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Heisenberg uncertainty relations for relativistic bosons
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This work completes the program started by I. Bialynicki-Birula and Z. Bialynicka-Birula [Uncertainty rela-
tion for photons, Phys. Rev. Lett. 108, 140401 (2012); Heisenberg uncertainty relation for photons, Phys. Rev. A
86, 022118 (2012); Heisenberg uncertainty relation for relativistic electrons, New J. Phys. 21, 073036 (2019)]
to derive the Heisenberg uncertainty relation for relativistic particles. Sharp uncertainty relations for massive
relativistic particles with spin 0 and spin 1 are derived. The main conclusion is that the uncertainty relations
for relativistic bosons are markedly different from those for relativistic fermions. The uncertainty relations for
bosons are based on the energy density. It is shown that the uncertainty relations based on the time component
of the four-current, as we have done previously for electrons, are untenable because they lead to contradictions.

DOI: 10.1103/PhysRevA.103.052211

I. INTRODUCTION

In this work, we complete our investigation of the
Heisenberg-type uncertainty relations for relativistic particles.
In previous papers, we derived the uncertainty relations for
photons [1,2] and also for relativistic spin-1/2 particles [3].

The purpose of this work is to show first that for relativistic
massive bosons the uncertainty relation based on the charge
density ρ, as has been done in [3], is unacceptable. This has
been noticed already by Bjorken and Drell [4]. The argument
will be presented for spin 0, in which case ρ has the form

ρ = i

2
(φ∗∂tφ − φ∂tφ

∗). (1)

For spin 1 the argumentation proceeds along similar lines. To
prove our assertion, we consider the following solutions of the
wave equation for massive spin-0 particles, the Klein-Gordon
equation, (h̄ = 1, c = 1):

φ = 1

4π

∫
d3 p f (p)e−(a+it )

√
m2+p2+ip·r

= 1

r

∫ ∞

0
d pp sin(pr) f (p)e−(a+it )

√
m2+p2

. (2)

These integrals cannot be evaluated analytically, but the nu-
merical integration leads to the conclusion that the time
component of the four-current cannot serve as a repre-
sentation of the probability distribution because it is not
positive definite. In Fig. 1 we show the results for f (p) =
cos(p/m)/

√
m2 + p2. In the shaded region ρ is negative. The

dimensional quantities in the figure are measured in natural
units based on h̄, c, and m. Negative values disqualify ρ as a
measure of the probability distribution for a particle in space.
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This result forces us to replace, in the formulation of the
uncertainty relation, the time component of the current with
the energy density ε(r).

It is worthwhile to mention at this point that the uncertainty
relation based on the energy density [5] is, in turn, unaccept-
able for spin-1/2 particles, as was shown in [6]. In Sec. II
we derive the uncertainty relation based on the energy density
for the spin-0 particles, and in Sec. III we do it for the spin-1
particles.

II. POSITION-MOMENTUM UNCERTAINTY RELATION
FOR SPIN-0 PARTICLES

The energy density for spin-0 particles is [7,8]

ε(r) = π∗(r)π (r) + ∇φ∗(r) · ∇φ(r) + m2φ∗(r)φ(r), (3)

where π (r) = φ̇(r). This expression is clearly positive definite
so that, in contrast to ρ, it can be used to formulate the uncer-
tainty relation. We consider only the wave function describing
the particle (positive frequency part). The time dependence
will not be shown explicitly since the uncertainty relation is
always expressed at a fixed time. As we have done in our
earlier publication, we will conduct the variational analysis
in the momentum representation because it greatly simplifies
the calculations. To this end, we represent φ and π at t = 0 in
the form

φ(r) =
∫

d3 p√
2(2π )3/2Ep

eip·r f (p), (4a)

π (r) = −i
∫

d3 p√
2(2π )3/2

eip·r f (p), (4b)
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FIG. 1. The contour lines of charge density ρ as a function of
x and z plotted for y = 0. In the shaded areas the charge density is
negative. Owing to the rotational symmetry of the solution, in the
three-dimensional picture we have spherical shells centered at the
origin. In three dimensions inside each shell the charge density is
negative. The parameters used to produce this plot are m = 1, a =
0.5, and t = 0.05.

where Ep =
√

m2 + p2. The norm and the dispersion of mo-
mentum expressed in terms of f (p) are

N2 =
∫

d3 p f ∗(p) f (p) (5)

and

�p2 = 1

N2

∫
d3 p p2 f ∗(p) f (p). (6)

The dispersion �r2 based on the energy density is

�r2 = 1

N2

∫
d3r r2ε(r). (7)

We assumed that the origin of the coordinate system is at
the center of energy. In order to express �r2 in momentum
representation, we use the formulas

rφ(r) = i
∫

d3 p√
2(2π )3/2

eip·r∂
f (p)

Ep
, (8a)

rπ (r) =
∫

d3 p√
2(2π )3/2

eip·r∂ f (p), (8b)

where ∂ denotes the gradient in momentum space. With the
help of these formulas, after the integration over r, the disper-
sion of the position takes on the form

�r2 = 1

2N2

∫
d3 p

[
∂( f ∗(p)) · ∂( f (p)) +

∑
k

∂k
p f ∗(p)

Ep
· ∂k

p f (p)

Ep
+ m2∂

f ∗(p)

Ep
· ∂

f (p)

Ep

]

= 1

N2

∫
d3 p

[
∂( f ∗(p)) · ∂( f (p)) +

(
m2

2E4
p

+ 1

E2
p

)
f ∗(p) f (p)

]
. (9)

In order to derive the uncertainty relation, we must find the
lowest value of γ 2 = �r2�p2. This will be done with the use
of the variational procedure.

