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Influence of squeezing on the weak-to-strong measurement transition
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In this work, we study the measurement transition for a coherent squeezed pointer state through a transition
factor � that involves a system-pointer coupling by using an arbitrary measured observable A. In addition, we
show that the shift in the pointer’s position and momentum establishes a relationship with a new value defined as
the transition value, which generalizes the weak value as well as the conditional expectation value. Furthermore,
a strategy is introduced to achieve different measurement regimes by just adjusting the r and φξ parameters of the
coherent squeezed pointer state, opening an interesting way to test quantum mechanics foundations. Our scheme
has been theoretically applied in a trapped ion illuminated by a bichromatic laser beam, with a high potential to
be implemented in future experimental setups.
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I. INTRODUCTION

Measurements in quantum mechanics have always been
an essential challenge to understand a variety of physical
phenomena [1–3]. A simple model which describes strong
quantum measurements was developed by von Neumann [4]
and completely generalized by Ozawa some years later [5].
This model involves the coupling between two quantum sys-
tems, namely the measured system and the pointer or meter,
controlled by a coupling constant.

From this model, Aharanov and co-workers [6] proposed
to extend the strong measurement to a weak regime with the
help of the time-symmetry theory of quantum mechanics [7].
By considering a Gaussian pointer state as well as preselection
and postselection of the system state, through the readout of
the pointer, we get the weak value

Aw = 〈F |A|I〉
〈F |I〉 , (1)

where |I〉 and |F 〉 are the preselected and postselected state,
respectively. A is the measured observable with eigenvalues
a j and eigenstates |a j〉. A useful physical phenomena can
be observed and amplified if a suitable postselected state is
chosen to be almost orthogonal to the preselected state. Such
an interesting quantum effect is the so-called weak value
amplification (WVA) and it has several applications as a tech-
nique to amplify very small signals for observing and studying
quantum physical effects like the spin Hall effect [8], the
deflection of a light beam [9], velocity displacement [10], and
temperature shift [11], among others [12–16]. Nevertheless,
having an anormalous weak value means a small postselection
probability Ppost = |〈F |I〉|2.
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An important feature of the weak value is that it can be a
complex number in contrast to the expectation value

As = 〈F |A|F 〉
〈F |F 〉 , (2)

which coincides with the weak value when the state |I〉 is
parallel to the state |F 〉 or if |F 〉 is an eigenstate of A. The
physical interpretation of this property was derived by Josza
[17], where the shifts of the pointer have a direct relation with
the imaginary and real part of this value in the weak regime.

Since the measurement problem is still under study, a
fundamental research on the foundations of quantum mechan-
ics is related to the weak to strong measurement transition
[18,19]. First, Zhu et al. [20] studied the quantum mea-
surement transition by considering extreme conditions of the
system-pointer coupling. Specifically, the transition from the
weakest to the strongest regime was found, for all cases, and
in particular for the two extremes by using a Gaussian wave
packet as pointer. These results allowed us to extend Josza’s
theorem for the strong regime by relating the displacements
in the measurement pointer with the conditional expectation
value [Aharonov-Bergmann-Lebowitz (ABL) rule] [7,21]

Ac =
∑

j

a j
|〈F |a j〉〈a j |I〉|2∑
k |〈F |ak〉〈ak|I〉|2

. (3)

Here, the conditional concept arises from the postselection
process. Next, Ban in Ref. [22] provided the conditional aver-
age as a combination of the weak value and the conditional
expectation value to find a general average value. Finally,
the measurement transition was experimentally investigated
by modulating a global transition factor � = gt/X0, where
the time of interaction t between the system and the pointer,
the coupling constant g, and the width of an initial Gaussian
pointer X0 can be modified [23]. To test it, a simple experi-
mental setup involving a single trapped 40Ca+ ion irradiated
with a bichromatic beam light was used [24].
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On the other hand, Turek and his collaborators explored
advantages of implementing nonclassical pointer states the-
oretically in the measurement transition for a measured
observable satisfying the property A2 = I [25]. Particularly,
squeezed states have been successfully generated via motional
states of a 40Ca+ ion in a trap through different methods.
Among them, Kienzler et al. demonstrated the generation of
squeezing produced experimentally by reservoir engineering
[26]. More recently, Drechsler and co-workers introduced a
new method to squeeze the motion of the trapped ion by
placing the ion inside a time-varying potential controlled by
the phase of an optical lattice [27].

