegdi (TBMT)
spin precession dynamics [8,9]. It shows how the magnetic
moment interacts with the external electromagnetic (EM) field
inhomogeneities and how this interaction affects the particle’s
trajectory.

In Sec. III, we check the validity of our approach by
comparing with Ref. [1] for the case of a charged particle
with a magnetic moment moving across a current loop. In
Sec. IV, we turn to our main objective, the study of dynamics
in the presence of (laser) plane waves. To solve this intricate
dynamical problem, we adopt covariant techniques employed
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in the study of exact charged spin-O particle dynamics [10]
and further developed in the study of radiation reaction effects
[11,12].

These methods allow us to identify and use conservation
laws along with differential equations for the covariant projec-
tions to reduce the coupled equations for particle motion and
spin dynamics to a greatly simplified and analytically solv-
able set. Our solution including spin dynamics is analytical
and transparent, allowing applications to environments where
magnetic moment dynamics could be relevant.

We summarize, discuss, and evaluate the achieved results
in Sec. V.

II. DYNAMICS OF CHARGED PARTICLE
WITH MAGNETIC MOMENT

The covariant and unified (Amperian=Gilbertian) “dipole
charge model” was formulated by us in Ref. [2] and previously
in Refs. [5,6]. The magnetic moment interaction is incorpo-
rated through the “magnetic 4-potential” B*,

B, =F};s" where F; = LeuvapF®?, (1)

with g9123 = +1 a dual tensor to the EM tensor F'*'. The 4-
potential B,, was constructed [2] in such a way that in the co-
moving frame u* = (c, 0), a quantity

dyB - u = cd,F;s" = —p,, - B 2)

gives us the correct potential energy of an elementary mag-
netic moment f,, in an external magnetic field B. We have
introduced the conserved “magnetic dipole charge” d,,: in the
rest frame of the particle, it has the meaning of a proportional-
ity constant between the magnetic moment and particle spin,

cdy =< +a 3)

m

W = Cdps,

where @ = ae/m is proportional to anomalous magnetic mo-
ment a. For electrons, a ~ « /27 = 1.16 x 1073,
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With the 4-potential B*, we can formulate the equation of
motion as

mut = eF* u, +d,G""u,, )

where the dot denotes a derivative with respect to proper time
7. The tensor G, reads

Gy = 0,B, — 9,B,.. (5)

Substituting the definition of the magnetic 4-potential B, from
Eq. (1) and performing the usual algebra to obtain regular
Lorentz force terms, we arrive at

e d,
W= —FRPy, — 2y 9(F*s,)
m m

+d—'”a“(u-F* -5). (6)
m

The last two terms can be simplified using the the covariant
Maxwell equation,

8 F s + 0aFy, + F =0, (7

while considering that the partial derivatives commute with
the u* and s* 4-vectors, since the derivatives act only on the
field quantities. We are left with the equation of motion,

1
@' = —(eF™ = dys - OF "y ®)

The first term on the right-hand side of Eq. (8) is the standard
Lorentz force, while the second is the covariant version of the
Stern-Gerlach force term. Since the magnetic 4-potential B*
is gauge invariant, a d,,B - u term can be added with impunity
to the eA - u term in the Lagrangian action, resulting in the
variational principle origin of Eq. (8), up to subleading higher-
order spin dynamics terms arising from the ds"/dt term in
Euler-Lagrange equations.

Now using Schwinger’s method [13], we construct the spin
dynamics equations, applying the constraints

u-s=0=u-s+u-s=0, )
s> =const = 5§ =0. (10)

The exact solution that is linear in external fields for the
dynamics considered in Eq. (8) is

o € v ~[ v u
st = —F"s, +al F sv——zu-F~s
m c

—d—ms- OF s, (11)
m

The first term assures consistency with the Lorentz force
component, given by Eq. (9), the second term encompasses
anomalous magnetic moment behavior, and the third ensures
consistency with the Stern-Gerlach force term in Eq. (8).
Equation (11) is a “minimal” solution of the Schwinger
consistency requirements, in the sense that additional terms
preserving the conditions (9) and (10) are possible, but not
necessary without additional physical requirements.

III. PARTICLE IN AN INHOMOGENEOUS
MAGNETIC FIELD

We consider a magnetic field pointing along the z axis, B =
B.(z)Z. The initial 4-velocity and 4-spin are oriented along the
z axis as well,

u"(0) = yoc(1, 0,0, Bo), (12)

SM(O) = VOSO(ﬂO» Ov 07 1)7 (13)

where so = 71/2 is positive for spin oriented along the pos-
itive z axis or negative for the opposite case. Initially, there
is no Lorentz force on the particle since it moves parallel to
the magnetic field. In fact, in this configuration, the motion
remains one dimensional (1D) because all products F*"u, and
F®s, start at zero and remain zero because the Stern-Gerlach
terms contribute only to the zeroth and z components. We can
then effectively rewrite Egs. (8) and (11) as

