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Measurement backaction control of quantum dissipation in a nonlinear
cavity-based Duffing oscillator
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Quantum backaction from weak measurement affects the behavior of quantum systems. We consider a
nonlinear driven Duffing oscillator system implementation in a nonlinear optical cavity, and we show that the
choice of phase setting φ for a laser used in measurement can change the dissipation for the spread variables
of the quantum state. This can considerably increase the energy absorbed via the energy channel of the spread
variables and enhance quantum effects. This suggests novel applications to quantum control, as we demonstrate,
including an example in which the energy in the spread variables allows for a dynamical tunneling between
energetically separated dynamical stead-states.
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I. INTRODUCTION

We are at the early stages of a “second quantum revolution”
[1] with rapid advances exploiting desirable and potentially
powerful properties such as entanglement and coherence that
promise even more than what the last 100 years have provided
by way of semiconductor technology, lasers, and chemical and
medical imaging such as in spectroscopy and NMR. Quantum
properties are, however, sensitive to interactions with an envi-
ronment (which leads to decoherence) and in “state collapse”
during measurement, both considered troubling for engineer-
ing purposes. However, advances in theory and experiment
have led us to understand that it is possible to account for
changes induced both by the environment and by the mea-
surement backaction, and that these quantum effects can be
exploited in a manner not possible in classical control [2,3].
If the measurement is adaptive (where system parameters are
changed in response to measurement results), these effects can
be used to improve phase estimation [4], in quantum state
preparation [5], and to improve quantum measurements [6];
other work uses measurement for entanglement generation
[7], state stabilization [8], and other innovative techniques
relevant to quantum foundations and engineering. Recently,
proposals have been made for observing such phenomena in
nonlinear nanoelectromechanical systems (NEMS) oscillators
[9] being driven by a sinusoidal external source and subject to
environmental decoherence and dissipation. Newer proposals
consider a situation in which the optical signal reflecting off
the NEMS oscillator is interfered with a local oscillator (LO)
laser in what is termed a homodyne measurement, described
more below. In particular, the “angle” φ of a phase setting for
the LO laser used in measurement was shown to considerably
affect the dynamics of a bistable nonlinear quantum oscillator,
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allowing φ settings to induce or suppress quantum trajectory
chaos and dynamical complexity as measured by a quantum
Lyapunov exponent [10].

In this paper, we extend this work further. First, we propose
a different experimental implementation for such a continu-
ously monitored driven nonlinear quantum oscillator, in this
case based on the same homodyne measurement but with
the nonlinear oscillator realized in a nonlinear optical cav-
ity. We show how parameter choices for this system could
reproduce the appropriate trajectory equations for a quantum
Duffing oscillator model. Next, we present an analysis of the
measurement effect of φ within a semiclassical approxima-
tion valid for sufficiently strong coupling to the environment.
In this regime, due to dissipative localization, the quantum
state trajectory dynamics can be accurately approximated by
a Gaussian quantum wave packet. In the absence of dis-
sipation (and measurement), a representation [11] exists of
the semiclassical system as two oscillators with an effective
Hamiltonian H (x, p, χ,�) = p2/2 + �2/2 + U (x, χ ) such
that the dynamics evolve in a two-dimensional potential
U (x, χ ). One of these oscillators is associated with the quan-
tum centroid (x, p) and the other with the spread variables
(χ,�)—defined more carefully below—of the quantum state.
As we show, the effect of the environment and measurement
backaction can be understood as generalized dissipation �F
and noise �N for these coupled oscillators, where both forces
have a complicated φ dependence. Interestingly, �N couples
exclusively to the (x, p) oscillator, while the φ-dependent
part of �F couples only to the (χ,�) oscillator. The noise
force typically does not alter quantum trajectories signifi-
cantly. The generalized dissipation force, however, provides
a novel opportunity to use the backaction effect of changing
the measurement angle to control wave-function dynamics via
the behavior of the quantum spread variables. In particular,
the semiclassical analysis clarifies how changing φ affects
the nonclassical contributions to the Hamiltonian, which
changes global system dynamics and energy. These changes
in the system energy map onto changes in accessible U (x, χ )
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regions, which explains the observed φ-dependent dynamics
previously reported [10,12,13], all induced entirely by mea-
surement backaction.

Based on this intuition, we deduce adaptive-choice φ pro-
tocols that extremize specific energy channels for dissipation.
Our simulation results show that compared to fixed-φ re-
sponses, these adaptive protocols achieve dramatic (many
orders of magnitude) increases in the energy range of the χ,�

spread oscillator, thus considerably changing the coupled os-
cillator dynamics compared to systems of the same size not
subject to measurement feedback control. We show how novel
dynamics can be induced in this manner, including an example
where the quantum spread variables absorb energy that is
instrumental in the system transitioning between two ener-
getically separated dynamical steady-states. Using the size of
the nonclassical contributions to the overall system energy as
a measure of nonclassicality, we see that—remarkably—the
postprocessing φ-dependence proposed here can alter envi-
ronmental effects enough to be substantially more important
than length scale in determining the degree of nonclassicality.
Thus, this novel mechanism using backaction via the spread
variables offers a promising avenue for exploring novel quan-
tum phenomena.

In Sec. II we present the background theory and experi-
mental proposal. In Sec. III we introduce the semiclassical
coupled oscillator. We examine the energy dynamics analyt-
ically and show how the φ-dependence may be understood
via its effects on dissipation into the environment from the
quantum system. We also propose adaptive control protocols.
In Sec. IV we present examples of the various interesting
results we have seen in our simulations, focusing on a novel
transition from chaotic to regular behavior involving abrupt
energy exchange between the classical and spread variables.
Finally, we close in Sec. V with a short discussion of these
results.