Inspired by current theoretical and experimental work,
we generalize Josza’s theorem and find the general position
and momentum average of a coherent squeezed pointer state
[28,29], when measuring an arbitrary observable A, expressed
in terms of a newly defined transition value AT . We demon-
strated that (AT )�→0 = Aw and (AT )�→∞ = Ac, unifying the
definitions of the weak value and the conditional expectation
value without considering a mixture of them. We also show
that one can go from the weak to the strong regime by varying
the squeezing parameters and fixing the global transition fac-
tor, as an alternative way to study the measurement transition.
To carry out our proposal, we apply all these ideas to the
40Ca+ ion stored inside the Paul trap interacting with two laser
fields at specific frequencies.

Our work is organized as follows. In Sec. II we extend the
idea originally proposed by Josza for coherent squeezed states
and in Sec. III we determine the shifts of the pointer for ex-
treme regimes by controlling the global transition factor. Next,
in Sec. IV we analyze the effect of the squeezing parameters
on the weak to strong measurement transition. After that, in
Sec. V our strategy is applied to the case of a trapped ion in a
bichromatic field. Finally, we discuss the impact of our results
and a possible experimental application.

II. GENERALIZED JOSZA’S THEOREM

Let us start by considering the standard formalism of quan-
tum measurement [4], where the system interacts with the
pointer through the following coupling Hamiltonian:

H = gA ⊗ P, (4)

with A and P being the measured observable and the mo-
mentum of the pointer, respectively. Here, P can be written
in terms of annihilation and creation operators as follows:

P = h̄

2X0
i(a† − a), (5)

where X0 = √
h̄/2mν is the size of the Gaussian ground state

that depends on the mass of the pointer m and the frequency
ν with which the system oscillates. Note that the Hamiltonian
contains a coupling constant g responsible for the interaction
between both systems.

We now assume an initial system-pointer state of the form

|�in〉 = |I〉 ⊗ |φin〉, (6)

where

|I〉 =
∑

j

α j |a j〉, |φin〉 = |α, ξ 〉 (7)

are the initial states of the system and the pointer, respectively.
We take as initial pointer the coherent squeezed state [28,29]

|α, ξ 〉 = D(α)S(ξ )|0〉. (8)

Here,

D(α) = exp(αa† − α∗a), S(ξ ) = exp
(

1
2ξ ∗a2 − 1

2ξa†2)
(9)

are the displacement operator and the squeezing opera-
tor [30,31], respectively, with α = |α| exp(iφα ) and ξ =
r exp(iφξ ). Then the joint system evolves by means of the
Hamiltonian [see Eq. (4)] as

|�evol〉 = exp

(
− i

h̄

∫ t

0
H (τ ) dτ

)
|�in〉

=
∑

j

α j exp
(
− i

h̄
ga jtP

)
|a j〉 ⊗ D(α)S(ξ )|0〉

=
∑

j

α j |a j〉 ⊗ D

(
�

2
a j

)
D(α)S(ξ )|0〉, (10)

where � = gt/X0 is the transition measurement factor. By
using the following property [31]:

D(y)D(z) = exp
(

1
2 yz∗ − 1

2 y∗z
)
D(y + z), (11)

Equation (10) can be rewritten as

|�evol〉 =
∑

j

α jexp

(
−i

�

2
a j Im(α)

)
|a j〉

⊗ D

(
�

2
a j + α

)
S(ξ )|0〉

=
∑

j

α jexp

(
−i

�

2
a j Im(α)

)
|a j〉 ⊗

∣∣∣∣�2 a j + α, ξ

〉
.

(12)

Finally, by postselecting the system state |F 〉 = ∑
k βk |ak〉,

we get a final pointer state

|φfin〉 = 〈F |
∑

j

α jexp

(
−i

�

2
a j Im(α)

)
|a j〉 ⊗

∣∣∣∣�2 a j + α, ξ

〉

=
∑

j

α jβ
∗
j exp

(
−i

�

2
a j Im(α)

)∣∣∣∣�2 a j + α, ξ

〉
. (13)

On the other hand, we define the transition value as

AT =
〈
φfin

∣∣φA
fin

〉
〈φfin|φfin〉 , (14)

with ∣∣φA
fin

〉 = 〈F |A|�evol〉. (15)

