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Possibility of the total thermodynamic entropy production rate of a finite-sized isolated quantum
system to be negative for the Gorini-Kossakowski-Sudarshan-Lindblad-type Markovian dynamics
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We investigate a total thermodynamic entropy production rate of an isolated quantum system. In particular,
we consider a quantum model of coupled harmonic oscillators in a star configuration, where a central harmonic
oscillator (system) is coupled to a finite number of surrounding harmonic oscillators (bath). In this model, when
the initial state of the total system is given by the tensor product of the Gibbs states of the system and the bath,
every harmonic oscillator is always in a Gibbs state with a time-dependent temperature. This enables us to define
time-dependent thermodynamic entropy for each harmonic oscillator and total nonequilibrium thermodynamic
entropy as the summation of them. We analytically confirm that the total thermodynamic entropy satisfies the
third law of thermodynamics. Our numerical solutions show that, even when the dynamics of the system is well
approximated by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian master equation, the
total thermodynamic entropy production rate can be negative, while the total thermodynamic entropy satisfies
the second law of thermodynamics. This result is a counterexample to the common belief that the total entropy
production rate is non-negative when the system is under the GKSL-type Markovian dynamics.

DOI: 10.1103/PhysRevA.103.052208

I. INTRODUCTION

Thermodynamics of macroscopic systems explains their
macroscopic thermodynamic changes, where microscopic
fluctuations can be neglected [1–3]. On the other hand, be-
cause of the development of nanotechnology, researchers in
recent years have tried to extend the conventional thermody-
namics to the microscopic world, where not only thermal but
also quantum fluctuations cannot be neglected. This research
field is called quantum thermodynamics [4–6], which explains
microscopic thermodynamic changes of microscopic systems
and macroscopic ones.

One of the most fundamental problems in quantum ther-
modynamics is how to define thermodynamic quantities such
as thermodynamic entropy, temperature, heat, and work. Of
particular importance is the thermodynamic entropy, because
it characterizes the irreversibility of thermodynamics. This is
why researchers have suggested several definitions of ther-
modynamic entropy [7–9] and various definitions of entropy
production and of its rate; see Ref. [10] and references therein.
However, there is no consensus for now. The connection be-
tween the entropy production and quantum information [11,
Sec. 5.4], such as quantum cryptography [12], is also currently
being investigated.
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‡hakoshima-hideaki@aist.go.jp

One of the typical setups in quantum thermodynamics
is a quantum system coupled with a bath. The system is
open [13,14], and the total system, which is a compound
of the system and the bath, is isolated (closed) when the
total Hamiltonian is time independent (time dependent) [14,
Sec. 3.1.1]. There is active research [15–20] into the relation
between non-Markovianity [21] of the dynamics of an open
quantum system and a negative entropy production rate of
the total system. However, there is no agreement about this
relation mainly because there is no unified definition of the
entropy production rate or of non-Markovianity. On the other
hand, when an open quantum system is under the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian
dynamics [13,14,22–24], it is widely believed that the entropy
production rate of the total system is non-negative [15–20],
and researchers often use the von Neumann entropy pro-
duction rate [25], which is the minus time-derivative of the
von Neumann relative entropy [26, Sec. 11.8] between the
reduced state of the system and the reference stationary state
of the GKSL master equation. As we will see later, there
is an implicit assumption in the form of the von Neumann
entropy production rate that the size of a bath is so macro-
scopically large that its temperature does not change during
the dynamics. However, when the size of the bath is finite, the
temperature of the bath varies with time in general [7]. Then,
we cannot use the von Neumann entropy production rate.

In this paper, we define and investigate a total thermody-
namic entropy production rate of an isolated quantum system
which consists of a system and a finite-sized bath. In par-
ticular, we consider a quantum model of coupled harmonic
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oscillators in a star configuration. We show that, contrary
to the common belief, the entropy production rate of the
total system can be negative even when the dynamics of the
central harmonic oscillator (system) is well approximated by
the GKSL master equation. This comes from the temperature
changes of the surrounding harmonic oscillators (bath).

This paper is organized as follows. In Sec. II we review
thermodynamic entropy of macroscopic systems and the von
Neumann entropy production rate. In Sec. III we introduce
our model, the initial state, and the dynamics. In Sec. IV we
show that every harmonic oscillator is in a Gibbs state with
a time-dependent temperature in our settings. We thus define
the time-dependent thermodynamic entropy of each harmonic
oscillator in a similar way to the definition in equilibrium
thermodynamics and statistical mechanics. Then we define the
nonequilibrium thermodynamic entropy of the total system as
the summation of them. This total thermodynamic entropy
satisfies the third law of thermodynamics. In Sec. V, con-
sidering the GKSL-type Markovian dynamics of the system,
we show numerically that our total thermodynamic entropy
production rate can take negative values, while our total
thermodynamic entropy satisfies the second law of thermo-
dynamics. In Sec. VI we draw a conclusion.

II. REVIEW OF THERMODYNAMIC ENTROPY
AND OF ENTROPY PRODUCTION RATE

A. Thermodynamic entropy of macroscopic systems

Equilibrium thermodynamics of macroscopic systems is an
established theory [1,2]. The irreversibility of thermodynam-
ics is expressed by its second law, which can be cast into
the form of the principle of increasing total thermodynamic
entropy [1, Sec. 14.2] [27]. Let us prepare an adiabatic system
in an equilibrium state with some constraints (for example, a
system consisting of the two subsystems with different tem-
peratures separated by an adiabatic wall). If we get rid of
the constraints (e.g., remove the wall) at time tini, the system
would change to a new equilibrium state at time tfin. The final
total thermodynamic entropy Sth

tot (tfin) must be greater than or
equal to the initial one Sth

tot (tini ):

�Sth
tot (tfin) = Sth

tot (tfin) − Sth
tot (tini ) � 0, (1)

where �Sth
tot (t ) := Sth

tot (t ) − Sth
tot (tini ) denotes the total ther-

modynamic entropy production from tini to t . This is the
principle of increasing total thermodynamic entropy. Here,
the word “total” refers to the adiabatic system itself, ex-
cluding its environment, and is used to distinguish �Sth

tot (t )
from the internal thermodynamic entropy production, which
we will explain later. Note that the principle deals with the
thermodynamic-entropy difference only between the initial
and final equilibrium states. This does not forbid the total
thermodynamic entropy from decreasing during the interme-
diate nonequilibrium process [1, Sec. 14.2]. In other words,
the total thermodynamic entropy production rate �th

tot (t ) :=
dSth

tot (t )/dt can be negative for some time t .
Actually, the theory of nonequilibrium thermodynamics

of macroscopic systems, including a proper definition of
nonequilibrium thermodynamic entropy Sth(t ), has not been
established yet [3]. However, the entropy balance [3, Sec. 2.3],

which we will explain below, is considered to hold universally.
Let us consider a system A and its environment B, whose
thermodynamic entropies are defined as Sth

A (t ) and Sth
B (t ), re-

spectively. The time derivative of Sth
A (t ) is written as the sum

of the internal thermodynamic entropy production rate of the
system d intSth

A (t )/dt and the thermodynamic entropy flux into
the system dextSth

A (t )/dt as follows:

d

dt
Sth

A (t ) = d int

dt
Sth

A (t ) + dext

dt
Sth

A (t ). (2)

This is the entropy balance. We must distinguish the internal
thermodynamic entropy production, which is the time integral
of its rate, from the total one. When the temperature TA(t ) of
the system A is defined, the entropy flux into the system A is
defined as [3, Sec. 1.3.3.2]

dext

dt
Sth

A (t ) := 1

TA(t )