II. CONTINUOUSLY MONITORED DUFFING
OSCILLATOR IN A NONLINEAR OPTICAL CAVITY

The dynamical system we study is the open quantum Duff-
ing oscillator, a paradigmatic model to study quantum to
classical transition for chaotic systems [14]. The Newtonian
limit is a unit mass in a double-well potential with dissipation
�, sinusoidal driving amplitude g, frequency ω, and dimen-
sionless length scale β,

ẍ + 2�ẋ + β2x3 − x = g

β
cos(�t ). (1)

This renders time dimensionless as well. The quantum version
is described using a quantum trajectory formalism adapted to
include measurements where the stochastic evolution of a sin-
gle pure quantum system |ψ〉 under continuous measurement
is considered. We start with the Hamiltonian H = HD + HR

[10,12,13,15–18],

Ĥ = 1

2
P̂2 + β2

4
Q̂4 − 1

2
Q̂2 + �

2
(Q̂P̂ + P̂Q̂) − g

β
Q̂ cos(�t ),

(2)

where we continue to work with dimensionless variables in-
cluding time, which effectively sets h̄ = 1 as well. We note

that the Hamiltonian above is the sum Ĥ = ĤR + ĤD, where

ĤR = �

2

(
Q̂P̂ + P̂Q̂

)
(3)

is added to the quantized version ĤD of the classical Hamilto-
nian

HD = p2

2
− x2

2
+ β2x4

4
+ gx

β
cos(�t ) (4)

to account for the fact that without this term, and with the cho-
sen Lindblad operator below, the quantum dissipation would
be symmetric in Q̂ and P̂. This is contrary to the classical
limit Eq. (1) where dissipation appears only via the momen-
tum variable; adding this term yields the correct classical
limit. That limit itself is formally obtained for the open quan-
tum Duffing system by changing the dimensionless effective
Planck’s constant β [15–18] where increasing β describes
smaller systems and β → 0 is the classical limit. Thus, by
varying β, we can describe the system’s transition from clas-
sical to quantum length scales.

Environmental effects enter via a coupling of the sys-
tem with a zero-temperature Markovian bath corresponding
to â = (Q̂ + iP̂)/

√
2 in the decoherence superoperator for-

malism [19,20], as shown in Eq. (5) below. This dissipative
quantum channel is weakly and continuously monitored, such
that the system state evolves conditioned on the measurement
outcomes via the Ito stochastic equation [21,22]

|dψ〉 =
(

− i

h̄
Ĥ + 〈L̂†〉L̂ − L̂†L̂

2
− 〈L̂†〉〈L̂〉

2

)
|ψ〉dt

+ (L̂ − 〈L̂〉)|ψ〉dξ . (5)

Here, L̂ = √
2�â represents the dissipative environment in-

teracting with strength �, and Ĥ = ĤD + ĤR. The random or
noisy dynamics induced by the measurement is represented
as the complex-valued Wiener process, dξ , with the mean
M over realizations constrained as M(dξ ) = 0, M(dξ dξ ) =
u, M(dξ dξ ∗) = dt . Further, as noted in [14], since the vari-
ance of stochastic variables such as M(dξ )2 − (dξ )2 is of
order dt2, it and similar higher-order terms vanish, allowing
us to also write [21] dξ dξ ∗ = dt and dξ dξ = u dt .

Here the complex parameter u = |u|e−2iφ must satisfy the
condition |u| � 1 [21,22] and is related to properties of the
measurement setup, as we discuss in detail below. The situa-
tion u = 0 corresponds to the unmonitored environment. We
focus in our work on the properties of pure state evolution
of conditioned trajectories (also discussed more carefully be-
low), and hence we assume an idealized, lossless detection,
which ensures that the quantum state remains pure in spite
of measurement, and Eq. (5) applies [21]. It has previously
been shown [9] that nanoelectromechanical systems are well
described by this model, and current experiments are within
the range of the parameters used; however, it is difficult to set
up an appropriate weak-measurement scheme to achieve the
quantum backaction effects being considered.

In this context, optical nonlinear oscillators may prove
more viable. Among the previously proposed optical nonlin-
ear oscillators, the nonlinearity is introduced through the Kerr
effect induced by the third-order electric susceptibility χ (3)

[23–26]. Here we adapt this to propose a nonlinear optical
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FIG. 1. The schematic for the nonlinear cavity-based quantum Duffing oscillator. (a) The nonlinear cavity consists of a nonlinear medium
(NL) with susceptibilities χ (1) < 0 and χ (3) > 0 driven by a coherent laser (red) and a degenerate parametric amplifier (teal, DPA). (b) The
DPA is pumped by a classical coherent field. (c) Leakage from the nonlinear cavity is mixed with a local oscillator (LO), coherent with the
classical coherent field in (b), to perform a homodyne detection.

cavity-based quantum Duffing oscillator with a double-well
potential through a combination of χ (1) and χ (3) suscepti-
bilities. The schematic of the proposed system is shown in
Fig. 1(a) based on the setup employed in Ref. [23] to in-
vestigate the emergence of quantum chaos. A coherent laser
drives an optical cavity through one mirror and there is light
leaking out of the mirror on the other side of the cavity. Inside
the cavity, the laser drives the interaction of the light field
with a nonlinear medium (NL) and a degenerate parametric
amplifier (DPA) pumped by a classical light field. Here we
assume the cavity to be operating as a single-mode cavity. In
the following, we discuss how certain choices of parameters in
the model could reproduce the Hamiltonian in Eq. (2) and the
measurement scheme which corresponds to the SSE in Eq. (5).

In Ref. [23], the nonlinear oscillator in Fig. 1(a) is treated
as a Kerr medium with a fourth-order interaction that has the
Hamiltonian HKerr = â†â†ââ under the rotating wave approxi-
mation (RWA) with the possibility for a bistable potential. To
create a double-well potential similar to the Duffing oscillator
model, we rederive the Hamiltonian for this specific nonlinear
system by following the same approach in Ref. [24]. For a
light field interacting with a nonlinear dielectric medium, the
polarization P of the medium has a nonlinear response that can
be described by expanding up to the third order in the electric
field E and the susceptibility tensors as

P = χ (1) · E + χ (2) · EE + χ (3) · EEE , (6)

where χ (n) is the (n + 1)th rank susceptibility tensor, and ·
represents the appropriate tensor contraction. Through the
standard vector potential of electromagnetic fields, the Hamil-
tonian of this field in the nonlinear medium can be obtained
as

H =:
∫

d3r

{ |B|2
2ε0

+ E

[
(ε0 + χ (1) )

2
E + χ (2)

3
EE

+ χ (3)

4
EEE

]}
:, (7)

where we have taken the contribution of the magnetic field as
a constant since the dielectric medium only interacts with the
electric field, and :: denotes normal ordering. To quantize the
Hamiltonian, we proceed as usual and substitute the electric
field with the normal-mode expanded field operator as

E =
(

h̄ω

2ε0

)1/2

(âu(r) + â†u∗(r)), (8)

where u(r) is the transverse mode of the field, and ω is the
frequency of the light field. We choose u(r) such that u(r) =
u∗(r), and we constrain it to satisfy∫

[1 + χ (1)(r)/ε0]|u(r)|2d3r = −1, (9)

where we have assumed χ (1) to be negative. Then if we ne-
glect the term in χ (2) due to a lack of phase-matching, we
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arrive at the Hamiltonian

ĤKerr = −h̄χ ′(â + â†)2 + h̄2χ ′′(â + â†)4, (10)

where χ ′= 1
4ω and χ ′′= h̄

4 ( ω
2ε0

)2
∫ |u(r)|4χ (3)(r)dr3. By defin-

ing the quadratures as Q̂=(â† + â)/2 and P̂=i(â† − â)/2,
we can rewrite Eq. (10) as ĤKerr ∝ −aQ̂2 + bQ̂4. Q̂ and P̂
are analogous to the position and momentum observable of
a harmonic oscillator, respectively. It is clear that the classical
version of Eq. (10) represents the double-well form of the
anharmonic potential (−ax2 + bx4), as in ĤD of the Duffing
model.