This general value is introduced to extend the values that
represent the extreme regimes of the quantum measurement
transition. In particular, for the coherent squeezed pointer

052215-2



INFLUENCE OF SQUEEZING ON THE WEAK-TO-STRONG … PHYSICAL REVIEW A 103, 052215 (2021)

state, the transition value takes the form

AT =
∑

j,k α jβ
∗
j α

∗
k βka j exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]∑
j,k α jβ

∗
j α

∗
k βk exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2] , (16)

where μ = cosh r and ν = sinh r exp(iφξ ). Here, we used the property in Eq. (A1).
From Eq. (13), it is straightforward to show that the shift in the pointer’s position after postselection is

δx = 〈φfin|X |φfin〉
〈φfin|φfin〉 − 〈φin|X |φin〉

= gt

2

∑
j,k α jβ

∗
j α

∗
k βk (ak + a j ) exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]∑
j,k α jβ

∗
j α

∗
k βk exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]

−igtμ Im(ν)

∑
j,k α jβ

∗
j α

∗
k βk (ak − a j ) exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]∑
j,k α jβ

∗
j α

∗
k βk exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]
= gt Re(AT ) − 2gtμ Im(ν) Im(AT ). (17)

Following a similar procedure, the momentum displacement in the pointer results in

δp = 〈φfin|P|φfin〉
〈φfin|φfin〉 − 〈φin|P|φin〉

= i
gt

h̄
Var(P)in

∑
j,k α jβ

∗
j α

∗
k βk (ak − a j ) exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]∑
j,k α jβ

∗
j α

∗
k βk exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]

= 2gt

h̄
Var(P)in Im(AT ), (18)

where Var(P)in = h̄2|μ + ν|2/4X 2
0 is the initial variance in the pointer’s momentum. In order to find the expressions shown in

Eqs. (17) and (18), we used the following property [see Eq. (A5)]:〈
�

2
ak + α, ξ

∣∣∣∣a
∣∣∣∣�2 a j + α, ξ

〉
= �

2
a jμ(μ + ν) − �

2
akν(μ + ν∗) + α. (19)

It is important to highlight the fact that both displacements are related to the transition factor � that determines the limits in the
quantum measurement. In the following section, we analyze their behavior in the weak and strong regime in detail.

III. LIMITING VALUES OF THE POINTER’S SHIFT

In an effort to generalize Josza’s theorem [17], we obtain the weak value and the conditional expectation value of the
observable A. By applying Eqs. (1) and (3), it is simple to show that

Aw =
∑

j α jβ
∗
j a j∑

j α jβ
∗
j a j

, Ac =
∑

j |a jβ
∗
j |2a j∑

j |a jβ
∗
j |2

. (20)

Without considering the parameters associated to squeezing, the measurement regime is determined by the strength of the
dimensionless factor � [23]. Thus we can control the measurement regime by means of the parameters g, t , and X0. Taking the
weak limit, � → 0, and Eq. (16), the transition value takes the form

(AT )�→0 =
∑

j,k α jβ
∗
j α

∗
k βka j∑

j,k α jβ
∗
j α

∗
k βk

=
∑

j α jβ
∗
j a j∑

j α jβ
∗
j

= Aw. (21)

In contrast to the weak regime, in the strong regime, the parameter � → ∞. Under this condition, the transition value
becomes

(AT )�→∞ = lim
�→∞

∑
j |α jβ

∗
j |2a j + ∑

j 	=k α jβ
∗
j α

∗
k βka j exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]∑
j |α jβ

∗
j |2 + ∑

j 	=k α jβ
∗
j α

∗
k βk exp[−i� Im(α)(a j − ak )] exp

[−�2

8 (a j − ak )2|μ + ν|2]

=
∑

j |α jβ
∗
j |2a j∑

j |α jβ
∗
j |2

= Ac. (22)
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Clearly, we observe that the weak value and the conditional
expectation value establish a relationship with the weak and
strong regime, respectively. This correspondence reveals the
nature of the quantum measurement. For the weak regime, the
shifts in the pointer’s position and momentum [see Eqs. (17)
and (18)] behave as

(δx)�→0 = gt Re(Aw ) − 2gtμ Im(ν) Im(Aw ),

(δp)�→0 = 2gt

h̄
Var(P)in Im(Aw ), (23)

while in the strong regime

(δx)�→∞ = gt Re(Ac), (δp)�→∞ = 0. (24)

Since the conditional expectation value is real, the displace-
ment in the pointer’s momentum vanishes.

