PHYSICAL REVIEW A 103, 052216 (2021)

Quantum versus classical transport of energy in coupled two-level systems
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We consider the problem of energy transport in a chain of coupled quantum systems with the goal of shedding
light on how nonclassical resources can affect transport. We study the cases for which either coherent or
incoherent energy hopping takes place in the chain. Here, incoherent energy hopping is referred to as the
“classical” scenario in allusion to its fully diagonal dynamics in the basis formed by the eigenstates of the
decoupled sites. We focus on the case of a linear chain of two-level sites and find a hopping rate threshold above
which the coherent quantum case is more efficient than the incoherent counterpart. We then link the quantum
hopping rate to the coherence global maximum, which allows us to state that there is a coherence threshold
above which the quantum scenario is more efficient. Next, we consider the integrated coherence generated by
the dynamics and show how it is related to what is known as the invasiveness of a quantum operation. Our results
strongly suggest the significant role played by quantum invasiveness as a resource for quantum transport.
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I. INTRODUCTION

Since the experiments performed by Aspect et al. in the
1980s, which claimed the violation of a Bell inequality us-
ing entangled-polarized photons [1,2], quantum entanglement
have been in the spotlight when nonclassicality is discussed
[3]. As a natural development, in recent years we have
witnessed the emergence of several other nonclassicality in-
dicators beyond entanglement, which are also relevant for the
full understanding of quantum phenomena. In the context of
the present study, we will focus on those which have recently
been systematized under the resource theoretic framework
[4], namely, coherence [5] and quantum invasiveness [6].
Naturally, with the development of quantum technologies, it
has become crucial to investigate how nonclassical resources
are related to the efficiency of a certain task [7-11]. Such
connections would help us to learn how nonclassical resources
could be employed to fully exploit quantum technologies. One
important phenomenon for which these studies seem to be
relevant is energy transport.

Understanding the phenomenon of energy transport in
quantum systems is a very relevant and timely research topic.
Examples of coupled systems where nonclassical phenom-
ena are important to energy transfer are numerous, including
highly complex systems strongly coupled to their environ-
ment, from molecular aggregates in photosynthetic complexes
[12,13] to polymeric samples [14]. Since the seminal work
reporting the experimental observation of quantum dynamics
in the energy transport inside a given photosynthetic com-
plex [15], the number of studies dedicated to the quantum
description of transport has sharply increased [16-26]. Here,
we aim to shed some light on the relationship between the
phenomenon of energy transfer in coupled two-level quantum
systems and resources such as coherence [5] and quantum
invasiveness [6]. To do so, classical scenarios are defined and
modeled in a sound way in terms of the classical operations
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that may allow energy transfer to occur in an incoherent way
between the coupled sites of a chain. In turn, coherent cou-
pling is established between the sites of the chain in quantum
scenarios. By using a coherence quantifier, we first analyze
how our approach allows one to characterize the appearance of
quantum advantage in terms of coherence in a specific model.
Furthermore, we will see that the framework of the resource
theory of invasiveness of quantum operations [6] captures the
classical and quantum scenarios defined above in a natural
way. By finding a quantifier of quantum invasiveness in con-
nection with coherence, we will show how this nonclassical
resource provided by quantum operations can also be related
to the efficiency of quantum transport. It is worth mentioning
that quantum operations as resources for quantum tasks are a
timely and active topic of research [7,27-31].

This paper is organized as follows. First, we present the
transport model and the classical and quantum scenarios in
Sec. II. Then, in Sec. III, we present our results. By exploring
the system dynamics, we study examples where the quantum
advantage in the efficiency of energy transport manifests.
Then, we briefly review the resource theoretic framework of
quantum invasiveness to explore its connection with transport
efficiency by finding a suitable quantifier of this nonclassical
resource of quantum operations. We finish this section with a
presentation of a possible setup where our ideas can be exper-
imentally assessed. In Sec. IV, we present our final remarks.

II. TRANSPORT MODEL

As mentioned before, energy transport is an important
feature of coupled molecular systems, such as photosynthetic
complexes [32-34] and organic photovoltaic cells [35]. Its
essential features are captured by the model depicted in Fig. 1,
which consists of a linear chain of N first-neighbor coupled
two-level systems (sites).