Next, to obtain the ĤR terms described above, we introduce
the DPA in Fig. 1(a), which refers to a spontaneous parametric
downconversion process, as shown in Fig. 1(b). The paramet-
ric amplifier is described by the Hamiltonian [27,28]

ĤDPA = h̄κ (â†
i â†

s âpe−i
�k·�r+i
ωt + âiâsâ
†
pei
�k·�r−i
ωt ), (11)

where �km and ωm are the photon’s wave vectors and frequen-
cies, respectively, and 
�k=�kp − �ki − �ks, 
ω=ωp − ωi − ωs.
The first term in the Hamiltonian describes the annihilation
of the incident pump photon (ap) and the creation of one
idler photon (ai) and one signal photon (as); the second
term describes the reverse process of creation. The interaction
strength κ is proportional to the susceptibility of the medium
χ (2). Now for the degenerate case, the idler and signal pho-
tons are of the same mode, i.e., âs = âp = â, and the perfect
phase-matching condition—�kp = �ki + �ks and ωp = ωi + ωs—
is assumed to conserve the momentum and energy in the
system. Moreover, the pump field is considered to be an in-
tense coherent beam that can be approximated as a coherent
classical field. Therefore, we can take âp → |α|e−iθ (â†

p →
|α|eiθ ), where α and θ correspond to the amplitude and the
phase of the pump field. For the sake of simplicity, we take
|α| = 1 and θ = π/2 absorbing the specifics of |α| into a re-
definition of κ . Eventually the Hamiltonian of the degenerate
parametric amplifier becomes

ĤDPA = h̄κ (iâ†2 − iâ2), (12)

which is similar to that in Ref. [23] except that we assume
the phase-matching condition to be perfect while Milburn and
Holmes specify the relationship between the pump frequency
and the fundamental cavity frequency.

Following an approach similar to Ref. [24], the combined
system shown in Fig. 1(a) is now described by the total Hamil-
tonian

Ĥ = Ĥcav + ĤDPA + ĤKerr + Ĥdrive, (13a)

Ĥcav = h̄ωcâ†â, (13b)

Ĥdrive = h̄(εâ†e−iωLt + ε∗âeiωLt ), (13c)

with HKerr, HDPA as in Eqs. (10) and (12) and where Ĥcav is
the Hamiltonian for the single-mode cavity and Ĥdrive is the
coherent driving input into the cavity with frequency ωL. The
combined Hamiltonian can be rewritten in terms of Q̂ and P̂

as

Ĥ = Ĥcav + ĤDPA + ĤKerr + Ĥdrive, (14a)

Ĥcav + ĤKerr = −h̄ωcQ̂2 + h̄ωcP̂2 + h̄2χ ′′Q̂4

16
, (14b)

ĤDPA = 4h̄κ (P̂Q̂ + Q̂P̂), (14c)

Ĥdrive = h̄
ε

2
Q̂ cos (ωLt ), (14d)

where we have chosen χ ′ and ωc to satisfy ωc = χ ′/8 and ε

to be real. By defining β =
√

χ ′′
8ωc

, � = 4κ
ωc

, and g = ε
8ωc

√
χ ′′
2ωc

,

and doing the transformation Q̂ → Q̂√
h̄ωc

and P̂ → P̂√
h̄ωc

, we
can rewrite the above Hamiltonian in the dimensionless β-
dependent form

Ĥ = ĤD + ĤR, (15a)

ĤD = 1

2
P̂2 + β2

4
Q̂4 − 1

2
Q̂2 − g

β
Q̂ cos(ωt ), (15b)

ĤR = �

2
(Q̂P̂ + P̂Q̂), (15c)

which is precisely the Hamiltonian from Eq. 2. It is worth
remarking that HDPA in terms of annihilation and creation
operators in Eq. (15) matches the general form of squeezing
operator suggested in Ref. [29]. However, when this Hamil-
tonian is written in the quadrature operator form, we see that
this is the Hamiltonian term we added to our quantum Duffing
oscillator to reproduce the classical dissipation. This connects
the generation of squeezed states with the limiting classical
dissipation model in an interesting way, in that in the absence
of this term, the classical dissipation would be symmetric
in P̂, Q̂.

Finally, we implement a conventional homodyne measure-
ment scheme to weakly and continuously measure the cavity,
as shown in Fig. 1(c). In this scheme, the local oscillator
(LO) is a laser beam coherent with the classical pump to the
DPA, with a certain phase φ known as the measurement angle.
As a result, the leakage from the cavity interferes coherently
with the LO, providing information about the cavity state
depending on the choice of φ. For example, setting φ = 0
corresponds to weakly measuring Q̂, leading to measure-
ment backaction in 〈Q̂〉; similarly, φ = π/2 corresponds to
weakly measuring P̂, generating measurement backaction in
〈P̂〉. Intermediate settings lead to partial backaction in both
quadratures. Thus, by (adaptively) changing φ, we can control
the system dynamics via measurement backaction, a uniquely
quantum pathway to control.

We note again that we assume a lossless detection; in other
words, 100% of the leakage from the cavity arrives at the
beamsplitter. This allows us to describe the process using the
stochastic Schrodinger equation [SSE, Eq. (5)] rather than
the stochastic master equation (SME), greatly reducing the
computational complexity of the problem [21]. We also take
|u| = 1 [12,21], with φ being the LO phase, as described. In
this case, the noise can be written as dξ = e−iφdW , where dW
is a real Wiener process.