For the coherent pointer state (r = 0), both displacements
in the weak regime are connected with the real and imagi-
nary part of the weak value, recovering the results obtained
by Josza [17]. Similarly, in the strong regime, the real and
imaginary part of the conditional expectation value is in accor-
dance with the shift of the pointer’s position and momentum,
which give us an extension of Josza’s theorem. In particular,
Zhu et al. [20] reported this important result for the pointer’s
ground state (α = 0).

Until now, we have only considered the transition factor �.
In order to analyze the effects of squeezing on the pointer’s
displacements, we will study how squeezing parameters influ-
ence the measurement transition.

IV. EFFECT OF THE SQUEEZING ON THE
MEASUREMENT TRANSITION

Evidently, the transition value behaves as the weak value
or the conditional expectation value modulated by the terms
on the exponential function in Eq. (16). By setting the
transition factor � and varying the squeezing parameters
(α, r, and φξ ), it is possible to reach the measurement transi-
tion. Specifically, this transition depends on the terms Im(α)
and |μ + ν|2. Hence, by minimizing and maximizing these
quantities, we achieve our goal. Clearly, the first term is easier
to optimize than the other one because it is linear in α. The
second term can be rewritten as

|μ + ν|2 = |cosh r + sinh r exp(iφξ )|2
= cosh (2r) + sinh (2r) cos (φξ ), (25)

which is dependent on the parameters r and φξ . More specifi-
cally,

|μ + ν|2 =
{

exp(−2r), if φξ = (2n + 1)π,
1
2 [exp(2r)(1 + cos φξ ) + exp(−2r)(1 − cos φξ )], if φξ 	= (2n + 1)π,

(26)

where n = 0, 1, 2, . . .. Now, by taking the first and the second
case in the above equation as well as r → ∞, we achieve the
minimization and maximization, respectively. Both optimiza-
tions are shown in Fig. 1.

It should be noted that the displacements in the pointer [see
Eqs. (17) and (18)] reduce to

δx = gt Re(Aw ), δp = 2gt

h̄
Var(P)in Im(Aw ) (27)

by means of the minimization. Furthermore, by choosing the
optimization angle φξ = 2nπ and r → ∞, the pointer’s shifts
become

δx = gt Re(Ac), δp = 0. (28)

Thus the form of Josza’s theorem is recovered for the weak
and strong regime for a suitable selection of squeezing pa-
rameters.

V. TRAPPED ION INTERACTING WITH A BICHROMATIC
LASER LIGHT

We will illustrate the results obtained in the latter sec-
tions following the experimental setup shown in [24]. In
this work, they studied a single trapped 40Ca+ ion inside
the blade-shaped linear Paul trap, which allows it to oscil-
late along the axial direction with a frequency ν = 2π ×
1.41 MHz. The ion is considered as a two level system by tak-
ing into account the Zeeman sublevels S1/2 (mJ = −1/2) and
D5/2 (mJ = 1/2) that are identified as internal states |↓〉 and
|↑〉, respectively. The transition between them is controlled

by a narrow-linewidth laser at 729 nm. A bichromatic laser
light interacting resonantly with the system causes the red and
blue sidebands of the internal transition, which are driven by
an acousto-optic modulator (see Fig. 2). In the Lamb-Dicke
regime [32], this system is coupled to a pointer through the
Hamiltonian [33,34]

H = η
(σx sin φ+ + σy cos φ+)

⊗
(

X0 sin φ−P − h̄

2X0
cos φ−X

)
, (29)

where 
 = 2π × 19 kHz is the Rabi frequency, η = 0.08 is
the Lamb-Dicke parameter [32], and φ± = 1

2 (φred ± φblue ) are
phases related to the red sideband laser phase φred and the blue
sideband laser phase φblue [35]. Here, X = X0(a + a†) and
P = h̄