A

W= ——s- 9(F* )u,, (14)
m

. dm

st = ——5-(F)s,. (15)
m

The torque given by Eq. (15) in this case does not change the
direction of the spin; only its velocity dependence is modified
so that u - s = 0 is satisfied. From this argument alone, the
solution for the spin is

s*(t) = ys0(B,0,0, 1), (16)

where y is the relativistic Lorentz factor. The consistent so-
lution for the change of particle velocity B as a function of
position can be derived from either Egs. (14) or (15) as

d_/3 _ dyso 0.8.(2)

- = (17)

dt m y

Without magnetic moment d,, = 0, the particle would pass
through the region of the magnetic field unimpeded, with
constant velocity equal to its initial velocity By. The Stern-
Gerlach force on the magnetic moment accelerates or
decelerates the particle based on the direction of the spin s
and sign of the gradient 9,B,.

As in Ref. [1], we will model the magnetic field as the field
generated by a current loop with a radius L/m. Along the z
axis, the magnetic field has the form

[ B
2 (1 +n2Z2/L2)3/2'

The radial component of the magnetic field B, vanishes on
the axis, although its derivative d, is nonzero, thus satisfying
Maxwell equation V - B =0 (see p. 181 in Ref. [14]). The
derivative d.B, is zero on the axis, ensuring that for perfectly
polarized electrons, the motion remains 1D. The field and its
derivative are plotted in Fig. 1. For electrons, d,, < O since
the direction of their magnetic moment is opposite to spin.
Thus, electrons entering the field from the left with aligned
spin so = +//2 would first be slowed down by the increasing
field and then accelerated back again as the particle leaves.
This is consistent with the textbook Stern-Gerlach force F =
V(u,, - B). The velocity of the particle with the aligned spin
is thus smaller than 8, throughout the motion. The antialigned

(18)
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FIG. 1. Magnetic field and its derivative along the axis of a
current loop with radius L/m. See Eq. (18).

spin so = —/i/2 electron would first be accelerated and then
decelerated so that its velocity is greater than B, throughout
the motion. This means that electrons with aligned spin (+)
would lag behind electrons with antialigned spin (—) when
moving through the same region. We can compare their tra-
jectories with the motion of electrons when the magnetic field
is absent using

Azy = z2(t) — (20 + vot). (19)

The plots for the numerical solutions with maximum magnetic
field strength By = 10 T and radius L/7w = 1 cm are presented
in Fig. 2. The numerical integration was initialized at time
to = 0 for the electron position zo/L = —5.0 and initial ve-
locity vy = 2 x 10® m/s. Qualitatively, the spread in distance
between the two oppositely polarized electron types,

Az = Az_ — Azq ~ (20)

y?

has the same behavior found from the Foldy-Wouthuysen
model tracking the classical limit of quantum magnetic
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FIG. 2. Numerical solutions of both aligned spin up (4) and
antialigned spin down (—) electron motion in the magnetic field
from Fig. 1 with By = 10 T and L/ = 1 cm. The spin is measured
with respect to the positive z axis. Plotted are the differences from
the trajectory of a reference electron moving with constant velocity
vy = 2 x 10® m/s with no magnetic field.

moment dynamics. See discussion in Sec. 3.2 in Ref. [1],
which shows the same 1/y2 dependence unlike the classical
model they used with 1/y behavior. As was also pointed out
in Ref. [1], distinguishing between magnetic moment models
based on this experiment is a challenge. This is because the
difference becomes substantial only for high y factors when
the flight time of the electrons is much shorter and thus the
trajectory differences due to the magnetic moment interaction
decrease. Any experiment would also be limited by how well
the electrons can be polarized along the z axis and by their
displacement from this axis.

IV. CHARGED PARTICLE IN LINEARLY POLARIZED
PLANE-WAVE FIELD

A. Problem definition

In our previous work [4], we presented an analytical so-
lution for neutral particle motion in an external plane-wave
field based on the covariant approach of [11,12]. Here, the
situation is more complicated because the particle is charged
and feels a corresponding Lorentz force. Nevertheless, we will
demonstrate that an analytical solution can still be found.

In the neutral particle case, there is no Lorentz force
and the magnetic moment interaction is a first-order effect.
Previously, we discussed such interactions for hypotheti-
cal neutrino magnetic moments and neutron beam control
[3], which required enormous field intensities to produce a
measurable effect. Electrons have an advantage of having
orders-of-magnitude higher magnetic moment than all other
stable charged particles, neutrons, or the yet-to-be-found mag-
netic moment of neutrinos. Thus, here we specifically look at
electron dynamics allowing the Stern-Gerlach force to affect
their trajectory to a much greater extent than is the case for all
other particles.