-dQA(t )

dt
, (3)

where -dQA(t )/dt is the heat flux into the system A and the bar
in -dQA(t ) means that it is an inexact differential [3, Sec. 1.3.2].
Then, the internal entropy production rate of the system A is
determined from Eqs. (2) and (3). On the other hand, when the
temperature TA(t ) of the system A is not defined, it is a subject
of research how to define d intSth

A (t )/dt and dextSth
A (t )/dt . A

similar relation to Eq. (2) holds for the environment:

d

dt
Sth

B (t ) = d int

dt
Sth

B (t ) + dext

dt
Sth

B (t ). (4)

The point is that the entropy flux into the system does not
equal that out of the environment in general:

dext

dt
Sth

A (t ) �= −dext

dt
Sth

B (t ). (5)

In order to recognize this point, let us consider the follow-
ing example [2, Sec. 4.3] [3, Sec. 7.1.1]. Prepare an isolated
system composed of the two subsystems A and B. There are
two fixed walls between A and B: an adiabatic wall and a
diathermal wall. The subsystem A (B) is in an equilibrium
state with temperature T 0

A (T 0
B (> T 0

A )). The total system is also
at equilibrium. Then remove the adiabatic wall at time tini,
and heat begins to flow from B to A through the diathermal
wall and continues flowing until the two subsystems are of
equal temperature at time tfin. Let us assume that the thermal
conductivity of the diathermal wall is so small that each of
the two subsystems should be always in an equilibrium state
and that their temperatures TA(t ) and TB(t ) change very slowly
during the process. We call this process quasistatic [2, Sec.
4.3] for both A and B, meaning that they are always in an
equilibrium state. We note that there are other definitions of
quasistatic processes; see, for example, Sec. 12.6 in Ref. [1].

Let us describe the internal energy of the subsystem A as
EA(t ). From the first law of thermodynamics, the change of
EA(t ) equals to the sum of the heat QA into A and the work WA

done on A: �EA(t ) = QA + WA. In the present example, WA is
always zero because of the fixed diathermal wall. Hence the
heat flux into the subsystem A is given by dEA(t )/dt . From the
law of energy conservation, the heat flux into the subsystem B
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is given by −dEA(t )/dt . Then the entropy fluxes into the two
subsystems are defined as

dext

dt
Sth

A (t ) = 1

TA(t )

dEA(t )

dt
, (6)

dext

dt
Sth

B (t ) = − 1

TB(t )

dEA(t )

dt
. (7)

These equations show that the entropy flux into A does not
equal that out of B at t �= tfin because TA(t ) �= TB(t ). As the
process is quasistatic for both A and B, the time derivatives of
the thermodynamic entropies of the two subsystems are given
by [2, Sec. 4.3]

d

dt
Sth

A (t ) = 1

TA(t )

dEA(t )

dt
, (8)

d

dt
Sth

B (t ) = − 1

TB(t )

dEA(t )

dt
. (9)

Combining Eqs. (2), (4), and (6)–(9), we find that the internal
thermodynamic entropy production rates of the two subsys-
tems are both zero:

d int

dt
Sth

A (t ) = d int

dt
Sth

B (t ) = 0. (10)

We regard this as the sign that the process is quasistatic for
both A and B.

Let us confirm that the above example satisfies the princi-
ple of increasing total thermodynamic entropy (1). The total
thermodynamic entropy production rate is the sum of the
variation rates of the thermodynamic entropies of the two
subsystems:

�th
tot (t ) = d

dt
Sth

tot (t ) = d

dt
Sth

A (t ) + d

dt
Sth

B (t )

= TB(t ) − TA(t )

TA(t )TB(t )

dEA(t )

dt
� 0, (11)

where the last inequality follows from TB(t ) � TA(t ) and
dEA(t )/dt � 0. This leads to the satisfaction of the principle
of increasing total thermodynamic entropy:

�Sth
tot (tfin) =

∫ tfin

tini

dt �th
tot (t ) � 0. (12)

Note that the total thermodynamic entropy production rate is
not the sum of the internal thermodynamic entropy production
rates:

�th
tot (t ) �= d int

dt
Sth

A (t ) + d int

dt
Sth

B (t ). (13)

B. The von Neumann entropy production rate

Let us consider an undriven open quantum system A (dif-
ferent from A in the previous section) which is coupled to a
thermal bath B with initial temperature T 0

B . If the coupling is
sufficiently weak, the dynamics of the system is well approx-
imated by the GKSL-type Markovian master equation. Then
the following von Neumann entropy production rate [25] is
typically used:

�vN(t ) := − d

dt
KvN

(
ρ̂A(t )||ρ̂ th

A

)
, (14)

where ρ̂A(t ) is the density operator of the system, ρ̂ th
A :=

e−β0
BĤA/Tr[e−β0

BĤA ] with β0
B = 1/(kBT 0

B ) and with ĤA being the
Hamiltonian of the system is the steady state of the GKSL
master equation, and

KvN(ρ̂1||ρ̂2) := kBTr[ρ̂1(ln ρ̂1 − ln ρ̂2)]

= −SvN(ρ̂1) − kBTr[ρ̂1 ln ρ̂2] (15)

is the von Neumann relative entropy [26, Sec. 11.8] with
SvN(ρ̂) := −kBTr[ρ̂ ln ρ̂] being the von Neumann entropy.

We can transform Eq. (14) as follows [14, Sec. 3.2.5]:

�vN(t ) = − d

dt
KvN

(
ρ̂A(t )

∣∣∣∣ρ̂ th
A

)

= d

dt
SvN

A (t ) + kB
d

dt
Tr

[
ρ̂A(t ) ln

e−β0
BĤA

Tr[e−β0
BĤA ]

]

= d

dt
SvN

A (t ) − 1

T 0
B

d

dt
Tr[ρ̂A(t )ĤA]

− kB ln Tr[e−β0
BĤA ]

d

dt
Tr[ρ̂A(t )]

= d

dt
SvN

A (t ) − 1

T 0
B

d

dt
EA(t )

= d

dt
SvN

A (t ) + 1

T 0
B

d

dt
EB(t ), (16)

where EA(t ) (EB(t )) is the mean energy of the system (bath).
The last term in the third line of Eq. (16) becomes zero
because Tr[ρ̂A(t )] = 1 all the time. From the conservation of
the total energy, we have derived the last line in Eq. (16),
ignoring the interaction energy due to weak coupling. The
first term in the last line of Eq. (16) is the time derivative
of the von Neumann entropy of the system and the second
term is the time derivative of the thermodynamic entropy of
the bath under the quasistatic process. Note that there appears
an implicit assumption that the temperature of the bath does
not change from the initial temperature T 0

B in this second term.
However, when the size of the bath is finite, the temperature of
a part of the bath changes, as we will show in Sec. V B. Then
we cannot use the von Neumann entropy production rate.