Here, a few comments on interpretation are appropriate.
Since the system is being modeled as being weakly and con-
tinuously monitored, it is understood that the state undergoes
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a partial collapse at each time step based on the measure-
ment record, which is inherently random. In other words,
we are working with quantum “trajectories.” However, unlike
the quantum state dynamics (QSD) formalism [14], in which
trajectories are arbitrary unravelings of the master equation
such that in principle a physical meaning only exists for the
ensemble average, here the inclusion of measurement yields
physically meaningful trajectories. Specifically, the quantum
state evolves (is updated) based on the Hamiltonian as well
as the measurement record, which corresponds to a particular
readout from the detectors in Fig. 1(c). In the laboratory,
such a “conditioned” quantum trajectory represents the best
estimate of an actual quantum state of the cavity, which could
be validated via tomography, as has been done with quantum
trajectories in superconducting transmon qubits [30,31]. Thus,
the effects observed by changing φ disappear in the ensemble
average (as we have verified; see Appendix C), but they also
exist for the conditioned state.

Finally, note that by deriving our Hamiltonian Eq. (15)
from the experimental setup of Fig. 1, we have shown that our
model Hamiltonian can be replicated experimentally. Before
we proceed to the analysis and results below, we note that this
is only a proof-of-principle proposal, since our model does
not yet account for several experimental realities including
lossy detection, the details of the conditioning of the state
evolution based on the measurement record, nor inclusion of
the time-delay implicit in control implementations. We briefly
discuss future work that could account for these experimental
realities in Sec. V.

To gain intuition for the measurement backaction forces,
focusing on the effects of changing φ adaptively, we now turn
to a semiclassical analysis of the system.

III. SEMICLASSICAL ANALYSIS
AND CONTROL PROTOCOL

Equation (5) represents our best model for the evolu-
tion of the quantum state of the Duffing oscillator open to
the environment and subject to continuous weak monitoring.
However, it is not easy to get an intuitive grasp of the physics
of the system from these equations, and particularly not into
the effects of the measurement phase on the system dynamics.
As has been previously established, a semiclassical analysis
proves very useful to improve the computational efficiency as
well as provide physical insights [17,18,32] to understand this
nonlinear system. Here, using a Gaussian approximation that
is valid when the quantum state is sufficiently localized by the
dissipation, the full quantum dynamics are expressed in terms
of those of the centroid variables 〈Q̂〉 = x, 〈P̂〉 = p, coupled
to higher-order moments of the distribution; this otherwise
infinite hierarchy becomes finite when these higher-order mo-
ments are computed using the approximation of a Gaussian
wave function [11]. For the optical system this is easily in-
terpreted, since x and p represent the expectation value of
the two quadratures that are output from the nonlinear cavity.
In Ref. [33] it has been demonstrated that this semiclassical
approximation provides a qualitatively correct result for a
quantum optical Kerr model at the bistable regime. Further,
the inclusion of the dissipative effects only serves to further

localize the wave function, reinforcing the validity of this
approximation [18].

With these justifications, and a derivation more care-
fully detailed below (see Appendix B), in this limit |ψ (t )〉
is accurately and completely described by its parameters,
which are represented by the the 4D phase-space vector
�X = (x, p, χ,�) with dynamics given by

dx = p dt +
√

�Nx(φ, χ,�) dW, (16a)

d p =
(

x − β2x3 + g

β
cos ωt + �Fp − 3xβ2χ2

)
dt

+
√

�Np(φ, χ,�) dW, (16b)

dχ = � dt + �Fχ (φ, χ,�) dt, (16c)

d� = χ [1 − 3β2(x2 + χ2)] dt + 1

4χ3
dt

+�F�(φ, χ,�) dt . (16d)

Here we introduce the variables χ,�, which are defined in
terms of the moments of the wave function (see Appendix B
for details), with 
û = û − 〈û〉 for an arbitrary operator, as

χ2 = 〈
Q̂2〉, (17a)

χ� = 〈
Q̂
P̂ + 
P̂
Q̂〉. (17b)

The Gaussian form maintains the relationship

〈
P̂2〉 = h̄2 + 〈
Q̂
P̂ + 
P̂
Q̂〉2

4〈
Q̂2〉 (18)

such that the three second-moment variables describing the
Gaussian reduce to two; this minimum uncertainty condition
turns out to be [34] a stable fixed point of the dissipative
model.

We also introduce compact notation describing the
stochastic forces

√
� �NdW , where �N = (Nx, Np, 0, 0), and

dissipations � �F , where �F = (Fx, Fp, Fχ , F�). These terms en-
capsulate the effects of continuous monitoring of the cavity:
�N describes the amplitude and quadrature of the backaction,
while �F describes the corresponding dissipative terms, as
required by the fluctuation-dissipation theorem. The forces �N
are given by

Nx = 2

(
χ2 − 1

2

)
cos (φ) + 2χ� sin (φ), (19a)

Np = 2

(
1

4χ2
+ �2 − 1

2

)
sin(φ) + 2χ� cos(φ), (19b)

while the dissipation �F has centroid damping Fx=0, Fp=−2p
and spread damping

Fχ =
[
χ − χ3 + χ�2 − 1

4χ

]
cos(2φ) − �[−1 + 2χ2]

× sin(2φ) + χ − χ3 − χ�2 + 1

4χ
, (20a)

F� =
[
�3 − � + 3�

4χ2
− �χ2

]
cos(2φ)

−
[

− 1

4χ3
+ 1

χ
− χ + 2χ�2

]
sin(2φ)

+
(

−�3 − � − 3�

4χ2
− �χ2

)
. (20b)
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More details for these equations can be found in the Ap-
pendix. Most importantly, these equations demonstrate that it
is possible to affect the dynamics of the wave-packet centroid
(x, p) by affecting the dynamics of the wave-packet spread
(χ,�) via the choice of φ. This coupling between the centroid
and the spread variables exists only for nonlinear Hamiltoni-
ans. The effects of this force as a dissipation effect for the
spread variables are best seen by considering the impact on
the various energy terms as follows. Under the semiclassical
approximation, the Hamiltonian in Eq. (15) at � = 0 becomes

H (x, p, χ,�) = 1

2
p2 + 1

2
�2 + g

β
x cos ωt + U1(x)

+U2(χ ) + U12(x, χ ), (21a)

U1(x) = −1

2
x2 + 1

4
β2x4, (21b)

U2(χ ) = 3

4
β2χ4 − 1

2
χ2 + 1

8χ2
, (21c)

U12(x, χ ) = 3

2
β2x2χ2. (21d)