©2021 American Physical Society
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FIG. 1. Transport scenario considered in this work. It is de-
scribed by a linear chain of N coupled two-level systems (sites). The
coupling strength between the sites is given by the parameter A. Each
site is also subjected to a local environment which causes dephasing
and spontaneous emission under rates y and I', respectively. The last
site is incoherently coupled to a sink, where the energy is collected.

The system Hamiltonian H = Hy + H; consists of a free
part (i = 1),

w
Hr = > ;a?, (1)

and a part which accounts for the coupling between first
neighbors in the chain,

N—1
Hy = A Z(oj*aj;l +o;0f). )
j=1

In these equations, o7 is the Pauli z operator in the basis
{lg);. le);} with |e); (|g) ;) being the excited (ground) state of
site j, and w is the energy associated with each two-level sys-
tem. Also, o ;= le) (gl = (aj')T are ladder operators and A is
a coupling constant considered real without loss of generality.

The initial state of the system is fixed by putting one
excitation in first site of the chain and no excitation in all
other sites. To evaluate the transport efficiency, we consider
the Nth site of the chain to be dissipating into an auxiliary
two-level system, known as the sink s. Also, we consider that
each site of the chain is subjected to local dissipation and local
dephasing to account for the presence of noise. We note that
the results presented below turn out to be independent of the
local frequencies. However, the assumption of local noise is
valid only in experimental implementations for which A < w
[36—41]. Later, we will provide an example of a concrete setup
where this condition is fulfilled. In this scenario, the noise in
each site j is described by the Lindblad superoperator,

Lj(p) =TQ0; po;—a;olp—pojo)+ y(af,oaf— p).
(3)

where I and y are the dissipation and dephasing rates, respec-
tively. In turn, the coupling between the Nth site and the sink
is described by

Link(0) = TsQoy 0. po; oy
—a, oyoyolp—po ayoyol), ()

where I’y > 0 is the rate of energy transferred to the sink.
Therefore, the system dynamics is described by

N

—ilH, p1+ Lanc(p) + Y_ L;(p). (5)

j=1

8,0_
ar

We now define a central concept in our work which is the
classical transport scenario. As no coherence in the basis of

Hp is to be created, we replace the coherent coupling H; by
an incoherent term described by a Lindblad operator with the
“same intensity” of Hj, i.e., the same coupling strength A. This
is described by

Lc(p) = AMLr(p) + LL(p)], (6)
where
N-1
Lr(p) = ) (2070, 07,07
j=1
—01110;'0170;1,0 — pajllajﬂ'o;aﬁ_]), @)
and

N-1
Li(p) =) 0} 0}, 07 0]
j=1

+ —ata— + ot
—0;440,0;0,,p—po;0;0; O’j+1). ®)
Physically, this mechanism corresponds to thermally activated
energy migration between nearest neighbors [42]. Then, the
classical transport scenario dynamics is the result of the mas-
ter equation,

N

el

~EC = —ilHr. pcl + Le(pe) + Lan(pe) + Y L1(po)
j=1

€))

where the subscript in p¢ reminds us that the system state
remains classical for all times, i.e., a convex sum of the eigen-
states of Hr. From this point on, we shall use the subscripts
Q and C to distinguish between quantities computed using the
quantum or classical scenarios.

It is important to emphasize that we are not stating that
Eq. (9) alone is the classical equation of motion used to
describe situations like electron transfers between donor and
acceptor chemical species. In such complex situations, classi-
cal and quantum methods must take into account features like
the vibrational degrees of motion and polarization properties
of the solvent, for instance. When calling Eq. (9) the classical
dynamics, we only meant that it is not able to create coherence
or state superpositions in the basis of Hr, in contrast to the role
played by H; in Eq. (5).

To investigate and compare the transport efficiency in both
scenarios, we study Pp(f) and Pc(t), which are the sink
population at time ¢ as evaluated with Eq. (5) and Eq. (9),
respectively. Their asymptotic values will be called efficiency
per se and will be denoted np and ne [12],

o = Po(00) = Tim Tr(pgle), el
e = Pe(00) = lim Trlpcle)s (ell. (10)

First, we want to investigate the quantum case in light of the
coherence it manifests. The coherence of a quantum state p,
in a certain basis, will be quantified by the relative entropy of
coherence [5], defined as

C(p) = S(pdiag) — S(p), (an
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FIG. 2. Plots of Pc(t) (black-dot-dashed line), Py(t) (blue-
dashed line), and C(pp) (red-solid line) as a function of time. For
all plots we fixed I' = 0.5 a.u and y = 0.25 a.u. while the values of
A are shown in each panel. The horizontal dotted line represents the
maximum coherence when A = Agc. The insets show the dynamics
of Pc(t) and Py(t) for very short times.

where S(p) = Tr[—pIn(p)] is the von Neumann entropy and
Pdiag denotes the diagonal state obtained from p by erasing all
the off-diagonal elements.