If we regarded the von Neumann entropy of the system as
its nonequilibrium thermodynamic entropy, the von Neumann
entropy production rate (16) would be regarded as the total
thermodynamic entropy production rate. However, this is a
delicate matter, because the von Neumann entropy does not
equal the thermodynamic entropy in general. For example, let
us decouple the system from the bath in the middle of the
dynamics. Then the system is isolated, in general out of equi-
librium, and undergoes the unitary dynamics. If the system
shows thermalization [28], its nonequilibrium thermodynamic
entropy should change. However, its von Neumann entropy
does not change under the unitary dynamics [26, Sec. 11.1.1].
Hence we do not regard the von Neumann entropy of the
system as its thermodynamic entropy in general. However,
when the system is in a Gibbs state, its von Neumann entropy
coincides with its thermodynamic entropy. Actually, we will
consider such a case by adopting special settings in the next
section.
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It is shown that the von Neumann entropy production rate
is always non-negative during the dynamics [25]:

�vN(t ) � 0 ∀t . (17)

This leads to the non-negative von Neumann entropy produc-
tion:

�SvN(t ) :=
∫ t

tini

ds �vN(s) � 0 ∀t � tini. (18)

The above two inequalities are often regarded as signs of
irreversibility. Here the total system is not necessarily at equi-
librium at tini or t . Hence, inequality (18) with t = tfin is
different from the principle of increasing total thermodynamic
entropy (1) unless each of the total system and the system A is
in an equilibrium state at both tini and tfin.

III. SETTINGS

A. Hamiltonian

We consider a quantum model of coupled harmonic oscil-
lators in a star configuration. It consists of a central harmonic
oscillator j = 1, which we refer to as system A, and N sur-
rounding harmonic oscillators j = 2, . . . , N + 1, which we
refer to as bath B. The system A and each harmonic oscillator
j in B interact with each other with the coupling constant gj .
The total system is isolated, and hence its Hamiltonian is time
independent as in

Ĥ = ĤA + ĤB + ĤI , (19)

where

ĤA = h̄ω1
(
â†

1â1 + 1
2

)
, (20)

ĤB =
N+1∑
j=2

h̄ω j

(
â†

j â j + 1

2

)
, (21)

ĤI =
N+1∑
j=2

h̄g j (â
†
1â j + â1â†

j ), (22)

with â j (â†
j ) denoting the annihilation (creation) operator of

the jth harmonic oscillator, which satisfies the following com-
mutation relations:

[â j, â†
k] =δ j,k, (23)

[â j, âk] =[â†
j , â†

k

] = 0 for j, k = 1, . . . , N + 1. (24)

This total Hamiltonian is a type of Fano-Anderson Hamil-
tonian in condensed-matter physics and of Lee-Friedrichs
Hamiltonian in atomic physics [29–34]. If the counter-rotating
terms

∑N+1
j=2 h̄g j (â

†
1â†

j + â1â j ) are added to the interaction
Hamiltonian in Eq. (22), the total Hamiltonian will become
the Caldeira-Leggett Hamiltonian [34,35]. When N is large
enough, the system is damped by the bath and is called a
damped harmonic oscillator [13,22].

We can cast the total Hamiltonian into the form

Ĥ =
N+1∑
j=1

h̄ω j

2

(
r̂2

2 j−1 + r̂2
2 j

)+
N+1∑
j=2

h̄g j (r̂1r̂2 j−1 + r̂2r̂2 j )

=:
h̄

2
r̂TH r̂, (25)

where we have introduced the modified position operator
r̂2 j−1 and the modified momentum operator r̂2 j ,

r̂2 j−1 := â j + â†
j√

2
, r̂2 j := â j − â†

j√
2 i

, (26)

and their vector representation

r̂ = (r̂1, r̂2, . . . , r̂2N+1, r̂2N+2)T (27)

as well as a 2(N + 1)-dimensional symmetric matrix H ,
whose nonzero elements are

H2 j−1,2 j−1 = H2 j,2 j = ω j for j = 1, . . . , N + 1,

H1,2 j−1 = H2 j−1,1 = H2,2 j = H2 j,2 = g j (28)

for j = 2, . . . , N + 1.

B. Initial state and unitary dynamics

Let us impose the constraint ĤI = 0 for t < 0 and prepare
the following initial state:

ρ̂(t � 0) = e−β0
AĤA

ZA
⊗ e−β0

BĤB

ZB

= e−β0
AĤA

ZA
⊗
(

N+1⊗
j=2

e−β0
BĤj

Z j

)
, (29)

where

ZA = Tr[e−β0
AĤA ], ZB = Tr[e−β0

BĤB ], (30)

Ĥj = h̄ω j
(
â†

j â j + 1
2

)
, Zj = Tr[e−β0

BĤj ]. (31)

That is, the system and the bath are both in the Gibbs states
with inverse temperatures β0

A and β0
B, respectively, and they

are uncorrelated. Because of the constraint ĤI = 0, the initial
state (29) is an equilibrium state:

ρ̂(t2) = e−i ĤA+ĤB
h̄ (t2−t1 )ρ̂(t1)ei ĤA+ĤB

h̄ (t2−t1 )

= ρ̂(t1) for t1 � t2 � 0. (32)

At time t = 0, we remove the constraint ĤI = 0 and let the
state of the total system evolve under the total Hamiltonian
(25). The interaction sets in between the system and the bath,
which creates correlations.

As ĤA and ĤB are purely quadratic, the initial state (29)
is a Gaussian state [36–40] with vanishing first moments:
Tr[r̂ρ̂(0)] = 0. Moreover, as the total Hamiltonian is purely
quadratic, the total density operator

ρ̂(t ) = Û (t )ρ̂(0)Û †(t ) with Û (t ) = exp

(
−i

Ĥ

h̄
t

)
(33)

is always a Gaussian state with vanishing first moments:
Tr[r̂ρ̂(t )] = 0. Therefore, ρ̂(t ) is completely characterized
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by the 2(N + 1) × 2(N + 1) covariance matrix σ (t ) whose
( j, k)-element is given by

σ j,k (t ) = Tr[ρ̂(t ){r̂ j, r̂k}], (34)

where the curly parentheses {•, •} denote the anticommuta-
tor. Note that the covariance matrix is a symmetric matrix.
Because of Eq. (33), the following relation holds [36, Sec.
5.1.2]:

σ (t ) = V (t )σ (0)V (t )T with V (t ) = e	Ht , (35)

where

	 =
N+1⊕
j=1

	1 =
⎛
⎝	1

. . .

	1

⎞
⎠, 	1 =

(
0 1

−1 0

)
,

(36)

and H is the 2(N + 1)-dimensional symmetric matrix intro-
duced in Eq. (25).

If the total system is in a Gaussian state, its subsystems are
also in Gaussian states. Thus, each of the states of the system
and the bath is Gaussian and is completely characterized by
the covariance matrices σA(t ) and σB(t ), respectively, which
are the submatrices of σ (t ) [36, Sec. 5.2]:

σ (t ) =
(

σA(t ) σAB(t )
σAB(t )T σB(t )

)
, (37)

where σA(t ) is a two-dimensional symmetric matrix, σB(t )
is a 2N-dimensional symmetric matrix, and σAB(t ) is a 2 ×
2(N + 1) matrix. Each harmonic oscillator in the total system
is also in a Gaussian state which is totally determined by the
following covariance matrix:

σ j (t ) :=
(

σ2 j−1,2 j−1(t ) σ2 j−1,2 j (t )
σ2 j−1,2 j (t ) σ2 j,2 j (t )

)
(38)

for j = 1, . . . , N + 1. The initial covariance matrix for the
state (29) is [36, Sec. 3.3]

σ (0) =
(

σA(0) 0
0 σB(0)

)
,

σA(0) = σ1(0) = coth

(
h̄ω1

2kBT 0
A

)
I2, (39)

σB(0) =
N+1⊕
j=2

σ j (0), σ j (0) = coth

(
h̄ω j

2kBT 0
B

)
I2,

where T 0
A = 1/(kBβ0

A), T 0
B = 1/(kBβ0

B), and I2 is the two-
dimensional identity matrix.