The rate of change of the energy in the system is easily
shown to be

dH

dt
= g

β
cos (ωt )p − 2�p2 + �F��

+ �Fχ

(
− 1

4χ3
− χ + x2β2χ + 3β2χ3

)
. (22)

It is then straightforward to observe that the first two terms
of dH/dt arise from the classical driving and classical dis-
sipation, i.e., terms associated with (p, ṗ). The rest of the
dH/dt terms are all dependent on the purely quantal χ -�
terms. In other words, the latter change of energy is due to the
“quantum” dissipation arising from the coupling of the spread
variables to the environment and the measurement. That is,
dH/dt may be appropriately rewritten in terms of the classical
and quantum effects as

dH

dt
= dH

dt

∣∣∣∣
cl

+ dH

dt

∣∣∣∣
q

, (23a)

dH

dt

∣∣∣∣
cl

= g

β
cos (ωt )p − 2�p2, (23b)

dH

dt

∣∣∣∣
q

= �F�� + �Fχ

(
− 1

4χ3
− χ + 3x2β2χ + 3β2χ3

)

= ∇χ,πH · (Fχ , F�), (23c)

where the last equation reminds us that changes of energy
arise only from the directions perpendicular to a Hamiltonian
surface.

To understand the dynamical effects of the dissipation
force �F = (Fχ , F�), note that we can rewrite Eqs. (20) as

�F = �F0 + �Fφ

= �F0 + �Fc cos 2φ + �Fs sin 2φ, (24)

where �F0, �Fc, �Fs, �F0 are defined by comparing Eqs. (20) and
(24). These three components of �F are plotted in Fig. 2;
note that �F at a general φ is a weighted superposition of

�Fc, �Fs, and �F0. For example, at φ = 0, �F = �F0 + �Fc, and at
φ = π/2, �F = �F0 − �Fc. In the latter case, �F0 and �Fc, both
along the � = 0 axis, act in opposite directions and tend to
cancel out, while in the former case they add up, forcing the
system toward small values of χ . Thus, we can predict that
when φ is chosen such that �Fφ points generally “outward,” the
dissipation action of the environment on χ is decreased and
the nonclassical effects, such as interwell transitions, are en-
hanced. In contrast, when �Fφ points “inward,” the dissipative
force suppresses higher χ values and arguably makes the wave
packet more localized, hence rendering the system even more
“classical.”

This analysis immediately suggests a direction for control
protocols to exploit this situation: We can vary the measure-
ment angle φ chosen so as to decrease the dissipation effect
(effectively always pushing the dynamics “outward” toward
larger χ,�), which increases the nonclassical U12 term in the
full Hamiltonian. It can be observed in Eq. (21) that when χ is
larger, U12 is amplified in the same way as increasing β, which
effectively makes the system more “quantum,” while simulta-
neously increasing the total energy. As before, the source of
the system’s energy is the driving (g/β ) cos ωt ; adapting φ

has simply altered system dynamics to make a new energetic
regime accessible. In other words, the adaptive measurement
scheme alters the flow of energy through the system, so that
the energy normally dissipated out into the environment is
now stored in the oscillator dynamics, including the (χ,�)
dynamics.

To achieve this, we implement a simple control protocol
in computer simulations. At each moment, φ is chosen to
minimize the magnitude of the vector (Fχ , F�). That is, the
cost function for the control protocol is given by

φadapt : Min
[ �Fφ · �F0

]
. (25)

Since the minimization is a static function of the spread vari-
ables, the corresponding vector fields for �Fφ for this control
protocol can be calculated independently of the particular
dynamics, and they are shown in Fig. 2(d). Here, we can
clearly see the distinct tendency of �Fφ=φadapt to push the dy-
namics outward in χ,� space, compared to the fixed angle
situations in Figs. 2(a) and 2(b). Before presenting the results
of simulations of the effect of adaptive control on the system
energy, we also define the useful quantities

E = 1

2
p2 + 1

2
�2 + U1 + U2 + U12, (26a)

Ec = 1

2
p2 + U1, (26b)

Eq = 1

2
�2 + U2 + U12. (26c)

Here E is defined to be the system energy, which is the
same as H in Eq. (21) except for the driving term. Eq is the
sum of all χ - and �-dependent terms, which will not exist in
the classical case, while Ec is the “classical” energy and thus
satisfies Ec = E − Eq. Our analysis based on Fig. 2 predicts
that Eq will be amplified by our adaptive measurement proto-
col (by increasing energy flow to U12) and we are interested in
the change in the dynamics induced by this energy enhance-
ment. It is also useful to define the time-dependent mean and
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(a) (b)

(c) (d)

FIG. 2. Components of the dissipative force �F = �F0 + �Fc cos 2φ + �Fs sin 2φ, resulting from the measurement as a function of LO phase-
angle φ, are shown for fixed φ [(a) Fφ=0 and (b) Fφ=π/2] as well as the adaptive scheme discussed in the text [(c) F0 and (d) Fφ=φadapt ]. The color
represents the strength of the field, which increases from left to right in this case. Notice that the inward-pointing force at fixed φ = 0 points
somewhat outward at φ = π/2 and significantly more so with the adaptive scheme. All quantities plotted are dimensionless.

standard deviations of the various energy quantities in terms
of a generic quantity X as

X = 1

T

∫ T

0
Xdt, (27a)


X = 1

T

∫ T

0

√
(X − X )2dt, (27b)

where, for example, E represents the time average energy and

E reflects the fluctuation of E along the time evolution.
We now turn to some of the simulation results obtained to
support our analysis. In addition to implementing the adap-
tive control methods presented here, we also study two fixed
angle systems, using two particular parameter regimes where
the dynamics were previously seen [10,12] to be especially
sensitive to the measurement angle.

IV. RESULTS

We have studied a variety of parameter regimes as a
function of φ. We have demonstrated φ-dependent dynam-
ics, including transitions from regular to chaotic behavior.
However, when explored for various β, � values, it is the
change in energy throughput in the spread variables channel

that completely accounts for all the results seen and also those
previously reported [10,12,13]. That is, changes in behavior
due to the LO angle result from the change in the energy
available, and in particular from the change in the quantum-
classical coupling energy U12, which naturally changes the
potential energy landscape explored by the dynamics. Here
we present two illustrative cases, where the coupling to the
environment (the “classical dissipation”) is set at � = 0.10
and 0.08. For most choices of �, classically there is a single
global attractor in the system. This holds true for the first
case with � = 0.10, where there is a global chaotic attractor.
However, the second example with � = 0.08 is an edge case
in which there is not a single global attractor in the classical
system; instead, the system can go to a periodic or a chaotic
attractor depending on the initial conditions. These classically
coexisting attractors also appear in the semiclassical regime.
This is a remarkable phenomenon not previously visible in
quantum chaotic situations.