III. RESULTS

To illustrate the framework presented in the previous sec-
tion, we start with numerical simulations of Egs. (5) and (9)
using N = 3 plus one sink. Later on, we increase N while
keeping the scenario of small controllable chains. For simplic-
ity, we keep I'y = 1.0 a.u. (arbitrary units) unless otherwise
stated.

A. System dynamics and efficiency

We first consider the system dynamics and the amount
of time required to observe any quantum advantage, i.e., for
the sink population Py(¢) to surpass Pc(z), whenever this is
possible. In Fig. 2, we present the time evolution of the sink
populations Py(¢) and Pc(t), as well as the coherence C(pg),
for some values of the intersite coupling strength A. The top
panel on the left shows the interesting case where the quantum
and classical scenarios lead to the same efficiency. We call
Agc the value of A for which this happens. The other panels
depict cases corresponding to A > Agc, for which quantum
advantage can be observed. It is remarkable that the time
required for Py(t) to surpass Pc(t) seems to decrease as the
global maximum of C(pp)(¢) increases. To further explore
this feature, let us call this timespan the intersection time t.
Its behavior as a function of the maximum coherence attained
in the dynamics for values A > Apc is shown in Fig. 3. We
can see that T decreases as this maximum coherence increases.
Moreover, in Fig. 4, it is shown that the maximum coherence
monotonically increases with A. By considering both Figs. 3
and 4, it is clear that Ayc is unique when the parameters y,
I, T'y are fixed. This means that some quantum advantage will
always be observed when A > Aoc. On the other hand, for A <
Aoc we never see any quantum advantage, i.e., Pp(t) < Pe(t)
for all times. It is also worth pointing out that these results
imply in a coherence threshold achieved when A = Agc, above
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FIG. 3. Intersection time 7 as a function of the maximum coher-
ence. The coupling X varied from A = 0.85 (a.u.) to A = 3.0 (a.u.).

which the quantum scenario is more efficient. For the param-
eters considered in this simulation, one finds Apc ~ 0.84 with
a coherence threshold about 0.22. Interestingly, this is much
smaller than the maximum value achieved by Eq. (11) in the
case N = 3, which is In(8) ~ 2.07 [5].

In Fig. 5, we plot the difference between the transport
efficiencies in the quantum and classical scenarios, 1o — 7c,
as a function of the coupling strength A, for different values
of dephasing rate y and for a fixed local dissipation rate I.
We can see that the quantum scenario is not always more
efficient than its classical counterpart, and that there is a par-
ticular value for the coupling A for which ny = nc, previously
defined as Ayc which, in turn, depends on the dephasing rate.

This dependence is depicted in Fig. 6, where Ac is seen to
increase with y to compensate for the fact that noise depletes
nonclassical features such as quantum coherence. In the same
plot, it is also possible to see the role played by local dissi-
pation. It is interesting to see that its effect is to shift Agc to
higher values for a fixed dephasing rate y. Once again this is
explained by the fact that more noise means less coherence, in
general. Finally, it is notable that the dependence of Ay with
y is basically linear.

B. Quantum invasiveness

The previous discussion addresses the importance of co-
herence in the dynamics when the energy transport is caused
by a Hamiltonian term such as H; in Eq. (2). In particular,

o 0.6}
g 0.5
S
<= 0.4}
QO
g03 Ao
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Z0.
= 0.1}
005 1 2 3 4 5

FIG. 4. Maximum coherence attained during the dynamics as a
function of the coupling strength A.
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FIG. 5. Difference between the quantum and classical efficien-
cies as a function of the site-to-site coupling strength, and for
different dephasing rates y = 0.25 a.u. (red solid line), y = 0.5 a.u.
(blue-dashed line), y = 0.75 a.u. (orange-dotted line), y = 1.0 a.u.
(Black-dot-dashed line) and I' = 0.5 a.u.

based on our the previous analyses, one may wonder how
the total coherence might impact the efficiency of quantum
transport. This question led us to investigate the role played
by the integrated coherence [43,44],

1(®)) = / C(p)dt, 12)

in the efficiency of the energy migration through the chain
to the sink. In Eq. (12), d>§0 is the time dependent map or
operation associated with the quantum master Eq. (5), when
the system evolves from an initial time instant 7, to an arbitrary
instant ¢. For our purposes, we setfp = 0 and t — o0.