The variation of γ 2 with respect to f ∗(p) can be calculated
using the Leibniz rule for the variational calculus:

δγ 2

δ f ∗(p)
= δ�r2

δ f ∗(p)
�p2 + δ�p2

δ f ∗(p)
�r2 = 0. (10)

Therefore[
�p2

(
− �p + m2

2E4
p

+ 1

E2
p

)
+ p2�r2 − 2γ 2

]
f (p) = 0.

(11)
This leads to the following eigenvalue equation:[

−1

2
�q + d2/2

1 + d2q2
+ d2/4

(1 + d2q2)2
+ q2

2

]
f (q) = γ f (q),

(12)

where q is the rescaled momentum and d is the dimensionless
parameter introduced in [3],

q = p
mcd

, d = 1

mc

(
h̄2�p2

�r2

)1/4

. (13)

This equation may be viewed as the eigenvalue equation
for a particle in the potential V (q) of a modified harmonic
oscillator:

V (q) = d2/2

1 + d2q2
+ d2/4

(1 + d2q2)2
+ q2/2. (14)

The dependence of the potential V (q) on d is illustrated in
Fig. 2. From Eq. (12), we can see that the angular dependency
of functions f (q) contributes to the potential by adding the
centrifugal term l (l + 1)/q2. The increase in potential will,
in turn, increase the dispersions. Spin-0 particles have no
distinguished direction; hence it makes sense that the solu-
tion exhibit spherical symmetry. Therefore we consider only
those functions f (q) that depend on the length of momentum
vector.

This eigenvalue equation has no analytic solutions for an
arbitrary value of d , but the eigenfunctions can be found in
two limiting cases m = ∞ and m = 0, i.e., for d = 0 and
d = ∞:

f∞(q) = e−q2/2, f0(q) = q
√

5/2−1/2e−q2/2. (15)

The first case gives the nonrelativistic result γ = 3/2. The
second case gives γ = 1 + √

5/2. The same result was ob-
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FIG. 2. The potential V (q) plotted for four values of d . All
quantities are measured in natural units based on h̄, c, and m. The
horizontal lines show the energy levels. The dashed lines represent
the exact values, and the values represented by solid lines were
obtained by numerical integration of the eigenvalue equation.

tained in Ref. [2] for photons and in Ref. [3] for massless
spin-1/2 particles.

III. POSITION-MOMENTUM UNCERTAINTY RELATION
FOR SPIN-1 PARTICLES

The uncertainty relation for spin-1 particles is more com-
plicated because the lowest value of γ depends on the choice
of the direction of the vector field. The Lagrangian density of
the vector field is given by the formula

L(r) = − 1
4 f ∗

μν (r) f μν (r) + 1
2 m2A∗

μ(r)Aμ(r), (16)

where fμν (r) = ∂μAν (r) − ∂νAμ(r). We allowed for the vector
bosons to carry charge. The spatial components of field Aμ(r)
will be denoted as φ(r), while the canonically conjugate field
is denoted as π∗(r) = ∂L

∂Ȧ(r)
. The counterpart of Eq. (3) can

now be expressed as [9,10]

ε(r) =π∗(r) · π(r) + m−2∇ · π∗(r)∇ · π(r)

+ ∇ × φ∗(r) · ∇ × φ(r) + m2φ∗(r) · φ(r), (17)

where the vector fields φ(r) and π(r) satisfy the equations of
motion generated by the Hamiltonian

∫
d3r ε(r),

d

dt
φ(r) = π(r) − m−2∇[∇ · π(r)], (18a)

d

dt
π(r) = −∇ × [∇ × φ(r)] − m2φ(r). (18b)

These equations lead to the following connection between the
Fourier representations of φ and π:

−iEpπ̃(p) = p × (p × φ̃(p)) − m2φ̃(p). (19)

In principle, we should search for the minimal value of
γ among all functions φ̃(p) = { fx(p), fy(p), fz(p)}/Ep. In
general, the variational method produces three complicated
coupled equations for the functions fi(p). We shall not write
down these equations in the most general case, because to
find the lowest value of γ it is sufficient to consider two
limiting cases: m = ∞ and m = 0. The first case reproduces
the standard nonrelativistic result, while the second case gives
our previous result for photons [2].