We start by revisiting fixed phase measurement results,
preliminarily reported in Ref. [10]. Figure 3 shows the results
of simulation of a single x-p and χ -� trajectory at β = 0.01
and � = 0.10. We compare the results between φ = 0 and
φ = π/2 without any adaptive change of the measurement
phase. As predicted by the dissipation force analysis (Fig. 2),
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FIG. 3. Phase diagrams and Poincaré sections for (a) the x, p centroid subspace and (c) the χ,� spread subspace for a local oscillator
angle φ = 0, where β = 0.01, � = 0.10. In (b) and (d) we see the same two figures for φ = π/2. Notice a change in the “quantum” range,
although the overall dynamics are not significantly affected. All quantities plotted are dimensionless.

the φ = π/2 case allows a larger range of χ compared to the
φ = 0 case. This correlates as predicted with an amplified
range for Eq achieved by increasing energy flow to U12. Al-
though measurement at φ = π/2 induces a substantial change
for the χ -� trajectory, neither the x-p dynamics nor the time-
averaged total energy E are greatly affected. In this relatively
classical regime (β = 0.01), the total quantum effect intro-
duced by the spread variables remains small.

With this baseline, we implement the adaptive measure-
ment control described by Eq. (25) at this same damping
� = 0.10, while varying β. Even when the dynamics do not
qualitatively change, there is a quantitative change in energy,
and again the primary mechanism for effecting dynamical
changes and the most dramatic effects of the measurement
protocol can be summarized through the behavior of the
energy terms. As such, in Fig. 4(a) we show the long-
time average total energy E of systems undergoing different
measurement schemes over the range β = 0.005–0.05. We
see quite clearly that the adaptive measurement induces the
largest change in energy compared with the other measure-
ment schemes simulated. A similar trend is also observed in
Fig. 4(b) for 
E , the standard deviation of H . The behavior of
U 12 and 
U12 in Figs. 4(c) and 4(d) shows that the adaptive
measurement protocol does amplify U12 tremendously as a
channel to absorb energy from the driving and thus to alter
the overall dynamics, as predicted by our control protocol.

An example of one of the most interesting changes induced
by the adaptive measurement occurs at � = 0.08, where we
are using a generic β = 0.01 for discussion. The central fea-
tures are captured in Figs. 5(c) and 5(d). Here we see that the
adaptive control of φ [Fig. 5(d)] has significantly expanded
the χ -� oscillator, so the range of χ can be at 20-fold that
of the φ = 0 case [Fig. 5(c)]. However, what is even more

remarkable is that this effect is not just visible in the spread
dynamics. From Figs. 5(a) to 5(b), we see a big change in the
x-p dynamics as well: here the chaotic trajectory for φ = 0
in (a) becomes a chaotic transient that stabilizes to a periodic
orbit for φ = φadapt in (b). The mechanism, which we explore
more below, is that increased energy in the (χ,�) variables
allows the x-p dynamics to access larger x-p values, which are
then stabilized by energy absorbed by the drive (g/β ) cos ωt .
Notice that the total energy has increased as a result, so it
is not merely a question of the energy in the spread vari-
ables being transferred to the centroid variables, but an actual
change to a new, higher-energy steady-state. We dig deeper
to try to clarify this novel phenomenon and its mechanism
further by considering the time-dependent energy dynamics
more explicitly.

In Figs. 6(a) and 6(c), we see that the adaptive measure-
ment protocol results in the same behavior as in Fig. 5,
although here the control protocol is turned on at t = 7000.
After the adaptive measurement is turned on, we see that
both χ [Fig. 6(a)] and Eq [Fig. 6(c)] are amplified simul-
taneously, as explained in our previous analysis. Then, at
around t = 11, 500, the total energy E transitions sharply to
a higher-energy regime, while χ shrinks to a much smaller
range [Fig. 6(a)]. Simulations confirm that this occurs simul-
taneously with the x-p trajectory switching from the chaotic to
the regular attractor. Although not shown here, details of this
process can be seen in the Supplemental Material video about
the phase-space evolution of the central and spread variables
during the energy transition [35]: As the spread energy U12

fluctuates around a high value and χ occasionally fluctuates
to very high values, there comes a point where the centroid
oscillator uses the extra energy in the spread dynamics to
dynamically “tunnel” from the inner, chaotic attractor to the
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(a) (b)

(c) (d)

FIG. 4. Long-time averages of the system’s (a) total energy E , (b) quantum-classical coupling energy U12, and (c),(d) their respective
variances as a function of length scales β, for different measurement settings φ, including the adaptive setting φ = φadapt. The adaptive setting
(top blue line) increases the energy channeled through the spread variables—and, consequently, the “quantumness” as signaled by U12—
significantly more than just increasing β does for any fixed-angle measurement protocol. All quantities plotted are dimensionless.

FIG. 5. Phase diagrams (purple lines of trajectories) and Poincaré sections (pink dots, representing these same trajectories sampled every
drive period) for the x, p centroid subspace (a) and the χ,� spread subspace (c) for a fixed angle φ = 0, compared to the adaptive control in
(b) and (d). Notice the remarkable increase in the range of the χ -� orbit and the dramatic appearance of a regular orbit in the x-p space. This
dynamical shift corresponds to the transition to higher E and U12 that occurs in the adaptive control scheme, as depicted in Fig. 4. Importantly,
note that the chaotic behavior observed in (b) is transient; the dynamics stabilizes to the regular orbit after a finite period of time. All quantities
plotted are dimensionless.
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(a) (b)

(c) (d)

FIG. 6. Analysis of the energy dynamics. Parts (a) and (c) display E , Eq, Ec, and χ as a function of time. The gray dashed vertical line at
t = 7000 indicates the time when φ = 0 is changed to φ = φadapt. A sudden jump appears at around t = 11 200 for E , Ec (darker, blue) and
χ, Eq (lighter, red). Part (b) shows the distribution of E for φ = 0 (lighter, yellow) and φ = φadapt (darker, blue). 500 trajectories are simulated
for each case. The φadapt case is clearly centered at a high E regime. Part (d) shows the moving average of E as a function of time with φ = φadapt

for different trajectories, with time window 
t = 1000 compared with the lowest curve (green triangles) at the φ = 0 case. Each trajectory’s
energy jumps at a different time, which explains the spread of the E in (b). All quantities plotted are dimensionless.

outer, regular attractor. We note two features about Fig. 6(c):
first, Ec leaps at the transition point considerably more than
Eq shrinks (which we term dynamical tunneling); and second,
Eq does not grow again even if the adaptive control is left on.
This latter is attributable to the fact that in chaotic regimes, an
ellipsoid of trajectories (the wave packet in this case) tends to
spread. While this is normally kept in check by the dissipation,
we were able to override this effect with the adaptive control.
In contrast, in regular regimes, an ellipsoid of trajectories
tends to focus, and in this particular case the adaptive control
does not override this combination of dynamical focusing and
dissipation.