2X0
i(a† − a) are the position and momentum operator for

the pointer in terms of the annihilation and creation opera-
tors. The motional state of the ion is characterized by a size
X0 = √

h̄/(2mν) = 9.47 nm. In particular, by setting φ+ = π
4

and φ− = π
2 , the interaction Hamiltonian takes the form

H = γ A ⊗ P, (30)

where γ = η
X0, A = 1√
2
(σx + σy), and the operator P acts

on a coherent squeezed state.
A strategy to obtain the limits in the quantum measure-

ment is only modulating the transition factor � [23] for fixed
squeezing parameters. In order to study the measurement
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FIG. 1. Amount |μ + ν|2 as a function of the squeezing parame-
ters r and φξ .

transition, we consider the preselected and postselected state
as

|I〉 = 1√
2

[
|a+〉 + exp

(
i
π

2

)
|a−〉

]
(31)

and

|F 〉 = cos θ |↑〉 + exp

(
i
π

4

)
sin θ |↓〉, (32)

where |a±〉 = 1√
2
[|↑〉 ± exp(i π

4 )|↓〉] are the eigenstates of A
whose eigenvalues are ±1, respectively. From Eqs. (17) and
(18), it is possible to obtain the displacements of the pointer
after the postselection process by varying the transition factor

FIG. 2. Configuration of a trapped 40Ca+ ion with two internal
states S1/2 and D5/2 whose transition frequency is ω0. The ion moves
along the axial direction with a trapping frequency ν and interacts
resonantly with a bichromatic laser of frequencies ωred = ω0 − ν and
ωblue = ω0 + ν. A third sublevel P1/2 with lifetime 7.1 ns is used to
test the internal levels via resonance fluorescence.

FIG. 3. Measurement transition of the pointer’s shifts in the posi-
tion (a) and the momentum (b) for a coherent squeezed initial pointer
state after the postselection of the system state by modifying the
transition factor �. Here, we took r = 0.1, φξ = π

6 , and Im α = 0.2.
The vertical dashed lines correspond to the eigenstate projections.

�. For our system in study, this factor reduces to � = η
t ,
which is proportional to the interaction time t . Hence, by
changing this parameter, we reach extreme regimes of the
measurement. As shown in Fig. 3, there is a change in the
shifts of the pointer from the weak regime (� = 0.05) to the
strong regime (� = 1.8), where we used parameters com-
patible with the experimental work in Ref. [23]. It should
be emphasized that the form of Josza’s theorem [17] is not
regained in the spatial displacement for a coherent squeezed
pointer state. However, it can be recovered by taking r = 0
(coherent pointer state) or φξ = nπ (n = 0, 1, 2, . . .). As we
have seen in Sec. IV, by choosing r → ∞ and φξ = (2n +
1)π , the displacements in the pointer depend on the real
and imaginary part of the weak value. Similarly, if we take
φξ = 2nπ , the conditional expectation value is related to the
pointer’s shifts (see Fig. 4).

Clearly, the measurement transition can be achieved by
only tuning the squeezing parameters r and φξ . Now, we show
how these parameters influence in a dramatic way the spatial
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FIG. 4. Recovering Josza’s theorem by setting specific angles
of squeezing φξ for the pointer’s shifts in the position (a) and the
momentum (b) by varying the squeezing parameter r. Here, we chose
Im α = 0.01 and � = 0.9.

displacement by choosing the following states:

|I〉 = 1√
2

(|a+〉 − |a−〉), |F 〉 = cos ϑ |a+〉 + sin ϑ |a−〉.

(33)

By regarding these states and Im α = 0, the transition value
is real, implying a change only in the pointer’s position [see
Eqs. (17) and (18)]. Figure 5 shows our strategy to cause the
measurement transition by maintaining the global transition
factor and adjusting the squeezing parameters. For the system
in study, we took a fixed global transition factor � = 0.9
considering a specific interaction time, which is consistent
with the experimental scheme shown previously. Notice that,
for a large squeezing parameter r, the figure shows that the
pointer’s displacement goes from the conditional expectation
value to the weak value, in sharp peaks, for φξ = (2n + 1)π .

The trapped ion system and generation of squeezed
phonons was chosen motivated by the experiment reported in
Refs. [23,26,27]. although our calculations are applicable to
other systems as well [36,37].

FIG. 5. Useful strategy to obtain the measurement transition
from the weak to the strong regime by setting the following posts-
election angles: (a) ϑ = π

8 and (b) ϑ = 5π

16 . Here, we took Im α = 0
and � = 0.9.