The relativistic effects for particles in external laser fields
are controlled by a Lorentz-invariant parameter ag, the so-
called unitless normalized laser amplitude [15], given by

o AL _efr 171020 W/cm?] 2
T e ome? holleV]

where [ is the intensity of the laser and w is its frequency.
This quantity corresponds to the work done by a laser’s elec-
tric field £ over one reduced wavelength X compared to the
particle’s rest mass energy mc?. For ag ~ 1, we enter the rela-
tivistic regime and, for ag > 1, the ultrarelativistic regime.

B. Classical vs quantum dynamics

The classical particle dynamics should arise as a limit
of relativistic quantum theory. The most common approach
to deriving these equations in the classical limit relies on a
Foldy-Wouthuysen transformation [16] of the spin-1/2 Dirac
equation. This is followed by introducing a correspondence
principle for the time evolution of observables such as po-
sition, kinematic momentum, and spin in the Heisenberg
picture [17].

In the situation of strong external EM fields for particles
with gyromagnetic ratio g # 2, we have argued the correct
quantum relativistic description of particle dynamics is not
necessarily based on the Dirac equation. As we pointed out in
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Ref. [18], a more natural approach to the anomalous magnetic
moment is found in the Klein-Gordon-Pauli (KGP) equation
which incorporates a Pauli term, capturing the dynamics of
the magnetic moment, into the Klein-Gordon equation.

This insight is not compatible with the currently most com-
mon approach, i.e., the use of the Dirac-Pauli (DP) equation
where the Dirac equation is supplemented by a Pauli term.
The primary difference between these two approaches is that
while in KGP the entire magnetic moment, and thus spin
dynamics, is described by a single mathematical object, the
DP approach breaks apart the magnetic moment into a natural
g = 2 part embedded in the spinor structure and an anomalous
part described by the Pauli term.

In prior work [18], we presented an argument that the
difference between these two approaches becomes apparent
in strong EM fields, which can be found around magnetars
or in high-Z atoms. However, for the external fields consid-
ered in this work, the difference between the DP and KGP
formulations will not be apparent, consistent with our prior
assumption to neglect subleading spin dynamics effects; see
Sec. II.

The parameter space controlling the classical domain is
described in Ref. [19]. Apart from the normalized laser am-
plitude ay given by Eq. (21), we invoke a Lorentz invariant
parameter,

h(k - p)

e @

ag =
where k* and p" are 4-momenta of the photon and electron,
respectively. In this section, we consider the example of the
electron at rest, a, = fiw/mc* ~ 107°, for 1 eV visible laser
light. From the diagram in Ref. [19], we see that any ag
satisfying In gy < 4 allows us to treat the problem classically.
Later, we consider the example of ay = 0.1, which is squarely
in the classical domain. In this work, we do not consider the
radiation of the electrons due to their motion.

In literature one often sees the Lorentz invariant parameter
x as defined by [20]

eh/lu-F -F -ul £
=————=—=| =a

m?c3 Es|er

=5.9 x 1072E [GeV]4/1[10%° W/cm?], (23)

where E is the electron energy. This parameter represents
the electric field strength £ in units of the critical Schwinger
field in the co-moving frame of the electron, for an electron
E = 1.3 x 10"® V/m. This parameter is a product of the
two previous ones given by Egs. (21) and (22). It has been
shown that quantum effects become non-negligible already for
x 20.1[21].

C. Dynamical equations

The covariant 4-potential for a plane-wave field is given by

AR =P Aof(E), & = %k X, 24)

where the unitless wave 4-vector k* is lightlike and orthog-
onal to the spacelike polarization vector ¢*. We impose the

following constraints which are satisfied by plane waves:
=0, k-e=0, &=-L. (25)

The amplitude of the field is given by Ay, and & denotes its
invariant phase. The oscillatory part of the laser field and the
pulse envelope are then defined by some function given by
f(£) unique to the laser.

Substituting the 4-potential into the EM field tensor yields
A A N
L) — k). (26)
In our notation, prime marks (such as f”) are used to denote
derivatives with respect to the phase &.

The properties of Eq. (25) ensure that the contraction of the
F" tensor with k* is zero. It is also useful to calculate
Apw? A A
D2 @k ) Phags,  (27)

= RAY — UAN =

(s . a)F*[L\) —

since this term appears in both particle and spin dynamics
equations (8) and (11). Notice that contracting Eq. (27) with
both k, and &, yields zero because of the antisymmetric
properties of €*"*#. This means that in the projections with
k" and ", the Stern-Gerlach term does not play a role.

The dynamical equations (8) and (11) in terms of the plane-
wave potential (24) are then

e.Aoa)

= f(é)[k“(s u) — &' (k - u)]

AOdmw f”(é)(k S)eﬂvaﬁuvk &g, (28)

~

—8“12~s)—u“(u~F~s)£2
c

o= wdonf/(S)(l?“s .S

Afj’”‘" F1E)E - ) s Ry (29)
These two equations are coupled through the Stern-Gerlach
interaction. Namely, the quantity of interest is the function
k - s(), which appears in the coupling term. In the following
Sec. IV D, we present an analytical solution for this function
and, in Sec. IV E, we find the analytical solution for 4-velocity
ut (7).