In Fig. 6(d) we see moving averages of the total energy
(with a time window of 
t = 1000) for different individual
trajectories in this coexisting attractor regime with the control
turned on at t = 0, compared with the φ = 0 energy case
shown in green. We observe that the energy leap for φ = φadapt

happens at different times (this randomness is why this is like
dynamical tunneling), even though each trajectory converges
to the same final energy value. Furthermore, Fig. 6(b) shows
the histogram of E for 500 trajectories for both the adaptive
measurement case and the fixed measurement case of φ = 0
for a total time of t = 6000. It is not hard to see that for
the φ = 0 case, the energy jump never happens such that the
histogram centers at a low energy (around −0.25) for this

specific time length. However, for the adaptive case, since
the energy jump happens at different times, the histogram of
the time-averaged energy is more spread out and peaks in the
high-energy regime (around E = 0.7). Thus we see that in this
case, appropriate dynamical phase-setting on the LO signifi-
cantly alters energy absorption through the quantum spread
variables channel, and that this “quantum” energy—while not
itself sufficient to maintain the resulting high-energy orbit—is
the key factor in creating a dynamical transition in the centroid
variables.

V. CONCLUSIONS

To summarize the highlights, we have shown that for a
driven nonlinear quantum oscillator, it is possible to under-
stand the backaction induced by measurement as generalized
noise and dissipation. Although arguably a general effect,
our semiclassical analysis makes it clear that of the angle-
dependent measurement backaction forces, noise effects act
on the centroid or “classical” variables while the dissipation
acts on the “quantum” spread variables. By focusing on the
effect on these dissipation and noise forces of changing the
phase angle for a LO used for homodyne measurement, we
show that it is possible to alter the energy dynamics of the sys-
tem such that the quantum spread variables act as an alternate
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FIG. 7. The classical Duffing oscillator phase space plot. Trajectories with two kinds of initial conditions are plotted: (x0, p0) = (1, 0)
(darker, blue) and (x0, p0 ) = (1.5, 1) (lighter, pink) at two different values of �. (a) � = 0.1, (b) � = 0.08. We see that the resulting trajectories,
indistinguishable in (a), separate out into an “inner” chaotic trajectory and an “outer” regular orbit. All quantities plotted are dimensionless.

energy channel to absorb energy in different ways. Among
the examples of the kind of dynamical change that is possible
to effect, we demonstrate an example of a control protocol
where the energy in the spread variables helps the “classi-
cal” variables to tunnel from low-energy, chaotic dynamics
to high-energy, regular dynamics. This mechanism of using
the spread variables as an alternate energy channel suggests a
varied range of novel quantum control phenomena, including
the possibility of slightly more complex protocols that would
allow the system to cycle between different steady-states and
thus enable novel quantum energy absorption devices.

In this paper, we have also proposed a quantum optical
system where such effects might be seen. The proposed sys-
tem serves as a proof of principle that our Hamiltonian, the
quantum Duffing oscillator, is physically realizable, and our
analysis shows that measurement backaction can be used to
change the system state in interesting ways. However, mod-
ifications must be made before these correspond to actual
experimental predictions. Specifically, we have assumed zero
loss measurements to simplify computations, clearly not vi-
able with a real experiment. To account for loss, our results
must be generalized by replacing the SSE with the corre-
sponding SME, thus allowing for mixed states. Further, we
have assumed instantaneous feedback control, but any real
experiment must have a delay between the measurement and
φ-update. Finally, our analysis in terms of χ -� variables
would need to be translated to observables more directly
measured in the laboratory. Future work will investigate the
possibility of analogous measurement-based control in light
of these experimental realities, as well as other applications of
such quantum backaction effects for useful and novel quantum
behavior, including altering the energy dynamics of Bose-
Einstein condensates.
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APPENDIX A: CLASSICAL DUFFING OSCILLATOR
PHASE-SPACE PLOT

Understanding the baseline classical dynamics is always
helpful in understanding the semiclassical dynamics inves-
tigated. To this end, the phase-space plots for the classical
Duffing oscillator are shown in Fig. 7, where we have used
� = 0.1 and 0.08. In these figures, we have plotted trajecto-
ries for different initial conditions. It can be observed that at
� = 0.1, the two initial conditions lead to the same chaotic
attractor. However, at � = 0.08 the two initial conditions lead
to two coexisting attractors—one chaotic and one regular.
As shown in Sec. IV, at � = 0.08 the adaptively measured
quantum oscillator is able to jump from the inner attractor to
the surrounding one even with the same initial condition.

APPENDIX B: SEMICLASSICAL DYNAMICS
UNDER MEASUREMENT

The semiclassical approximation we use amounts to as-
suming [11] that the wave function is sufficiently localized by
the action of the environment such that it can be represented
in position space over q by the minimum uncertainty squeezed
Gaussian as

ψ (q) = (2πVx )−
1
4 exp[i[A(q − x)2 + p · (q − x)]], (B1)

with the time-dependent quantities Vx, A, x, p defining the
evolution of the state, where A is complex in general. This
form of |ψ〉 relates to operator expectation values as

x = 〈Q̂〉, (B2)

p = 〈P̂〉 (B3)

for the centroid variables. Considering the spread variables
defined via 
û = û − 〈û〉 for an arbitrary operator, we get that

Vx = 〈
Q̂2〉 (B4)

and that

A = 1

4Vx
(i + Vxp), (B5)

where

Vxp = 〈
Q̂
P̂ + 
P̂
Q̂〉, (B6)

such that the wave-function evolution is completely defined
by tracking these two centroid variables and the two spread
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variables. For completeness, we note that the third second-
order moment

Vp = 〈
P̂2〉 (B7)

does not need to be independently tracked since this squeezed
Gaussian maintains the minimum uncertainty relationship