In Fig. 7, we show a parametric plot of the difference
between the quantum and classical efficiencies as a function
of the integrated coherence, I(®g°), for different site-to-site
couplings A. To generate those plots, the dephasing rate was
varied from y = 0 a.u. to y = 2.0 a.u. It is remarkable that,
for fixed A, the quantity ny — nc increases with 1(®Pg°), indi-
cating that the integrated coherence helps quantum transport.

In a first moment, we can think of Eq. (12) as just the
area under the curve of coherence, produced by the map @7 .
Nonetheless, we will now show that this quantity is also a

0.0 05 1.0 1.5 20
v (a.u.)

FIG. 6. Coupling Ayc as a function of y for different val-
ues of dissipation I'y I'=0.5 au. (red solid line), I' =0.75
a.u.(blue-dashed line), I' = 1.0 a.u. (orange-dotted line), ' = 1.5
a.u. (Black-dot-dashed line)
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FIG. 7. Parametric plot showing the difference between the
quantum and classical efficiencies as a function of the invasiveness
quantifier [Eq. (12)]. To generate the curves, the dephasing rate pa-
rameter y was varied in the interval [0,2]. We have used A = 0.5 a.u.
(red solid line), A = 1.0 a.u. (blue-dashed line), A = 1.5 a.u. (orange-
dotted line), A = 3.0 a.u. (Black-dot-dashed line), and I" = 0.5 a.u.

nonclassicality quantifier when the quantum operation <I>§0 is
seen as a dynamical resource [6]. This resource is essentially
different from coherence, which is a property of a given quan-
tum state, not a map.

Let us start with the definition of a quantum invasive op-
eration [6,45,46]—a general quantum operation, represented
by a quantum map, is considered to be invasive whenever it
disturbs the physical system in a “nonclassical way.” To be
more precise, everything starts with the definition of classical
states as the eigenstates of a chosen observable O, as well
as their convex combinations. The reasoning here is that,
with respect to O measurements, one can assert a classical
ontological interpretation to its eigenstates and their convex
combinations, as the latter only represent lack of classical
information. Thus, the classical states are called free states.
In turn, free operations must necessarily map a classical state
into another classical state, as it is the case with incoherent
completely positive trace preserving maps [5]. A quantifier
I of the invasiveness of an operation ® with respect to an
observable O is expected to satisfy conditions such as pos-
itivity, i.e., I(®) > 0 for any physical operation ® while
I(®Ppree) = 0 for any free operation ®p.. Additionally, other
formal properties such as monotonicity under free operations
and convexity are demanded—see Refs. [4,6] for more details.

In our problem, we start by defining the eigenstates of the
Hamiltonian Hr in Eq. (1) and their convex combinations as
the classical states, i.e., O = Hp. In turn, the free operations
are those leading classical states into classical states, which,
therefore, cannot generate coherence. In our case, this is repre-
sented by the map (®] )c associated with the master equation
describing the classical scenario in Eq. (9). Consequently,
C [(<I>§0 )c(pc)] = 0 for any time interval [#y, ¢]. Therefore, we
have that the propagation of a single excitation governed by
Eq. (9) will remain classical, which means an incoherent mix-
ture of the eigenstates of Hr, and the integrated coherence will
be zero. On the other hand, for a classical initial state—as it is
the case here—any degree of coherence generated in the quan-
tum scenario will be a result of the quantum invasiveness of
d>;0. This guarantee that conditions of positivity, monotonic-
ity under the composition with free operations (®j )c, and
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FIG. 8. Inall panels, I' = 0.5 a.u. is fixed. The top panels show the efficiencies 7y as a function of the dephasing rate y for different values
of site-to-site coupling A. The bottom panels show 7y — n¢ as a function of the invasiveness quantifier /(Pg°) for different values of A. We
have used A = 0.5 a.u. (red solid line), . = 1.0 a.u. (blue-dashed line), A = 1.5 a.u. (orange-dotted line), A = 3.0 a.u. (Black-dot-dashed line).
The number of two-level sites in the chain, MV, is indicated for each column of panels.

convexity are fulfilled. Such a reasoning leads us to recognize
1(®] ) as a quantifier of quantum invasiveness in the transport
scenarios described by Eq. (5), where H; plays an important
role.