D. Spin precession in k* and e+ projections

As we mentioned above, the coupling through the Stern-
Gerlach force between the equation of motion (28) and spin
dynamics (29) disappears if projected with * and &”. In such
a case, the motion and spin precession are governed by only
the TBMT equations of motion [9]. The situation here is more
complex than the neutral particle case presented in Ref. [4]
as the equations of motion gain additional terms proportional
to particle charge. In the charged case, the projection of 4-
velocity and laser polarization ¢ - u(t) is no longer a constant
of motion. Instead, we obtain, after multiplying Eq. (28) by
ek,

0 WO ®).  (30)
mc

8~L't:E(8~u):

which can be integrated as

e-u(r)=¢-u0)+ %Ao[f(é(f)) — f(&)l. €29
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The projection € - u(t) becomes sensitive to the laser profile
as a function of the laser phase and is proportional to e/m.
Similarly to the neutral particle case, the charged particle’s
projection of wave 4-vector and initial 4-velocity k - u(0) re-
mains a constant of motion, which can be seen by multiplying
Eq. (28) by k*, yielding
A d . A A
k~u:d—(k~u):0, =  k-u=k-u(0). (32)
T
This expression also allows us to find the relationship between
the proper time of the particle and phase of the wave & as

d_&_wd(k

dr ~ cdt )Z_k”(o):'g_

[k - u(0)]t + &.
(33)
Now we turn our attention to the spin dynamics of Eq. (29).
Using the integral of motion given by Eq. (32), we can evalu-

ate the contraction of torque with &, resulting in
fos=—[k-uO))u-F-s)=. (34)
¢

By taking another proper time derivative of this equation
and after some algebra which also uses the projection ¢ - §
(for details, see [4]), we arrive at a second-order differential
equation for the function k-s(t),

s fEG@) @AY, N
= ey * O TS E@E . 69)

We introduce a set of known initial conditions,

k-s(t=0)=k-s(0), (36)
k-5(x =0) = —[k - u(0)][u(0) - F - s<0>]c"—2 37)
which can be used to construct a solution,
k- s(t) = k- s(0)cos [ﬂw(r)}
W (0 A
_ L) |:a_01/,( )} (38)

in which, for simplicity, we write the difference between the
laser amplitude at a given time from the initial conditions as

v(t) = f(E(1)) — f o). (39)

We note that () is also present in Eq. (31). The function
W () is proportional to u - F - s and is defined as

W(@) = k- uO]le - ()] = [e - u()]lk - s(2)].  (40)
Analogously, we can obtain the solution for ¢ - s(7) as

e~s<r>=[e s<0>+’f S(O)ﬂw( )} [ﬂw(r)}
u(©0) m c

ck-s(0)  W()e-u(r) aA
[12-»«0) c k-u(O)} [_‘” )]
41)

Note that the spin projection precession is governed only by
the value of the anomalous magnetic moment, d = ae/m. For
no magnetic anomaly, the precession vanishes,

k-s(t)=k-s(0), (42)

k- s(0) eAy
— 43
w0 m v (7). (43)

Let us finally consider a particle with an initial configuration
(r =0) long before the arrival of the pulse such that the
envelope function is f(&)) = 0. Then, long after the pulse
leaves y(t — 00) = 0, the projections of the wave 4-vector
and polarization on spin should relax back to their original
values,

e-s(t)y=-¢€-s(0 )+

k-s(t = o0) =k -s(0), (44)

g -s(t »> o0) =¢-5(0). 45)

These parameters are only reversibly altered by the presence
of a plane wave, excluding any deviations that would arise if
the particle radiates due to its motion, which is an effect not
considered in this work.

E. Particle 4-velocity u*(t)

Our ultimate goal in discussing this test case of the charged
particle with spin under the influence of a plane wave is to
derive how the particle’s trajectory and motion are altered, es-
pecially by the presence of the anomalous magnetic moment.
Our first step in deriving the 4-velocity directly is to construct
another integral of motion by considering the 4-vector

L = e Pu,(0)kyep, (46)
and projecting the equation of motion (28) along the direction

of L*, yielding

L-u(t)= A f”(E)(k )k - u (O, (47)

where we used the contraction identity

)
e, 5= |82 8 5% , (48)
8688 s,

and the constant of motion (32). Equation (47) can be formally
integrated with initial condition L - #(0) = 0, which is true
due to the antisymmetry of €/**# in Eq. (46). This results in

L-u(r) = —h(t)[k - u(0))>. (49)
The unitless integral A(t) is given by

dnAo® [T+
e = =S8 [ k@ e@E 50

and depends on the known solution for the spin projection
k- s(t) from Eq. (38). For a constant & - s(t) = k- s(0), which
is realized in the case of no magnetic anomaly a@ = 0, this
integral can be evaluated as

dpAow k - 5(0)
me k- u(0)

satisfying the initial condition 2(t = 0) = 0. In this situation,
the function h(t) is oscillatory as it is proportional to the
derivative f'(£(t)). Thus, the value of A(t) for no magnetic
anomaly does not accumulate over the interaction with many
plane-wave cycles.

h(t) = — [f' &) — fGol, (SD
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This function is responsible for irreversible effects in which
the particle is changed after the passage of an EM plane wave,
but only in the situation in which an anomalous magnetic
moment is present. In the next Sec. IV F, we will discuss under
which circumstances the integral for i(t) (50) is cumulative
for a particle initially at rest.