C. The GKSL master equation

If the couplings {g j} of the harmonic oscillators are suffi-
ciently weak, the dynamics of the system is well approximated
by the GKSL master equation [13,14,22–24]:

d

dt
ρ̂A(t ) = − i

h̄
[ĤA, ρ̂A(t )]

+ 
(n̄ + 1)(2â1ρ̂A(t )â†
1 − {â†

1â1, ρ̂A(t )})

+ 
n̄(2â†
1ρ̂A(t )â1 − {â1â†

1, ρ̂A(t )}), (40)

where

n̄ = 1

eβ0
Bh̄ω1 − 1

(41)

is the mean excitation number of a harmonic oscillator at
thermal equilibrium with frequency ω1 at inverse temperature
β0

B, and


 = πJ (ω1) (42)

is the relaxation rate of the system, with

J (ω) =
N+1∑
j=2

g2
j δ(ω − ω j ) (43)

being the spectral density of the bath. Note that when we cal-
culate 
 in Eq. (42), we need to specify the form of J (ω) in the
continuous limit. For example, if we consider an Ohmic bath
[21,22], the spectral density is written as J (ω) = ηωe−ω/ωc ,
where η is the coupling strength between the system and the
bath, and ωc is the cutoff frequency. Under this GKSL master
equation, the system is equilibrated with the bath in the limit
t → ∞:

ρ̂A(∞) = ρ̂ th
A = e−β0

BĤA

Tr[e−β0
BĤA ]

. (44)

As we will show in the next section, [ĤA, ρ̂A(t )] = 0 al-
ways holds in our settings. Then the GKSL master equation
(40) becomes

d

dt
ρ̂A(t ) = 
(n̄ + 1)(2â1ρ̂A(t )â†

1 − {â†
1â1, ρ̂A(t )})

+ 
n̄(2â†
1ρ̂A(t )â1 − {â1â†

1, ρ̂A(t )}). (45)

Under this GKSL master equation and the initial covariance
matrix in Eq. (39), the covariance matrix of the system at time
t is written as [40, Sec. 4.1.1]

σA(t ) =
[

coth

(
h̄ω1

2kBT 0
A

)
e−2
t

+ coth

(
h̄ω1

2kBT 0
B

)
(1 − e−2
t )

]
I2. (46)

IV. ANALYTICAL RESULTS

A. Gibbs states

We show that each harmonic oscillator is always in a Gibbs
state with a time-dependent temperature under the unitary dy-
namics (33) of the total system. Note that there is a one-to-one
correspondence between the density operator and the covari-
ance matrix of each harmonic oscillator. As the covariance
matrix is easier to calculate than the density matrix, we first
calculate the covariance matrix. By substituting Eq. (39) into
Eq. (35), we find (see Appendix A)

σ j (t ) = σ2 j−1,2 j−1(t )I2 for j = 1, . . . , N + 1. (47)

According to the calculation in Appendix A, the density op-
erator is expressed with the covariance matrix (47) in the
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following form:

ρ̂ j (t ) = e−β j (t )Ĥj

Z j (t )
, (48)

Zj (t ) = Tr[e−β j (t )Ĥj ] = 1

2

√
σ2 j−1,2 j−1(t )2 − 1, (49)

β j (t ) = 1

kBTj (t )
= 2

h̄ω j
coth−1[σ2 j−1,2 j−1(t )]

= 1

h̄ω j
ln

(
σ2 j−1,2 j−1(t ) + 1

σ2 j−1,2 j−1(t ) − 1

)

= 1

h̄ω j
ln

(
2Ej (t ) + h̄ω j

2Ej (t ) − h̄ω j

)
, (50)

where Ej (t ) is the mean energy of the jth harmonic oscillator:

Ej (t ) = Tr[Ĥj ρ̂ j (t )] = h̄ω j

2
σ2 j−1,2 j−1(t ). (51)

We find that each harmonic oscillator is always in a Gibbs
(thermal equilibrium) state with a time-dependent temperature
Tj (t ). In this meaning, the dynamics is quasistatic for every
harmonic oscillator.

As the system is always in a Gibbs state, the relation
[ĤA, ρ̂A(t )] = [ĤA, e−βA(t )ĤA/ZA(t )] = 0 holds all the time.
Therefore the GKSL master equation (40) transforms into
Eq. (45). Using Eq. (46) for the time-dependent temperature
Tj (t ) in Eq. (50), we find that the system under the GKSL
master equation is equilibrated with the bath in the limit
t → ∞:

TA(∞) = T1(∞) = T 0
B ; (52)

we will plot this in Fig. 4 below.

B. Thermodynamic entropy

We define the time-dependent free energy and the time-
dependent thermodynamic entropy of the jth harmonic
oscillator simply following the analog of equilibrium statis-
tical mechanics and thermodynamics:

Fj (t ) := −kBTj (t ) ln Zj (t ), (53)

Sth
j (t ) := Ej (t ) − Fj (t )

Tj (t )
. (54)

In fact, the von Neumann entropy of the jth harmonic oscilla-
tor coincides with its thermodynamic entropy because it is in
a Gibbs state [1, Sec. 21.1]:

SvN
j (t ) := −kBTr[ρ̂ j (t ) ln ρ̂ j (t )]

= −kBTr

[
ρ̂ j (t ) ln

(
e−β j (t )Ĥj

Z j (t )

)]

= 1

Tj (t )
Tr[ρ̂ j (t )Ĥj] + kB ln Zj (t )

= Ej (t ) − Fj (t )

Tj (t )
= Sth

j (t ). (55)

We can rewrite Sth
j (t ) in Eq. (54) as a strictly monotonically

increasing function of Ej (t ):

Sth
j (t )

kB
= 2Ej (t ) + h̄ω j

2h̄ω j
ln

(
2Ej (t ) + h̄ω j

2h̄ω j

)

− 2Ej (t ) − h̄ω j

2h̄ω j
ln

(
2Ej (t ) − h̄ω j

2h̄ω j

)
. (56)

This is followed by

∂Sth
j (t )

∂Ej (t )
= kB

h̄ω j
ln

(
2Ej (t ) + h̄ω j

2Ej (t ) − h̄ω j

)
= 1

Tj (t )
(57)

and

d

dt
Sth

j (t ) = 1

Tj (t )

d

dt
E j (t ). (58)

We regard dEj (t )/dt as the heat flux into the jth harmonic
oscillator because its Hamiltonian Ĥj is time independent [5,
Sec. 2.1]. Then, Eq. (58) is a manifestation of the quasistatic
process; see Eq. (8). We define the thermodynamic entropy
flux into the jth harmonic oscillator as

dext

dt
Sth

j (t ) = 1

Tj (t )

d

dt
E j (t ), (59)

just as Eq. (6). Then we find that the internal thermodynamic
entropy production rate of the jth harmonic oscillator is zero:

d int

dt
Sth

j (t ) = d

dt
Sth

j (t ) − dext

dt
Sth

j (t ) = 0, (60)

which is also a manifestation of the quasistatic process.
In order to define the nonequilibrium thermodynamic en-

tropy of the total system, we impose the additivity of the
thermodynamic entropy, which is satisfied in equilibrium ther-
modynamics of macroscopic systems (see Secs. 11.5 and
13.11 in Ref. [1]). We thereby arrive at

Sth
tot (t ) :=

N+1∑
j=1

Sth
j (t )

= kB

N+1∑
j=1

[
2Ej (t ) + h̄ω j

2h̄ω j
ln

(
2Ej (t ) + h̄ω j

2h̄ω j

)

− 2Ej (t ) − h̄ω j

2h̄ω j
ln

(
2Ej (t ) − h̄ω j

2h̄ω j

)]
. (61)

We analytically confirm that our thermodynamic entropy
(61) satisfies the third law of thermodynamics [1, Sec. 23.7] as
follows. The temperature Tj (t ) in Eq. (50) and the thermody-
namic entropy Sth

j (t ) in Eq. (56) become zero for the vacuum
state:

Tj (t ) → +0, Sth
j (t ) → +0 as Ej (t ) → h̄ω j

2
+ 0.