As a conclusion, quantum invasiveness, here quantified by
the integrated coherence generated in the whole dynamics, is
a resource that can benefit quantum transport as illustrated
in Fig. 7. Previously, quantum invasiveness has also find ap-
plications in the inference of nonclassicality from nonlinear
electronic spectroscopy [47], an important experimental tech-
nique in the study of energy transfer pathways in complex
molecular aggregates [48].

Finally, we now investigate the effect of the number N of
sites on small chains. These small chains are within the grasp
of current technology as we discuss later on this work. For
each column of panels in Fig. 8, we have a chain with N
two-level sites, for N = 2, 3, 4, 5. In the top panels, we show
the quantum efficiency 7y as a function of y for different
values of A. In general, by increasing the number of sites, the
quantum efficiency decreases. This can be understood as the
effect of the number of local dissipators which, according to
our model, also increases with N. They drag out the energy
of the chain before it reaches the Nth site. For the incoher-
ent and continuous injection of energy, with no local energy
dissipators, such dependence does not naturally manifest for
the coherent hopping mechanism in Eq. (2). It can be restored
by using, for example, local dephasing [49-51]. Similarly, n¢
decreases with y, for fixed X in the top panels. The classical
efficiency n¢ (not shown) does not depend on y, and an
increase in N also depletes the classical efficiency.

Despite the fact that individually 7y and n¢ diminish with
N, their difference nyp — n¢ or the quantum advantage be-
comes more pronounced as N increases. This can be seen from
the bottom panels of Fig. 8 when we take a curve with fixed A
and observe it being displaced upwards with N (panels from
left to right). The main feature contained in the bottom panels
of Fig. 8, however, is the monotonic behavior of ny — ¢ with
the quantum invasiveness /(®g°). Once again, for a fixed A,

no — nc increases with the quantum invasiveness for all chain
sizes considered. This persistent behavior further suggests the
value of quantum invasiveness for quantum transport.

C. Feasibility

Finally, to illustrate the application of our framework in
a physical scenario, we now present a simple example of an
experimentally accessible setup involving coupled two-level
systems with engineered site-to-site coupling constants. In
Ref. [52], an experimental scheme to couple two supercon-
ducting gatemon qubits is presented. The physical mechanism
promoting the indirect coupling between the qubits is basi-
cally that of a quantum bus implemented with the help of a
detuned bosonic mode coupled to the qubits [53]. In the exper-
iment, an epitaxial semiconductor-superconductor nanowire is
used as a field-effect switch to tune a superconducting cavity.
Since the effective coupling between the two qubits is in-
versely proportional the qubit-cavity detuning [53], this ability
to tune the cavity allowed for induced coupling strengths rang-
ing from O to about 25 MHz. The direct capacitive coupling
between the qubits was estimated to be less than 1 MHz. The
qubit frequencies of the resonant qubits were around 5 GHz,
which truly justifies the local bath assumption used in our
approach.

We used the range of parameters reported in Ref. [52]
to produce the curves shown in Fig. 9 for the case N = 2.
Interestingly, the transition from classical to quantum in terms
of the values assumed by 19 — ¢, as well as its monotonic
behavior with quantum invasiveness, are all within the avail-
able range of coupling strengths as reported in Ref. [52].