To obtain the nonrelativistic limit, we choose the direction
of the polarization vector along the z axis:

φ(r) =
∫

d3 p√
2(2π )3/2

f (p)eip·r√
2m2 + p2

x + p2
y

⎡
⎣0

0
1

⎤
⎦. (20)

The denominator
√

2m2 + p2
x + p2

y was introduced to make
the formulas for N2 and �p2 the same as for the spin-0 case
given by Eqs. (5) and (6). The variation of γ 2 = �p2�r2 with
respect to f ∗(p) leads to a fairly complicated equation. In
order to obtain the lowest bound for γ , we will consider only
the two limiting cases m = ∞ and m = 0. The formulas for
�r2 are

m = ∞ �r2 = 1

N2

∫
d3 p[∂( f ∗(p)) · ∂( f (p))], (21)

m = 0 �r2 = 1

N2

∫
d3 p

[
∂( f ∗(p)) · ∂( f (p)) + 1

p2
x + p2

y

f ∗(p) f (p)

]
. (22)

The first formula coincides with that for spin 0 when in (9) we put m → ∞. Hence for spin 1 we also obtain the nonrelativistic
limit γ = 3/2. In the massless case we would expect a greater value due to the angular dependence in (22). Indeed, the variational
equation can be solved, and it gives γ = 5/2 and f (q) = qe−5q2/4 where q2 = p2/�p2.

In order to obtain the massless limit, we choose the polarization vector in the direction of the momentum vector p/|p|. This
gives the following form of φ and π at t = 0:

φ(r) =
∫

d3 p√
2(2π )3/2

p
m|p| f (p)eip·r, (23)

π(r) = −i
∫

d3 p√
2(2π )3/2

mp
Ep|p| f (p)eip·r. (24)
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The norm and the dispersion of momentum again have the same form as in Eqs. (5) and (6) for spin 0, but the dispersion of
position is markedly different:

�r2 = 1

2N2

∫
d3 p

[
∂
|p| f ∗(p)

Ep
· ∂

|p| f (p)

Ep
+ m2

∑
k

∂k
p f ∗(p)

|p|Ep
· ∂k

p f (p)

|p|Ep
+ ∂

p f ∗(p)

|p| · ∂
p f (p)

|p|

]

= 1

N2

∫
d3 p

[
∂( f ∗(p)) · ∂( f (p)) +

(
1

|p|2 + m2

|p|2E2
p

+ m2

2E4
p

)
f ∗(p) f (p)

]
. (25)

In the general case, the variation of γ 2 = �p2�r2 with respect to f ∗(p) leads to a fairly complicated equation,

1

2

[
− 1

q2
∂q(q2∂q) − 1

q2 sin θ
∂θ (sin θ∂θ ) − 1

q2 sin2 θ
∂2
ϕ + V (q)

]
f (q, θ, ϕ) = γ f (q, θ, ϕ), (26)

where the potential now has the form

V (q) = q2 + 1

q2
+ 1

q2(1 + q2d2)
+ d2

2(1 + d2q2)2
. (27)

Equation (26) allows for the separation of variables (m stands
here for the magnetic quantum number),

f (q, θ, ϕ) = g(q)h(θ )eimϕ, (28)

and the equations for the radial and angular parts are[
− 1

q2
∂q(q2∂q) + j( j + 1)

q2
+ V (q)

]
g(q) = 2γ g(q), (29)[

− 1

sin θ
∂θ (sin θ∂θ ) + m2

sin2 θ

]
h(θ ) = j( j + 1)h(θ ). (30)

Solutions of the differential equation for the angular part are
the associated Legendre polynomials Pm

j (cos θ ). The nonsin-
gular solutions exist for integer values of j and m with the
condition j � m � 0. Similar to the spin-0 case, the centrifu-
gal term in (29) leads to an increase of the potential, and
consequently, the dispersions. Therefore in the search for the
lowest value of γ , the case of j > 0 is, once again, of no
interest. In contrast to the spin-0 case, however, the potential

(27) increases with the increasing mass. In two limiting cases
we obtain

Vm=∞(q) = 2

q2
+ q2, Vm=0(q) = 1

q2
+ q2. (31)

In both cases, the radial differential equation has analytic
solutions

gm=∞(q) = qe−q2/2, gm=0(q) = q
√

5/2−1/2e−q2/2, (32)

with the eigenvalues γm=∞ = 5/2 and γm=0 = 1 + √
5/2.

Thus for m = ∞ we obtain the result 5/2, which is larger than
the nonrelativistic value of 3/2. In the massless case we obtain
the same result as was obtained before for photons, massless
spin-0, and massless spin-1/2 particles.

IV. CONCLUSIONS

We completed the analysis of Heisenberg uncertainty rela-
tions for relativistic particles. The general conclusion is that
relativistic corrections increase the lower bound for γ 2 =
�p2�r2. For all spins, the lowest value γ = 3/2h̄ is ob-
tained in the nonrelativistic limit. The highest value γ =
(1 + √

5/2)h̄ is obtained for massless particles, i.e., in the
ultrarelativistic case.
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