(62)

As Tj (t ) and Sth
j (t ) are both strictly monotonically increasing

functions of Ej (t ), the thermodynamic entropy Sth
j (t ) becomes

zero if and only if Tj (t ) becomes zero:

Sth
j (t ) → +0 as Tj (t ) → +0. (63)
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This and Eq. (61) lead to the third law of thermodynamics:

Sth
tot (t ) → +0 as Tj (t ) → +0 ∀ j, (64)

which supports the validity of our definition of the total ther-
modynamic entropy in Eq. (61).

C. Total thermodynamic entropy production and its rate

We define the total thermodynamic entropy production as

�Sth
tot (t ) := Sth

tot (t ) − Sth
tot (0)

= Sth
A (t ) − Sth

A (0) +
N+1∑
j=2

[
Sth

j (t ) − Sth
j (0)

]
(65)

and its rate as

�th
tot (t ) := d

dt
Sth

tot (t ) =
N+1∑
j=1

1

Tj (t )

d

dt
E j (t )

= 1

TA(t )

d

dt
EA(t ) +

N+1∑
j=2

1

Tj (t )

d

dt
E j (t ). (66)

Let us transform this into the form which we can easily cal-
culate in terms of the covariance matrix. Using Eqs. (B7) and
(B8) in Appendix B, we obtain

�th
tot (t ) = h̄ω1

TA(t )

N+1∑
j=2

g jσ1,2 j (t ) −
N+1∑
j=2

h̄ω j

Tj (t )
g jσ1,2 j (t )

= kB

N+1∑
j=2

g jσ1,2 j (t )

[
ln

(
σ1,1(t ) + 1

σ1,1(t ) − 1

)

− ln

(
σ2 j−1,2 j−1(t ) + 1

σ2 j−1,2 j−1(t ) − 1

)]
. (67)

This total thermodynamic entropy production rate can be neg-
ative as we will see later.

D. The difference between our total thermodynamic entropy
production rate and the conventional one

Let us consider the weak-coupling regime so that the dy-
namics of the system is well approximated by the GKSL
master equation in Eq. (45). In our settings, the von Neu-
mann entropy of the system coincides with its thermodynamic
entropy as in Eq. (55), and hence the conventional entropy
production rate �vN(t ) in Eq. (16) has the following form:

�vN(t ) = 1

TA(t )

d

dt
EA(t ) + 1

T 0
B

d

dt
EB(t )

= 1

TA(t )

d

dt
EA(t ) +

N+1∑
j=2

1

T 0
B

d

dt
E j (t ). (68)

Let us transform Eq. (68) into the form which we can easily
calculate. As we consider the weak-coupling regime, we ne-
glect the interaction energy: dEB(t )/dt = −dEA(t )/dt . From

the first line in Eq. (68), we obtain

�vN(t ) =
(

1

TA(t )
− 1

T 0
B

)
d

dt
EA(t )

= h̄ω1


(
1

T 0
B

− 1

TA(t )

)[
2EA(t )

h̄ω1
− coth

(
h̄ω1

2kBT 0
B

)]

= h̄ω1


(
1

T 0
B

− 1

TA(t )

)

×
[

coth

(
h̄ω1

2kBTA(t )

)
− coth

(
h̄ω1

2kBT 0
B

)]
, (69)

where the second line follows from Eqs. (51) and (46), and
the last line follows from Eq. (50).

The difference between our total thermodynamic entropy
production rate �th

tot (t ) in Eq. (66) and the conventional en-
tropy production rate �vN(t ) in Eq. (68) arises from the gaps
between {Tj (t )} and T 0

B :

�vN(t ) − �th
tot (t ) =

N+1∑
j=2

(
1

T 0
B

− 1

Tj (t )

)
d

dt
E j (t ). (70)

V. NUMERICAL RESULTS

A. Parameters

For a numerical example, we use an Ohmic bath [21,22],
whose spectral density is

J (ω) =
N+1∑
j=2

g2
jδ(ω − ω j ) = ηωe−ω/ωc , (71)

where η is the coupling strength between the system and the
bath, and ωc is the cutoff frequency. For numerical demonstra-
tion, we fix the parameters as follows [22, Appendix A]:

ω1 = 4 MHz, ωc = 3 MHz, ωmin = 0.026 MHz,

ωmax = 20 MHz, �ω = ωmax − ωmin

N − 1
,

ω j = ωmin + ( j − 2)�ω for j = 2, . . . , N + 1,

η = 10−3, T 0
A = 10 μK, T 0

B = 50 μK. (72)

We set the coupling constant gj by integrating Eq. (71) over ω

as in
N+1∑
j=2

g2
j =

∫ ωmax+ε

ωmin−ε

dω ηωe−ω/ωc �
N+1∑
j=2

η�ωω je
−ω j/ωc , (73)

which gives

g j =
√

η�ωω je−ω j/ωc . (74)

Let us check whether the dynamics of the system obeys
the GKSL master equation when N = 4000, 6000, and 8000.
Note that the quantum state of the system is totally determined
only by σ1,1(t ). Thus, in Fig. 1 we compare σ1,1(t ) which
we calculate from the unitary dynamics of the total system
(35) and that we calculate from the GKSL master equation
(46). We find that the two curves coincide with each other for
t � 2π/�ω, and hence we conclude that the dynamics of the
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FIG. 1. The time evolution of σ1,1(t ). We set ω1 = 4 MHz,
ωc = 3 MHz, ωmin = 0.026 MHz, ωmax = 20 MHz, η = 10−3, T 0

A =
10 μK, and T 0

B = 50 μK. The green dotted line is obtained from
the solution of the GKSL master equation (46). The other lines are
obtained from the unitary dynamics of the total system (35).

system is well approximated by the GKSL master equation
in that time range. However, the dynamics of the system
no longer obeys the GKSL master equation for t � 2π/�ω

because at t = t1 := 2π/�ω, we have eiω j t1 = e2π iωmin/�ω for
j = 2, . . . , N + 1, and hence all harmonic oscillators in the
bath have almost the same phase and recurrencelike behavior
happens; see Fig. 1. Hence we restrict ourselves to tmax <

t1 = 2π/�ω in the following calculations. Note that t1 is
almost proportional to N for large N because �ω = (ωmax −
ωmin)/(N − 1); we thus need not worry about the recurrence-
like behavior for sufficiently large N . We also remark that
the interaction energy EI (t ) := Tr[ρ̂(t )ĤI ] is negligibly small
under the parameters in Eq. (72) for large N ; see Fig. 2. This
justifies the transformation from the first line of Eq. (68) to
that of Eq. (69).

FIG. 2. The time evolution of dEA(t )/dt in Eq. (B7), dEB(t )/dt
in Eq. (B11), and dEI (t )/dt in Eq. (B12) when N = 4000 under the
unitary dynamics of the total system (35). All the parameters except
N are the same as those in Fig. 1.

FIG. 3. The total thermodynamic entropy production rate �th
tot (t )

in Eq. (67) and the conventional entropy production rate �vN(t ) in
Eq. (69). All the parameters except N are the same as those in Fig. 1.