IV. CONCLUSION

To summarize, we focused on the relationship between
nonclassical resources, such as coherence and quantum in-
vasiveness, and transport efficiency in coupled quantum
systems. By defining the set of classical states as the
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FIG. 9. Parametric plot with accessible experimental parameters
[52] showing the difference between the quantum and classical effi-
ciencies as a function of the invasiveness quantifier [Eq. (12)]. Here,
the units of /(®Pg°) are in nanoseconds (ns). To generate the curves,
the dephasing rate y was varied from y = 0 MHz to y = 20 MHz.
We kept I' = 5.0 MHz and I'y = 10.0 MHz. We have used A = 2.5
MHz (red solid line), A = 5.0 MHz. (blue-dashed line), A = 10.0
MHz, (orange-dotted line), A = 15.0 MHz (black-dot-dashed line).

eigenstates of the decoupled system Hamiltonian and their
convex combinations, as well as classical transport operations,
we constructed a classical transport scenario. This is used as
a benchmark in the comparison with the quantum scenario,
where coherent couplings between the sites of the chain are
allowed. To illustrate our framework, we focused on a linear
chain of two-level systems. By using the relative entropy of
coherence as a coherence quantifier, we investigated how this
resource is associated with an advantage in terms of trans-
port efficiency, when compared to the classical scenario. We

then focused on the role played by the integrated coherence,
which we showed to be a quantifier of the invasiveness of
the quantum operation associated with the quantum dynamics.
Then, we were able to investigate how quantum invasiveness
positively impacts the efficiency of quantum transport.

It is important to remark that there are other interest-
ing approaches to characterize nonclassicality in quantum
transport. For example, in Ref. [54] nonclassicality is charac-
terized by the violation of the Legget-Garg inequality and in
Refs. [55,56] by the distance with respect to a set of classical
states. It is also worthwhile to remark that symmetric linear
chains such as the ones studied here are not prone to de-
phasing assisted transport [12,13,16]. Given the importance of
transport for quantum technologies and biological molecular
systems presenting quantum coherence [12-26,32-35,57], we
believe that our approach, which characterizes nonclassicality
based on a resource theory for quantum operations [6], will
help to shed some light on the implications of quantumness
for transport.

ACKNOWLEDGMENTS

ILM. and S.V.M. acknowledge financial support from
the Brazilian agency Coordenacdo de Aperfeigoamento de
Pessoal de Nivel Superior (CAPES). FL.S. acknowledges
partial support from the Brazilian National Institute of
Science and Technology of Quantum Information (Grant
No. CNPg-INCT-1Q 465469/2014-0), CNPq (Grant No.
305723/2020-0), and CAPES/PrInt Process  No.
88881.310346,/2018-01.

[1] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460
(1981).
[2] A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91
(1982).
[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).
[4] B. Coecke, T. Fritz, and R. W. Spekkens, Info. Comput. 250, 59
(2016).
[5] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.
113, 140401 (2014).
[6] S. V. Moreira and M. T. Cunha, Phys. Rev. A 99, 022124
(2019).
[7] Y. Liu and X. Yuan, Phys. Rev. Research 2, 012035(R) (2020).
[8] P. Kurashvili, L. Chotorlishvili, K. A. Kouzakov, and A. L
Studenikin, Eur. Phys. J. C 81, 323 (2021).
[9] V. Cimini, I. Gianani, M. Sbroscia, J. Sperling, and M. Barbieri,
Phys. Rev. Research 1, 033020 (2019).
[10] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,
041003 (2017).
[11] G. Adesso, T. R. Bromley, and M. Cianciaruso, J. Phys. A:
Math. Theor. 49, 473001 (2016).
[12] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019
(2008).
[13] P. Rebentrost, M. Mohseni, L. Kassal, S. Lloyd, and A. Aspuru-
Guzik, New J. Phys. 11, 033003 (2009).

[14] E. Collini and G. D. Scholes, Science 323, 369 (2009).

[15] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal,
Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature
(London) 446, 782 (2007).

[16] E. Zerah-Harush and Y. Dubi, J. Phys. Chem. Lett. 9, 1689
(2018).

[17] J. Schachenmayer, C. Genes, E. Tignone, and G. Pupillo, Phys.
Rev. Lett. 114, 196403 (2015).

[18] F. L. Semido, K. Furuya, and G. J. Milburn, New J. Phys. 12,
083033 (2010).

[19] J. Feist and F. J. Garcia-Vidal, Phys. Rev. Lett. 114, 196402
(2015).

[20] D. J. Gorman, B. Hemmerling, E. Megidish, S. A. Moeller, P.
Schindler, M. Sarovar, and H. Haeffner, Phys. Rev. X 8, 011038
(2018).