We will look for the 4-velocity by assuming an ansatz,

u (1) = ' (0) + Ci ()" + Co(0)k"* + C3(0)L*.  (52)
The norm of the last 4-vector is manifestly negative,
L* = —[k - u(0)1?, (53)
and therefore this 4-vector is spacelike.
The solution ansatz given by Eq. (52) automatically pre-
serves the projection k - u(0) defined in Eq. (32) as a constant

of motion. The integral of motion for ¢-u(r) given by
Eq. (31) yields

Ci(1) = —[e - u(t) — & - u(0)] = —%Aow(f)- (54)

If we contract the ansatz (52) with the 4-vector L*, we obtain,
for the coefficient C3(7),
Ci(t) = h(7). (55)
Finally, by invoking the condition u?> = u*(0) = ¢?, we get,
for the coefficient C,(1),
1 N
Cy(1) = 5h2(r)k - u(0)

L e Ay(@
m k- u(0)

By substituting all the coefficients back to our ansatz (52), we
obtain a final result,

[s u(0) + lonwr)}. (56)
2m

W (1) = 0) — < Agyr ()6 + %h2(r)12 - u(0)R"
m

E-Aow(f)

m k- u(0)

+ h()e" P u, (0)kyep. (57)

[e u(0) + 15Aow<r>]1€“
2m

It can be easily checked that the solution given by Eq. (57)
solves the dynamical equation given by Eq. (28). Since a first-
order differential equation has only one solution, this is also
a general solution for particle motion. Moreover, this solution
has a very clear limit where, if the magnetic moment charge
d,, vanishes, then h(7) vanishes, removing all effects of spin
on the particle’s motion.

Once we set the magnetic dipole charge d,, to zero, we
effectively uncouple the equations for particle motion and
spin dynamics because the Stern-Gerlach force is no longer
present. In this case, £(7) = 0 and the solution (57) reduces
to

W (1) = 1" (0) — —()e"
m

L A

m k- u(0)

which is the well-known classical solution for a spinless
charged particle in an external plane-wave field [22].

We can easily evaluate the invariant acceleration as a
square of Eq. (28). After contraction of the antisymmetric

[e -u(0) + lEAW(r)}l%“, (58)
2m

tensors using Eq. (48), we get

AZ 2 R
k- uO)P

2
x {ezf/(é)z + d,i%f”(é)z[l? : s(r)]z}. (59)

W(r) = —

This expression depends only on the solution for & - s(t)
defined by Eq. (38) and is manifestly negative as u" is a
spacelike vector. The invariant acceleration is therefore only a
function of alignment and orientation of the spin 4-vector and
the plane-wave 4-vector, which makes physical sense as the
Stern-Gerlach force is sensitive to the alignment of the spin to
the external magnetic field.

Finally, in order to assert uniqueness of solution (57),
we would like to comment on a basis set which could be
constructed in the Minkowski spacetime from the available
4-vectors. A good start would be a selection

u'(0), s*(0),
FP = e Py, (0)kys(0),
G" = €""Pu,(0)eys5(0). (60)

These four 4-vectors are all mutually orthogonal, except for
the product

F -G =g - s(0)][k - s(0)]c* + [& - u(0)][k - u(0)]s>, (61)

which allows us to use Gramm-Schmidt orthogonalization to
define a new 4-vector H* given by
Fi
H“EG“—F-GE, (62)
which together with u*(0), s#(0), and F* forms an orthogonal
basis. This basis set becomes degenerate if either F'* or G is
identically zero, which happens if a quantity

Q = " Plo,u,(0)ey54(0) (63)

is equal to zero. In that case, another 4-vector has to be
included to construct an orthogonal basis set dependent on
the specific situation. In general, we can always construct a
basis composed of a timelike vector u*(0) and three other
orthogonal spacelike vectors.

Once the basis set is defined, all 4-vectors can be expressed
as a linear combination of elements of such basis, including
the time-dependent 4-velocity u*(t). After solving the dif-
ferential equations for the expansion coefficient, we always
recover the solution (57) which we obtained by choosing the
right ansatz.