B. Negative total thermodynamic entropy production rate

We compare in Fig. 3 our total thermodynamic entropy
production rate �th

tot (t ) in Eq. (67) with the conventional en-
tropy production rate �vN(t ) in Eq. (69). We find that our total
thermodynamic entropy production rate �th

tot (t ) is negative in
a certain time range, in contrast to the conventional entropy
production rate �vN(t ), which is always non-negative. As we
said in Sec. IV D, �th

tot (t ) differs from �vN(t ) because some of
{Tj (t )} differ from T 0

B ; see Eq. (70). Let us see the behaviors
of {Tj (t )} below. We find in Fig. 4 that the temperature of
the system TA(t ) relaxes to the initial temperature of the bath
T 0

B , while some of the temperatures {Tj (t )} of the harmonic
oscillators in the bath decrease. The harmonic oscillators
which show temperature decreasing have almost the same

FIG. 4. Time-dependent temperature Tj (t ) in Eq. (50) of each
harmonic oscillator. We set N = 4000. All the parameters except
N are the same as those in Fig. 1. The blue solid line is the
time-dependent temperature of the system obtained from the unitary
dynamics of the total system (35). The red dashed line, which is
almost identical to the blue solid line, is the time-dependent temper-
ature of the system obtained from the solution of the GKSL master
equation (46). The dotted lines are the time-dependent temperatures
of all the harmonic oscillators in the bath obtained from the unitary
dynamics of the total system.
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FIG. 5. The time-dependent temperatures {Tj (t )} (upper panels) and the time derivatives of the mean energies {dEj (t )/dt} (lower panels)
of the harmonic oscillators in the bath which have almost the same frequency as that of the system. The color expresses the value of Tj (t )
(dEj (t )/dt) in the upper (lower) panels. The vertical axis corresponds to the number j of each harmonic oscillator. The horizontal axis
corresponds to time. We set N = 4000 in (a) and (d), N = 6000 in (b) and (e), and N = 8000 in (c) and (f). The other parameters are the same
as those in Fig. 1.

frequency as the system (Fig. 5). This can be explained as
follows. The mean energy of the system EA(t ) is a strictly
monotonically increasing function of the temperature of the
system TA(t ), and hence EA(t ) increases as TA(t ) relaxes to
T 0

B , which is higher than the initial temperature of the system
T 0

A . In order for EA(t ) to increase, the system must receive
particles with energy h̄ω1. Note that the total particle number
operator

∑N+1
j=1 â†

j â j commutes with the total Hamiltonian
(25), so that the total particle number is conserved. Thus, in
order for the system to receive a particle with energy h̄ω1,
the bath must provide the particle, and only the harmonic
oscillators whose frequencies are almost the same as that of
the system can do so. When the harmonic oscillators provide
the particle, their mean energies {Ej (t )} decrease. Hence,
the time-dependent temperature Tj (t ), which is a strictly
monotonically increasing function of Ej (t ), also decreases.
We see from Fig. 5 that as |ω j − ω1| becomes smaller,
[T 0

B − Tj (t )] and |dEj (t )/dt | become larger, and so does
[1/T 0

B − 1/Tj (t )]dEj (t )/dt . As N becomes larger, more har-
monic oscillators in the bath take part in the energy exchange
with the system, and hence [T 0

B − Tj (t )] and |dEj (t )/dt |
for each harmonic oscillator become smaller; see Fig. 5. In
addition,

∑N+1
j=2 dEj (t )/dt = dEB(t )/dt = −dEA(t )/dt does

not depend on N as long as the dynamics of the system
obeys the GKSL master equation. Therefore as N becomes
larger, �vN(t ) − �th

tot (t ) in Eq. (70) becomes smaller as in
Fig. 3.

C. The second law of thermodynamics

We compare in Fig. 6 our total thermodynamic entropy
production �Sth

tot (t ) in Eq. (65) with the conventional entropy

production, which in our settings is given by

�SvN(t ) : =
∫ t

0
dt �vN(t )

= Sth
A (t ) − Sth

A (0) − EA(t ) − EA(0)

T 0
B

. (75)

As the entropy production is the time integral of the entropy
production rate, our total thermodynamic entropy production
approaches the conventional entropy production as N be-
comes larger, which is similar to the case of the total entropy

FIG. 6. The thermodynamic entropy production �Sth
tot (t ) in

Eq. (65) and the conventional entropy production �SvN(t ) in
Eq. (75). All the parameters except N are the same as those in Fig. 1.
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FIG. 7. The difference �SvN(t ) − �Sth
tot (t ) in Eq. (76) against

N−1 for four different times. All the parameters except N are the
same as those in Fig. 1.

production rate. In fact, the difference

�SvN(t ) − �Sth
tot (t ) = EA(0) − EA(t )

T 0
B

+
N+1∑
j=2

[
Sth

j (0) − Sth
j (t )

]
(76)

is almost proportional to N−1 for large N ; see Fig. 7. This
suggests that �Sth

tot (t ) may converge to �SvN(t ) in the limit
N → ∞.

Our total thermodynamic entropy production changes little
for 800 μs � t � 1200 μs, as shown in Fig. 6. We therefore
regard the quantum state of the total system ρ̂(t ) in this
time range as an equilibrium state. Since �Sth

tot (t ) > 0 for
800 μs � t � 1200 μs, we judge that our total thermody-
namic entropy Sth

tot (t ) satisfies the principle of increasing total
thermodynamic entropy (1).

VI. CONCLUSION

In conclusion, we have defined the nonequilibrium thermo-
dynamic entropy for the quantum model of coupled harmonic
oscillators in a star configuration. We analytically confirmed
that our total thermodynamic entropy satisfies the third law
of thermodynamics. We have found numerically that our total
thermodynamic entropy production rate can be negative even
when the dynamics of the central harmonic oscillator (system)
is well approximated by the GKSL-type Markovian master
equation, while our total thermodynamic entropy satisfies the
second law of thermodynamics.

Because of the specific Hamiltonian and the special initial
state in our settings, all harmonic oscillators are in Gibbs
states for all the time. This allows us to define the thermo-
dynamic entropy of each harmonic oscillator in the present
work. If we instead prepare a different initial state, each har-
monic oscillator will be no longer in a Gibbs state. Defining
the nonequilibrium thermodynamic entropy of each harmonic
oscillator and of the total system in this case can be an inter-
esting future work.
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APPENDIX A: EVERY HARMONIC OSCILLATOR IS IN A
GIBBS STATE WITH A TIME-DEPENDENT

TEMPERATURE

In this Appendix, we show that every harmonic oscillator is
in a Gibbs state all the time. As each harmonic oscillator is in
a single-mode Gaussian state with vanishing first moments,
its density operator is totally determined by its covariance
matrix (38). Since the time evolution of the covariance matrix
is easier to calculate than that of the density operator, we
first calculate the covariance matrix of each harmonic oscil-
lator at time t in the next two paragraphs. Then, in the last
paragraph, using the relation between the density operator
and the covariance matrix in Eq. (A14), we show that each
harmonic oscillator is in a Gibbs state with a time-dependent
temperature Tj (t ).

The matrix H in Eq. (25) with the elements (28) has a form
of the following symmetric block matrix:

H =

⎛
⎜⎜⎜⎜⎜⎝

ω1I2 g2I2 g3I2 · · · gN+1I2

g2I2 ω2I2 0 · · · 0

g3I2 0 ω3I2
. . .

...
...

...
. . .

. . . 0
gN+1I2 0 · · · 0 ωN+1I2

⎞
⎟⎟⎟⎟⎟⎠. (A1)

Therefore, the nth power of H has a form of the following
symmetric block matrix:

Hn =
⎛
⎝ h1,1(n)I2 · · · h1,N+1(n)I2

...
. . .