Vp = h̄2 + V 2
xp

4Vx
(B8)

for noncommuting variables. We note for use below that
higher moments for Gaussians are given by

〈
Q̂2m〉 = (2m)!V m
x

m!2m
(no sum), (B9)

〈
Q̂2m+1〉 = 0. (B10)

To derive dynamical equations for the characteristics of the
wave function just defined, we start with no environmental
coupling (i.e., with � = 0, whence no Lindblad term) and
show how a coupled classical oscillator system may be de-
fined for this approximation. When the wave function above
is substituted in Schrodinger’s equation, we get the coupled
set of ordinary differential equations

dx

dt
= p, (B11)

d p

dt
= −U (1)

1 (x) +
∞∑

m=1

V m
x

m!2m
U (2m+1)

1 (x), (B12)

dVx

dt
= Vxp, (B13)

dVxp

dt
= h̄2 + α2

2Vx
−

∞∑
m=1

V m
x

(m − 1)!2m−2
U (2m)

1 (x) · · · . (B14)

Here we have used an expansion for the potential energy
operator

〈U (1)
1 (Q̂)〉 = U (1)

1 (x) +
∞∑

m=1

1

m!
〈
Qm〉U (m+1)

1 (x), (B15)

where F (n) = ∂nF/∂un|〈û〉. Notice that the centroid equations
deviate from the classical force U (1)

1 (x) with odd-derivative
terms that include all even-order moments of the Taylor ex-
pansion around the centroid, while the even derivative terms
enter in the Vxp equation. These expansions are infinite and
exact under the Gaussian approximation, but they yield finite
series with the number of terms depending on the higher-order
derivatives of the potential. The system is now reduced to the
dynamics of x, p, Vx, and Vxp. If we introduce the change of
variables Vx = χ2 and Vxp = 2χ�, Eqs. (B11)–(B14) trans-
form to

dx

dt
= p, (B16)

d p

dt
= −U (1)

1 (x) −
∞∑

m=1

χ2m

m!2m
U (2m+1)

1 (x), (B17)

dχ

dt
= �, (B18)

d�

dt
= h̄2

4χ3
−

∞∑
m=1

χ2m−1

(m − 1)!2m−1
U (2m)

1 (x), (B19)

where we have used the relationships

dχ

dt
= 1

2χ

dVx

dt
, (B20)

d�

dt
= 1

χ

(
dVxp

dt
− �dχ

dt

)
. (B21)

Remarkably, these new variables form an explicit potential
energy system as our approximation to the Hilbert space,
now for the classical coupled oscillators represented by the
centroid variables x, p and the spread-related variables χ,�,
respectively, with associated Hamiltonian

H = p2

2
+ �2

2
+ U (x, χ ), (B22)

U (x, χ ) = U1(x) + h̄2

8χ2
+

∞∑
m=1

χ2m

m!2m
U (2m)

1 (x) (B23)

exactly as in the main text but with the specific Duffing Hamil-
tonian.

In the presence of environmental coupling, the equations
above generalize, and using Ito stochastic calculus we get the
set of coupled stochastic differential equations,

dx = pdt +
√

�(2Vxp sin φ + (2Vx − 1) cos φ)dW,

d p = xdt − 2�pdt + gcos(ωt )

β
dt − β2(x3 + 3xVx )

+
√

�(2Vxp cos φ + (2Vx − 1) sin φ)dW,

dVx = 2Vxpdt + �

2

(
(4Vxp − 8VxpVx ) sin 2φ

+ (
4V 2

xp − 4V 2
x + 4Vx − 1

)
cos 2φ

+ (−4V 2
xp − 4V 2

x + 4Vx + 1
))

dt,

dVp = (2Vxp − 6β2Vxp(x2 + Vx ))dt

+ �

2

(
(4Vxp − 8VxpVp) sin 2φ

+ (−4V 2
xp + 4V 2

p − 4Vp + 1
)

cos 2φ

+ (−4V 2
xp − 4V 2

p − 4Vp + 1
))

dt,

dVxp = (Vp + Vx − 3β2Vx(x2 + Vx ))dt

+ �

2

((−4V 2
xp − 4VxVp + 2Vx + 2Vp − 1

)
sin 2φ

+ (4VpVxp − 4VxVxp) cos 2φ

+(−4VpVxp − 4VxVxp)
)
dt . (B24)

It is worth noting [34] that dissipation causes solutions to
these equations to rapidly converge to the minimum uncer-
tainty condition for the three spread variables above, even
if that is not the initial condition, such that the uncertainty
relationship imposed by the Gaussian approximation is self-
consistently justified and is stable. Using this to eliminate
Vp, and the same change of variables as above transform-
ing (Vx,Vxp) → (χ,�), we get the equations presented in
Eqs. (16a)–(16d). The numerical regime of validity of this
semiclassical approximation—which holds true for suffi-
ciently strong localization—has previously been shown by
comparison with full quantum simulations [10,18] to be ap-
proximately the regime β < 0.01 for our � range. It has also
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(a) (b)

FIG. 8. (a) E averaged over 1000 trajectories for φ = π

2 (yellow, dashed) and φ = 0 (purple) at � = 0.05 and β = 0.01. (b) The energy
difference 
E between ensembles evolving at φ = π

2 and φ = 0 averaged over N trajectories; we see increasing convergence to (decreasing
fluctuation around) 0 as N increases through 1×103 (blue dashed), 5×103 (orange dashed), 2×104 (dark purple), and 1×105 (light red). All
quantities plotted are dimensionless.

been shown that qualitative results obtained from the semi-
classical equations remain valid considerably deeper into the
quantum regime of increasing β.

APPENDIX C: BEHAVIOR OF THE ENSEMBLE
ENERGY FOR DIFFERENT CHOICE OF φ

One of the interesting features of the unraveling of stochas-
tic Schrodinger equations into trajectories is that behavior
visible in the conditioned trajectories (which are a specific
realization of the “noise” implicit in quantum mechanics as

simulated by us corresponding to a measurement record in the
laboratory) may not be visible in the density matrix dynamics.
In particular, while the time-averaged energies for individual
trajectories show φ dependence (see Fig. 6), recovering the
ensemble average at each moment in time of the dynami-
cal variables x, p by averaging trajectories shows no such φ

effect. We verify this by calculating the evolution of E for
different choices of φ averaged over numerous trajectories.
As shown in Fig. 8, the energy difference δE between φ = π

2
and φ = 0 reduces as the number of trajectories increases
and tends toward zero. We note for completeness that time-
averages of this energy difference would be even closer to 0.
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