F. Case of a particle initially at rest

In this section, we will address the situation of a particle
initially at rest, u*(0) = (c, 0, 0, 0), with respect to the labo-
ratory observer. This case is of particular importance because
it gives us an idea of how the particle will react to the external
field in the co-moving frame for situations involving a beam
of charged particles subjected to a plane wave. For motion
where the wave propagation and the particle beam are along
the same axis, the results described here will differ only by the
application of a Lorentz boost. Without loss of generality, we
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X
E W Lorentz force
[ stern-Gerlach force

FIG. 3. Forces acting on an electron initially at rest by a plane
wave with momentum k parallel to the Z axis and polarized along
the % axis; see Eq. (65). Both the Lorentz force (blue) and the
Stern-Gerlach force (green) induce motion along the plane wave in
the k direction. Lorentz force causes additional oscillations along the
polarization X direction. The Stern-Gerlach force causes a cumulative
drift in the third orthogonal § direction—the sign depends on the
initial spin projection so,. Arrow lengths are illustrative; however,
for ay < 1, the transverse forces can dominate as shown.

can choose to orient the coordinate system so that the wave
unit vector is along the z axis, k= Z, and the polarization unit
vector is along the x axis, ¢ = X. The initial spin is oriented
in the arbitrary direction so = (sox, Soy, So;). The associated

4-vectors read

k" =(1,0,0,1), &*=(0,1,0,0),
s*(0) = (0, sox, Soy, S0z)- (64)

Given the general 4-velocity solution from Eq. (57), we will
get, in the special case of a particle initially at rest and plane
wave described by 4-vectors in Eq. (64),

1+ 3[R (0) + a3y (1)]
—apy(t)
he) . (65)
;[P () + ady? ()]

u(t) =c

Here, the terms with agy(t) are the standard solution for the
Lorentz interaction with the plane-wave fields, and the terms
with h(t) correspond to the magnetic moment interaction.
We see that a particle initially at rest will move out into the
direction normal to the plane-wave propagation; we will speak
of such velocity gain as a drift velocity induced by the plane
wave. For a better idea about the geometry of this situation,
see Fig. 3. We will devote the rest of this section to the study
of the forces acting on the particle.

We start by investigating the function 4(7) from Eq. (50),
which governs the magnetic moment interaction. With our
choice of the laser-particle configuration given by Eq. (64),
the function W (0) from Eq. (40) and projection k- s(0) are

W(0) = —csox, (66)

~

k- s(0) = —sp;. 67)

These two constants control the spin projection & - s(t) of
Eq. (38), yielding

k -8(t) = —s0, CcOS |:aTAOI//(r)i| ~+ sox Sin [@W(r)}. (68)

We see that this function is zero and remains zero in the
case of the initial spin oriented only along the y axis, i.e.,
for so, = so; = 0. When that happens, the integral A(t) given
by Eq. (50) is identically zero and there is no Stern-Gerlach
force acting on the particle. The solution for the particle’s
motion then reduces to the classical plane-wave solution for
the spinless electron seen in Eq. (58).

The constants controlling the arguments of the sine and
cosine functions can be rewritten for a charged particle as

5./40 ae.Ao

= = —aay, (69)
C mc

where a is the anomalous magnetic moment and ay =
le].Ag/mc is the unitless normalized laser amplitude defined
earlier in Eq. (21) as the parameter controlling the relativistic
effects.

We will model the plane wave as a sine wave which is
adiabatically switched on as the wave arrives at the particle
position and then adiabatically switched off when the wave
leaves. Throughout the motion, the function f(£) and all its
derivatives are bounded by 1 and the initial condition at T = 0
is

f(&) = (&) = f"(&) = 0. (70)
With this, we have, for ¥ (t) from Eq. (39),
V() = f(&(r)) — f(6o) = f(E(T)). (71)

In this case, the integral for h(7) given by Eq. (50) reads

w [E© _
) = 1+ s [ =succostaaof @)
mc 2

— sou sinfaao f )}/ ()dE, (72)

which we will split in the following analysis into two parts,

h(€) = hi(§) + ma(§), (73)

corresponding to the first and second terms present in the
integrand. For an electron, we typically have aap < 1, in
which case we can evaluate the first part of the integral in
Eq. (72) as

WSoz

(&) = =1 +a)ap—
mc

& +o0(da), (4

and we see that the function /() is, in this case, oscillatory
for the oscillatory wave. The absolute value of this expression
can be bounded by

w|SOZ|
mc?

|h1(&)(aap < 1) < (14 a)ay ~ag x 107°, (75)

where the value is given for the electron’s initial spin aligned
with the z direction so, = £/i/2 and 1 eV laser light. Note
that this term is present even for zero anomalous magnetic
moment a = 0, but since it oscillates around zero, it does not
accumulate over many laser field oscillations.
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— h(§-&a)
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)]

h, (units of 10 a a,)
l\‘) B

0 2 4 6 8 10 12 14
§-¢a

FIG. 4. The magnetically induced drift velocity h,(§) as given
in the lowest order in aay by Eq. (76) for an electron spin in the
x direction. The dotted line depicts the overall trend in velocity
increase.