VI. CONCLUSIONS

In summary, we find the pointer’s shifts in the position and
momentum for a coherent squeezed pointer state by using
an arbitrary measured observable A. These expressions are
linked to the real and imaginary part of the transition value
which is defined in this work. By modulating the transition
factor �, expressions for different measurement regimes are
obtained that generalize the coherent and ground pointer state
[20,25]. Besides, by choosing certain squeezing angles φξ and
taking the parameter r → ∞, Josza’s results are recovered
[17]. We also present a strategy to reach the weak and strong
regime by only modifying the squeezing parameters r and
φξ . All these ideas have been inspired by the experiments on
calcium ion [23,26,27]. The results in Fig. 5 show that, by
varying the squeezing phase, one can achieve a fast transi-
tion from the strong to weak regime. In the case in which
we set the parameters to have weak value amplification, we
are seeing a fast transition from no amplification (χ = 1) to
a possible maximal amplification (χ → ±∞) under special
conditions of the postselection angle, as illustrated in Fig. 6,
which may lead to some interesting physical applications such
as an amplification regulator of signals where small signals,
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FIG. 6. Method to control amplification by leading the quan-
tum measurement to the weak regime [r → ∞ and φξ = (2n + 1)π ]
and modifying the postselection angle ϑ from ϑ = 3π/4, where it
does not produce amplification to reaching a maximum at ϑ ≈ π/4
(WVA). The dimensionless gain factor χ = Xfin/Xin is the ratio be-
tween the pointer’s position after the postselection process Xf =
〈φfin|X |φfin〉/〈φfin|φfin〉 and the initial position of the pointer Xin =
〈φin|X |φin〉. This factor describes quantitatively the amplification of
the position in the pointer caused by the measurement. Here, we
selected � = 0.9 and α = 1.

equivalent to small displacements of the pointer, are detected
by a measuring device and they can be amplified by choosing
r → ∞ and φξ = (2n + 1)π . Then, by tuning the postselec-
tion angle, the maximal amplification (WVA) is achieved
when 〈F |I〉 → 0. This method allows the amplification of
signals by only using squeezing parameters of the motion
state, as well as a suitable postselection process.
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APPENDIX: PROOF OF SOME USEFUL EXPRESSIONS

(1) The inner product between coherent squeezed
states is

〈y, ξ |z, ξ 〉 = exp[i Im(y∗z)] exp
(− 1

2 |δ|2). (A1)

Proof. First, using the definition of the coherent squeezed state
[see Eq. (8)] and the property in Eq. (11) results in

〈y, ξ |z, ξ 〉 = 〈0|S†(ξ )D†(y)D(z)S(ξ )|0〉
= 〈0|S†(ξ )D(−y)D(z)S(ξ )|0〉
= exp[i Im(y∗z)]〈0|S†(ξ )D(z − y)S(ξ )|0〉. (A2)

Then by using the properties [38]

D(b)S(ξ ) = S(ξ )D(c), (A3)

where c = μb + νb∗ and 〈b|c〉 = exp[− 1
2 (|b|2 +

|c|2 − 2b∗c)], Eq. (A2) reduces to

〈y, ξ |z, ξ 〉 = exp[i Im(y∗z)]〈0|D(δ)|0〉
= exp[i Im(y∗z)]〈0|δ〉
= exp[i Im(y∗z)] exp

(− 1
2 |δ|2), (A4)

with δ = μ(z − y) + ν(z∗ − y∗). Here μ = cosh r and ν =
exp(iφξ ) sinh r.

(2) An application of the inner product between coherent
squeezed states is

〈y, ξ |a|z, ξ 〉 = [μ2z − |ν|2y + μν(z∗ − y∗)]〈y, ξ |z, ξ 〉. (A5)

Here, a is the annihilation operator.
Proof. First, we write the annihilation operator in terms of

a generalized annihilation operator A [38] as

a = μA − νA†. (A6)

Then

〈y, ξ |a|z, ξ 〉 = μ〈y, ξ |A|z, ξ 〉 − ν〈y, ξ |A†|z, ξ 〉. (A7)

Finally, with the help of the following property [38]:

A|b, ξ 〉 = c |b, ξ 〉, (A8)

where c = μb + νb∗, Eq. (A7) becomes

〈y, ξ |a|z, ξ 〉 = [μ2z − |ν|2y + μν(z∗ − y∗)]〈y, ξ |z, ξ 〉. (A9)
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