...

h1,N+1(n)I2 · · · hN+1,N+1(n)I2

⎞
⎠, (A2)

whose elements satisfy

(Hn)2 j−1,2k−1 = (Hn)2 j,2k, (Hn)2 j−1,2k = (Hn)2 j,2k−1 = 0

for n ∈ N, j, k = 1, . . . , N + 1. (A3)

The (2n − 1)th and the (2n)th powers of the matrix 	 in
Eq. (36) are given by

	2n−1 = (−1)n−1	, 	2n = (−1)nI2N+2 for n ∈ N,

(A4)

where I2N+2 is the (2N + 2)-dimensional identity matrix. The
matrices H and 	 commute with each other:

H	 = 	H. (A5)

Using Eqs. (A4) and (A5), we can rewrite V (t ) = e	Ht in
Eq. (35) as

V (t ) = e	Ht

=
∞∑

n=0

	2n(Ht )2n

(2n)!
+

∞∑
n=1

	2n−1(Ht )2n−1

(2n − 1)!

052208-10



POSSIBILITY OF THE TOTAL THERMODYNAMIC … PHYSICAL REVIEW A 103, 052208 (2021)

=
∞∑

n=0

(−1)n(Ht )2n

(2n)!
+ 	

∞∑
n=1

(−1)n−1(Ht )2n−1

(2n − 1)!

= cos Ht + 	 sin Ht, (A6)

whose transpose is

V (t )T = cos Ht − [sin Ht]	 (A7)

because 	T = −	. From Eq. (A3), we find

(cos Ht )2 j−1,2k−1 = (cos Ht )2 j,2k, (cos Ht )2 j−1,2k = (cos Ht )2 j,2k−1 = 0,

(sin Ht )2 j−1,2k−1 = (sin Ht )2 j,2k, (sin Ht )2 j−1,2k = (sin Ht )2 j,2k−1 = 0 (A8)

for j, k = 1, . . . , N + 1.

As the initial covariance matrix (39) is diagonal, each element of σ (t ) = V (t )σ (0)V (t )T is written as

σ j,k (t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht ) j,lσl,l (0)(cos Ht − [sin Ht]	)l,k

for j, k = 1, . . . , 2N + 2.

(A9)

Let us calculate the elements of the covariance matrix of the jth harmonic oscillator (38). We first obtain

σ2 j−1,2 j−1(t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht )2 j−1,lσl,l (0)(cos Ht − [sin Ht]	)l,2 j−1

=
2N+2∑
l=1

[(cos Ht )2 j−1,l + (sin Ht )2 j,l ]σl,l (0)[(cos Ht )l,2 j−1 + (sin Ht )l,2 j]

=
N+1∑
m=1

[(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1 + (sin Ht )2 j,2mσ2m,2m(0)(sin Ht )2m,2 j]

=
N+1∑
m=1

[(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1 + (sin Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1],

(A10)

where the second line follows from the form of 	 in Eq. (36), the third line follows from Eq. (A8), and the last line follows from
Eq. (A8) and the form of σ (0) in Eq. (39). Similarly, we have

σ2 j,2 j (t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht )2 j,lσl,l (0)(cos Ht − [sin Ht]	)l,2 j

=
2N+2∑
l=1

[(cos Ht )2 j,l − (sin Ht )2 j−1,l ]σl,l (0)[(cos Ht )l,2 j − (sin Ht )l,2 j−1]

=
N+1∑
m=1

[(cos Ht )2 j,2mσ2m,2m(0)(cos Ht )2m,2 j + (sin Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1]

=
N+1∑
m=1

[(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1 + (sin Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1]

= σ2 j−1,2 j−1(t ), (A11)

σ2 j−1,2 j (t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht )2 j−1,lσl,l (0)(cos Ht − [sin Ht]	)l,2 j

=
2N+2∑
l=1

[(cos Ht )2 j−1,l + (sin Ht )2 j,l ]σl,l (0)[(cos Ht )l,2 j − (sin Ht )l,2 j−1]

=
N+1∑
m=1

[−(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 + (sin Ht )2 j,2mσ2m,2m(0)(cos Ht )2m,2 j]
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=
N+1∑
m=1

[−(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 + (sin Ht )2 j−1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1]

=
N+1∑
m=1

[−(cos Ht )2 j−1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 + (sin Ht )2m−1,2 j−1σ2m−1,2m−1(0)(cos Ht )2 j−1,2m−1]

= 0, (A12)

where the fifth line follows from the symmetry of cos Ht and sin Ht . We thus arrive at

σ j (t ) = σ2 j−1,2 j−1(t )I2, (A13)

which appears in Eq. (47) in the main text.
As the jth harmonic oscillator is in a single-mode Gaussian state with vanishing first moments, its density operator is

completely characterized by the covariance matrix in Eq. (A13) and has the following form [41]:

ρ̂ j (t ) = exp
[− 1

2 r̂T
j G j (t )r̂ j

]
Zj (t )

, (A14)

where

r̂ j = (r̂2 j−1, r̂2 j )
T, (A15)

Gj (t ) = 2i	1 coth−1 [σ j (t )i	1] = 2 coth−1 [σ2 j−1,2 j−1(t )]I2 with 	1 =
(

0 1
−1 0

)
, (A16)

Zj (t ) = 1

2

√
det (σ j (t ) + i	1) = 1

2

√
σ2 j−1,2 j−1(t )2 − 1. (A17)

Let us show that ρ̂ j (t ) in Eq. (A14) is a Gibbs state below. The numerator of Eq. (A14) is transformed using Eqs. (A15) and
(A16) as

exp

[
−1

2
r̂T

j G j (t )r̂ j

]
= exp

[
− 2

h̄ω j
coth−1 [σ2 j−1,2 j−1(t )]

h̄ω j

2

(
r̂2

2 j−1 + r̂2
2 j

)] = exp
[− β j (t )Ĥj

]
, (A18)

where

β j (t ) = 1

kBTj (t )
= 2

h̄ω j
coth−1 [σ2 j−1,2 j−1(t )] = 1

h̄ω j
ln

(
σ2 j−1,2 j−1(t ) + 1

σ2 j−1,2 j−1(t ) − 1

)
. (A19)

The trace of the numerator of Eq. (A14) is equal to the de-
nominator:

Tr

[
exp

[
−1

2
r̂T

j G j (t )r̂ j

]]

= Tr[exp[−β j (t )Ĥj]]

= Tr

[
exp

[
−β j (t )h̄ω j

(
â†

j â j + 1

2

)]]

=
∞∑

n=0

exp

[
−β j (t )h̄ω j

(
n + 1

2

)]

= exp[−β j (t )h̄ω j/2]

1 − exp[−β j (t )h̄ω j]

= 1

exp[β j (t )h̄ω j/2] − exp[−β j (t )h̄ω j/2]

= 1√
σ2 j−1,2 j−1(t )+1
σ2 j−1,2 j−1(t )−1 −

√
σ2 j−1,2 j−1(t )−1
σ2 j−1,2 j−1(t )+1

= 1

2

√
σ2 j−1,2 j−1(t )2 − 1 = Zj (t ), (A20)

where in the sixth line, we have used Eq. (A19). Therefore,
we have derived Eqs. (48) and (49):

ρ̂ j (t ) = e−β j (t )Ĥj

Z j (t )
,

Zj (t ) = Tr[e−β j (t )Ĥj ]

= 1

2

√
σ2 j−1,2 j−1(t )2 − 1, (A21)

which shows that the jth harmonic oscillator is in the Gibbs
state with the time-dependent inverse temperature β j (t ).