The second part of the integral for i2(§) given by Eq. (72)
can be evaluated in the lowest order in aaq as

@Sy . _
hy(§) = —aay— / FEf"E)dE + 0(dap).  (76)
mc &
This integral starts accumulating only when the laser particle
acquires a phase £(t,) = &,, with 7, being the time when the
pulse arrives and the interaction is switched on. Neglecting
the time interval of the laser plane-wave ramp-on as short
compared to the duration of the pulse and approximating with

f(&) = sin(§), we have
ZwSOX <E - Sa

hy(§) = aa

L. 2.3
el —Zsng>+0(a ay). (7

The oscillatory part of this expression can again be bounded,
this time by

laa2w|S0x| r l
470 me? 4
where the value is given for electron’s spin along the x di-
rection, so, = +h4/2, and 1 eV laser light. This contribution
is much smaller than the z-direction spin polarization con-
tribution (75) because it linearly depends on the value of
the anomalous magnetic moment a. Again, the oscillations
are around zero and do not contribute over many plane-wave
periods.

The most important part of the function 4, (£) is the linear
term, which keeps accumulating over the interaction with
many laser oscillations. The cumulative part is given by the
expression

|h2($)(aa0 < 1)|osc g

aal x 107°, (78)

[N — Sa
o€ )ato < D = a3 222 5=
mc 2

w80 o(T — Tg)
=aay—5 ———,
mc 2

(79)

where the relationship between the phase and proper time
given by Eq. (33) was used. The plot of the whole function
h, (&) from Eq. (76) is presented in Fig. 4. We clearly see the
overall linear trend.

For an electron and 1 eV laser light, we have

L (T — T,)

hy(t)(aag K 1eym = aag, X 10_6

= maaiN x 107°, (80)
where
N = M 81
2

is the number of plane-wave oscillations the particle interacted
with before leaving the laser beam. This cumulative effect
becomes dominant with respect to other contributions from
Egs. (75) and (78) when

N> =——. (82)

For an electron with a ~ 10~ and with laser amplitude ay =
0.1, this happens after about 65 oscillations. When this condi-
tion is satisfied, the whole function /(7 ) can be approximated
just by the cumulative term (80).

In the following, we will take ay < 1, which our gy = 0.1
roughly satisfies. In such a case, we can approximate the y
factor from the zeroth component of Eq. (65) with

y(r) =1+ [P () + qyi(n)] ~ 1, (83)

where we neglected the 4?(r) and aéwz(r) terms as negligible
in the nonrelativistic limit.

In the same limit, we are going to neglect the drift motion
in the Z direction. The aéiﬁz(r) term corresponds to the inter-
mittent particle acceleration or deceleration by the laser wave
front in the direction of the wave vector. The A2(t) is a similar
effect induced by the magnetic moment, this time cumulative
with a’aiN? dependence. See Fig. 3 for reference.

In the direction of the polarization (%), we have oscillatory
4-velocity caused by particle charge or plane-wave interac-
tion. This behavior has already been described in the literature
in detail [23,24] and the velocity can be bounded by

1Bx] < ao. (84)

Although this velocity can be substantial, it does not accu-
mulate and it does not cause a drift in the trajectory, since
the oscillations in the velocity are around zero for a particle
starting with zero velocity in the X direction.

Turning our attention to the magnetic moment contribution
to 3-velocity, the drift velocity in the ¥ direction can be ap-
proximated as

By (T) ~ h(t) ~ aaé% x 1076, (85)

where only the cumulative contribution given by Eq. (80) is
considered.

The maximum velocity caused by the Lorentz force oscil-
lations given by Eq. (84) and the Stern-Gerlach drift velocity
given by Eq. (85) become comparable after

2 10°
N~ ——
T aa

oscillations. This would require keeping an electron that was
initially at rest within the laser beam for about 20 us, a chal-
lenging laser beam control task.

Due to the cumulative Stern-Gerlach force, the x-polarized
electron drifts out from the typical laser beam radius

~ 10" (86)
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ry = 1.5 um region after about

wry

N~ ~3x10° (87)

10-672caa
oscillations. During this time, it acquires a transverse velocity
in the ¥ direction of approximately 3000 m/s and the corre-
sponding laser pulse length is roughly 1 ns.

The electron bunch is typically randomly polarized along
the X direction, and the spin can have classically any value
from —Fh/2 to h/2. The magnetic moment interaction de-
scribed in this paper would result in a beam splitting along
the ¥ direction.

V. SUMMARY, DISCUSSION, AND CONCLUSIONS

In this work, we have added to the understanding of the
contribution of the magnetic moment to the electron dynamics
in the presence of an external EM plane-wave field in an
analytical fashion. Our classical model differs from the one
used by Wen et al. [1], since we avoid introduction of particle
mass modification. This model of particle motion when spin
is involved was proposed a century ago by Frenkel [25] (for a
reformulation in modern notation, see [26]), and a discussion
of the spin-dependent mass (even in homogeneous fields) is
presented in Ref. [27].