[21] A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler,
S. F. Huelga, and M. B. Plenio, Nat. Phys. 9, 113
(2013).

[22] P. Rebentrost, R. Chakraborty, and A. Aspuru-Guzik, J. Chem.
Phys. 131, 184102 (2009).

[23] S. Jang, S. Hoyer, G. Fleming, and K. B. Whaley, Phys. Rev.
Lett. 113, 188102 (2014).

[24] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel,
B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos, Phys. Rev.
Lett. 122, 050501 (2019).

052216-6


https://doi.org/10.1103/PhysRevLett.47.460
https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevA.99.022124
https://doi.org/10.1103/PhysRevResearch.2.012035
https://doi.org/10.1140/epjc/s10052-021-09039-2
https://doi.org/10.1103/PhysRevResearch.1.033020
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1088/1751-8113/49/47/473001
https://doi.org/10.1088/1367-2630/10/11/113019
https://doi.org/10.1088/1367-2630/11/3/033003
https://doi.org/10.1126/science.1164016
https://doi.org/10.1038/nature05678
https://doi.org/10.1021/acs.jpclett.7b03306
https://doi.org/10.1103/PhysRevLett.114.196403
https://doi.org/10.1088/1367-2630/12/8/083033
https://doi.org/10.1103/PhysRevLett.114.196402
https://doi.org/10.1103/PhysRevX.8.011038
https://doi.org/10.1038/nphys2515
https://doi.org/10.1063/1.3259838
https://doi.org/10.1103/PhysRevLett.113.188102
https://doi.org/10.1103/PhysRevLett.122.050501

QUANTUM VERSUS CLASSICAL TRANSPORT OF ENERGY ...

PHYSICAL REVIEW A 103, 052216 (2021)

[25] S. V. Moreira, B. Marques, R. R. Paiva, L. S. Cruz, D. O.
Soares-Pinto, and F. L. Semido, Phys. Rev. A 101, 012123
(2020).

[26] P-Y. Yang and J. Cao, J. Phys. Chem. Lett. 11, 7204 (2021).

[27] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, Phys. Rev.
Lett. 122, 190405 (2019).

[28] M. Masini, T. Theurer, and M. B. Plenio, Phys. Rev. A 103,
042426 (2021).

[29] G. Saxena, E. Chitambar, and G. Gour, Phys. Rev. Research 2,
023298 (2020).

[30] R. Takagi, K. Wang, and M. Hayashi, Phys. Rev. Lett. 124,
120502 (2020).

[31] L. Li, K. Bu, and Z.-W. Liu, Phys. Rev. A 101, 022335 (2020).

[32] B.-X. Wang, M.-J. Tao, Q. Ai et al., npj Quantum Inf. 4, 52
(2018).

[33] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio,
J. Chem. Phys. 131, 105106 (2009).

[34] S. Tomassi and I. Kassal, J. Phys. Chem. Lett. 11, 2348 (2020).

[35] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).

[36] J. O. Gonzalez, L. A. Correa, G. Nocerino, J. P. Palao, D.
Alonso, and G. Adesso, Open Syst. Inf. Dyn. 24, 1740010
(2017).

[37] P. P. Hofer, M. Perarnau-Llobet, L. M. Miranda, G. Haack, R.
Silva, J. B. Brask, and N. Brunner, New J. Phys. 19, 123037
(2017).

[38] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro, A. J.
Roncaglia, and M. Antezza, New J. Phys. 20, 113024 (2018).

[39] M. T. Mitchison and M. B. Plenio, New J. Phys. 20, 033005
(2018).

[40] C. McConnella and A. Nazirb, J. Chem. Phys. 151, 054104
(2019).

[41] J. P. Santos and F. L. Semido, Phys. Rev. A 89, 022128 (2014).

[42] A. Vaziri and M. B. Plenio, New J. Phys. 12, 085001 (2010).

[43] F. Shahbeigi and S. J. Akhtarshenas, Phys. Rev. A 98, 042313
(2018).

[44] J. Naikoo and S. Banerjee, Quant. Inf. Process. 19, 29 (2020).

[45] K. Wang, G. C. Knee, X. Zhan, Z. Bian, J. Li, and P. Xue, Phys.
Rev. A 95, 032122 (2017).