APPENDIX B: THE TIME DERIVATIVE OF THE MEAN
ENERGY OF EACH HARMONIC OSCILLATOR, THE

BATH, AND THE INTERACTION

In this Appendix we calculate the time derivative of the
mean energy of each harmonic oscillator so that we can trans-
form the thermodynamic entropy production rate (66) to the
more easily calculable form (67). We also calculate the time
derivative of the mean energy of the bath and the interaction in
order to show in Fig. 2 that the interaction energy is negligibly
small.
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The modified position and momentum operators introduced in Eq. (26) satisfy the canonical commutation relations:

[r̂ j, r̂k] = i	 j,k for j, k = 1, . . . , 2(N + 1). (B1)

The total Hamiltonian in the Heisenberg picture is

ĤH (t ) =
N+1∑
j=1

h̄ω j

2

(
r̂H

2 j−1(t )2 + r̂H
2 j (t )2)+

N+1∑
j=2

h̄g j
(
r̂H

1 (t )r̂H
2 j−1(t ) + r̂H

2 (t )r̂H
2 j (t )

)
, (B2)

where r̂H
k (t ) = Û †(t )r̂kÛ (t ) for k = 1, . . . , N + 1. The Heisenberg equations of motions read

d

dt
r̂H

1 (t ) = i

h̄

[
ĤH (t ), r̂H

1 (t )
] = ω1r̂H

2 (t ) +
N+1∑
j=2

g j r̂
H
2 j (t ), (B3)

d

dt
r̂H

2 (t ) = i

h̄

[
ĤH (t ), r̂H

2 (t )
] = −ω1r̂H

1 (t ) −
N+1∑
j=2

g j r̂
H
2 j−1(t ), (B4)

d

dt
r̂H

2 j−1(t ) = i

h̄

[
ĤH (t ), r̂H

2 j−1(t )
] = ω j r̂

H
2 j (t ) + g j r̂

H
2 (t ) for j = 2, . . . , N + 1, (B5)

d

dt
r̂H

2 j (t ) = i

h̄

[
ĤH (t ), r̂H

2 j (t )
] = −ω j r̂

H
2 j−1(t ) − g j r̂

H
1 (t ) for j = 2, . . . , N + 1. (B6)

Then the time derivative of the mean energy of each harmonic oscillator is calculated as

d

dt
EA(t ) = d

dt
E1(t )

= h̄ω1

2

d

dt
σ1,1(t )

= h̄ω1

2

d

dt
Tr
[
ρ̂(0)

{
r̂H

1 (t ), r̂H
1 (t )

}]
= h̄ω1

2
Tr

[
ρ̂(0)

{
d

dt
r̂H

1 (t ), r̂H
1 (t )

}]
+ h̄ω1

2
Tr

[
ρ̂(0)

{
r̂H

1 (t ),
d

dt
r̂H

1 (t )

}]

= h̄ω1

2
Tr

[
ρ̂(0)

{(
ω1r̂H

2 (t ) +
N+1∑
j=2

g j r̂
H
2 j (t )

)
, r̂H

1 (t )

}]
+ h̄ω1

2
Tr

[
ρ̂(0)

{
r̂H

1 (t ),

(
ω1r̂H

2 (t ) +
N+1∑
j=2

g j r̂
H
2 j (t )

)}]

= h̄ω1

2

[
ω1σ2,1(t ) +

N+1∑
j=2

g jσ2 j,1(t )

]
+ h̄ω1

2

[
ω1σ1,2(t ) +

N+1∑
j=2

g jσ1,2 j (t )

]

= h̄ω1

[
ω1σ1,2(t ) +

N+1∑
j=2

g jσ1,2 j (t )

]

= h̄ω1

N+1∑
j=2

g jσ1,2 j (t ), (B7)

d

dt
E j (t ) = h̄ω j

2

d

dt
σ2 j−1,2 j−1(t )

= h̄ω j

2

d

dt
Tr
[
ρ̂(0)

{
r̂H

2 j−1(t ), r̂H
2 j−1(t )

}]
= h̄ω j

2
Tr

[
ρ̂(0)

{
d

dt
r̂H

2 j−1(t ), r̂H
2 j−1(t )

}]
+ h̄ω j

2
Tr

[
ρ̂(0)

{
r̂H

2 j−1(t ),
d

dt
r̂H

2 j−1(t )

}]

= h̄ω j

2
Tr
[
ρ̂(0)

{(
ω j r̂

H
2 j (t ) + g j r̂

H
2 (t )

)
, r̂H

2 j−1(t )
}]+ h̄ω j

2
Tr
[
ρ̂(0)

{
r̂H

2 j−1(t ),
(
ω j r̂

H
2 j (t ) + g j r̂

H
2 (t )

)}]
= h̄ω j

2
[ω jσ2 j,2 j−1(t ) + g jσ2,2 j−1(t )] + h̄ω j

2
[ω jσ2 j−1,2 j (t ) + g jσ2 j−1,2(t )]

= h̄ω j[ω jσ2 j−1,2 j (t ) + g jσ2,2 j−1(t )]

= h̄ω jg jσ2,2 j−1(t )

= −h̄ω jg jσ1,2 j (t ) for j = 2, . . . , N + 1, (B8)
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where the last line follows from

σ1,2 j (t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht )1,lσl,l (0)(cos Ht − [sin Ht]	)l,2 j

=
2N+2∑
l=1

[(cos Ht )1,l + (sin Ht )2,l ]σl,l (0)[(cos Ht )l,2 j − (sin Ht )l,2 j−1]

=
N+1∑
m=1

[−(cos Ht )1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 + (sin Ht )2,2mσ2m,2m(0)(cos Ht )2m,2 j]

=
N+1∑
m=1

[−(cos Ht )1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 + (sin Ht )1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1], (B9)

σ2,2 j−1(t ) =
2N+2∑
l=1

(cos Ht + 	 sin Ht )2,lσl,l (0)(cos Ht − [sin Ht]	)l,2 j−1

=
2N+2∑
l=1

[(cos Ht )2,l − (sin Ht )1,l ]σl,l (0)[(cos Ht )l,2 j−1 + (sin Ht )l,2 j]

=
N+1∑
m=1

[(cos Ht )2,2mσ2m,2m(0)(sin Ht )2m,2 j − (sin Ht )1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1]

=
N+1∑
m=1

[(cos Ht )1,2m−1σ2m−1,2m−1(0)(sin Ht )2m−1,2 j−1 − (sin Ht )1,2m−1σ2m−1,2m−1(0)(cos Ht )2m−1,2 j−1]

= −σ1,2 j (t ). (B10)

Inserting Eqs. (B7) and (B8) into Eq. (66), we obtain Eq. (67), which we can calculate from the covariance matrix σ (t ).
The time derivative of the mean energy of the bath is calculated as

d

dt
EB(t ) =

N+1∑
j=2

d

dt
E j (t ) = −

N+1∑
j=2

h̄ω jg jσ1,2 j (t ). (B11)

From the conservation of the total energy, the time derivative of the interaction energy is calculated as

d

dt
EI (t ) = − d

dt
EA(t ) − d

dt
EB(t ) =

N+1∑
j=2

h̄(ω j − ω1)g jσ1,2 j (t ). (B12)

In Fig. 2, we compare dEA(t )/dt in Eq. (B7), dEB(t )/dt in Eq. (B11), and dEI (t )/dt in Eq. (B12).
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