We have considered the two test cases of experimental
relevance, which we can compare with the results of Wen et al.
[1], who were using Frenkel mass modifying Stern-Gerlach
force: (a) the motion of a particle traveling along the axis of a
current loop in Sec. III and (b) the motion of a particle in EM
plane waves in Sec. I'V.

(a) Motion in the presence of a current loop also in our ap-
proach leads to Stern-Gerlach trajectory splitting. We showed
that electrons polarized in the direction of motion are delayed
with respect to electrons with spin against the direction of
motion. Our model qualitatively agrees with the classical limit
of the DP equation. This result is also consistent with the
KGP approach discussed above as the quantum KGP and DP
equations are equivalent in the limit of “weak” external fields.

(b) We have explored the motion of a charged particle in
an external EM plane-wave field. Previously, we presented
an analytical solution for such behavior for neutral particles,
where the magnetic moment interaction is a first-order effect
[4]. In this work, we extend our solution to the case of charged
particles and discuss implications for a particle initially at rest
in the laboratory frame; see Sec. IV F. We focused on the case
of a particle at rest, since this is the situation when a laser
shot hits matter at rest. This case can be extended by means
of a Lorentz transformation to incorporate another class of
experimentally relevant situations of a particle beam moving
parallel to the laser pulse.

We showed that for a particle initially polarized in the
direction of the plane wave’s polarization, the Stern-Gerlach
force pushes the particle in a direction perpendicular to both
wave polarization and propagation. This would allow us to
spatially separate electrons based on their polarization using a
laser.

Any electron beam consisting of particle bunches experi-
ences intrinsic Coulomb repulsion forces in the transversal
direction as well. This collective behavior beyond the dy-

namics of a single particle could overshadow the magnetic
moment effect. However, this effect acts in a radial direction
rather than along a plane. For a dedicated study of the spin
Stern-Gerlach force, unbunched continuous beams are sug-
gested in order to avoid the Coulomb driven beam spreading.

In this work, we have not considered the process of the
emitting of radiation by electrons due to their motion in an
external field. A possibility of the spin contribution to the
electron radiation has been studied theoretically [28] and
demonstrated experimentally [29]. Here we draw attention to
the expression for the invariant acceleration we obtained, see
Eq. (§9): the magnetic moment radiation expressed by accel-
eration squared can be compared to electric dipole radiation.
We see that magnetic acceleration strength acquires an extra
derivative of light wave f’ — f”, and a cofactor w/m. This
suggests (since expression is exact for plane wave and not
for light pulses) that magnetic radiation can be comparable to
electric dipole radiation strength considering particle within
highly singular light pulses.

The domain in which we have explored the Stern-Gerlach
force is governed by classical physics criteria as was discussed
in Sec. IV B. We argued in Ref. [2] that the “magnetic dipole
charge” of a particle is a fundamental property alongside its
rest mass and electric charge. We like to interpret the magnetic
moment in terms of anomaly a = (g — 2)/2 since the effect
that we describe depends on a. For an electron it so happens
that the anomaly a,, the deviation from Bohr magneton, is
small and the magnitude is characterized by a fine structure
constant and originates in the well-known Schwinger QED
diagram. However, this should not be interpreted as if QED is
part of the effects considered here.

That our results have no relation to quantum effects is best
recognized by considering, instead of an electron, a proton,
i.e., a particle with a magnetic moment that is quite different
from (nuclear) Bohr magneton. In fact, we do not expect any
QED effects to appear in the particle dynamics in the soft field
of a continuous beam laser, let alone to show the cumulative
effect we see for the Stern-Gerlach force spin dynamics.

However, it can be anticipated that more intense laser
beams become available and/or that we port the physics
we developed here to crystal channeling of electrons and/or
protons. Therefore, in the future, we would like to extend
the magnetic moment interaction to the quantum domain by
incorporating the Stern-Gerlach potential into a quantum me-
chanical framework. A useful tool on this path would be a
semiclassical treatment which shows great promise to accu-
rately describe the ultrarelativistic motion [30,31].

The dynamical examples that are presented demonstrate
that the electron beam control in some environments requires
the understanding and incorporation of the magnetic moment
interaction due to the Stern-Gerlach-type force in particle
dynamics. Considering specific laser-particle initial configu-
rations, we have shown that the Stern-Gerlach force due to
a plane (laser) wave influences the velocity of the charged
particles in a cumulative way. This differs from the transverse
effect due to the Lorentz force, which primarily causes oscil-
latory motion. One can wonder if this effect can be used to
measure the anomalous magnetic moment of charged parti-
cles. Unlike the spin precession experiments, it would use the
trajectory modification by the Stern-Gerlach force, but a study
of the achievable precision is still required.
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To conclude, in order to fully describe the behavior of
electrons in external fields, the magnetic moment interaction
cannot be neglected. We believe that our results will become
relevant whenever electron beam control requires a full ac-
count of the magnetic moment dynamics.
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