[46] G. C. Knee, K. Kakuyanagi, M-.C. Yeh, Y. Matsuzaki, H. Toida,
H. Yamaguchi, A. J. Leggett, and W. J. Munro, Nat. Commun.
7, 13253 (2016).

[47] S. V. Moreira and F. L. Semido, Quant. Sci. Technol. 4, 03LT01
(2019).

[48] Y.-C. Cheng, G. S. Engel, and G. R. Fleming, Chem. Phys. 341,
285 (2007).

[49] D. Manzano, C. Chuang, and J. Cao, New J. Phys. 18, 043044
(2016).

[50] D. Manzano, M. Tiersch, A. Asadian, and H. J. Briegel, Phys.
Rev. E 86, 061118 (2012).

[51] A. Asadian, D. Manzano, M. Tiersch, and H. J. Briegel, Phys.
Rev. E 87, 012109 (2013).

[52] L. Casparis, N. J. Pearson, A. Kringhgj, T. W. Larsen, F.
Kuemmeth, J. Nygard, P. Krogstrup, K. D. Petersson, and C. M.
Marcus, Phys. Rev. B 99, 085434 (2019).

[53] S.-B. Zheng and G.-C. Guo, Phys. Rev. Lett. 85, 2392
(2000).

[54] N. Lambert, C. Emary, Y.-N. Chen, and F. Nori, Phys. Rev. Lett.
105, 176801 (2010).

[55] P. Nalbach, D. Braun, and M. Thorwart, Phys. Rev. E 84,
041926 (2011).

[56] M. Qin, H. Z. Shen, X. L. Zhao, and X. X. Yi, Phys. Rev. E 90,
042140 (2014).

[57] R. Vieira and G. Rigolin, Phys. Lett. A 384, 126536 (2020);
A. A. Cifuentes and F. L. Semido, Phys. Rev. A 95, 062302
(2017); C. M. Barros Hito, M. B. E. Silva, A. R. Bosco de
Magalhdes, Phys. Lett. A 382, 8§94 (2018); L. Schuab, E.
Pereira, and G. T. Landi, Phys. Rev. E 94, 042122 (2016); F.
Nicacio and F. L. Semido, Phys. Rev. A 94, 012327 (2016);
A. A. Cifuentes and F. L. Semido, J. Phys. B: At. Mol. Opt.
Phys. 47, 225503 (2014).

052216-7


https://doi.org/10.1103/PhysRevA.101.012123
https://doi.org/10.1021/acs.jpclett.0c01648
https://doi.org/10.1103/PhysRevLett.122.190405
https://doi.org/10.1103/PhysRevA.103.042426
https://doi.org/10.1103/PhysRevResearch.2.023298
https://doi.org/10.1103/PhysRevLett.124.120502
https://doi.org/10.1103/PhysRevA.101.022335
https://doi.org/10.1038/s41534-018-0102-2
https://doi.org/10.1063/1.3223548
https://doi.org/10.1021/acs.jpclett.9b03490
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1088/1367-2630/aa9f70
https://doi.org/10.1063/1.5095838
https://doi.org/10.1103/PhysRevA.89.022128
https://doi.org/10.1088/1367-2630/12/8/085001
https://doi.org/10.1103/PhysRevA.98.042313
https://doi.org/10.1007/s11128-019-2533-x
https://doi.org/10.1103/PhysRevA.95.032122
https://doi.org/10.1038/ncomms13253
https://doi.org/10.1088/2058-9565/ab1714
https://doi.org/10.1016/j.chemphys.2007.07.049
https://doi.org/10.1088/1367-2630/18/4/043044
https://doi.org/10.1103/PhysRevE.86.061118
https://doi.org/10.1103/PhysRevE.87.012109
https://doi.org/10.1103/PhysRevB.99.085434
https://doi.org/10.1103/PhysRevLett.85.2392
https://doi.org/10.1103/PhysRevLett.105.176801
https://doi.org/10.1103/PhysRevE.84.041926
https://doi.org/10.1103/PhysRevE.90.042140
https://doi.org/10.1016/j.physleta.2020.126536
https://doi.org/10.1103/PhysRevA.95.062302
https://doi.org/10.1016/j.physleta.2018.01.033
https://doi.org/10.1103/PhysRevE.94.042122
https://doi.org/10.1103/PhysRevA.94.012327
https://doi.org/10.1088/0953-4075/47/22/225503

