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Multipartite nonlocality is an important measure of multipartite quantum correlations. In this paper, we show
that the nonlocal n-site Mermin-Klyshko operator M̂n can be exactly expressed as a matrix product operator with
a bond dimension D = 2, and then the calculation of nonlocality measure S can be simplified into standard one-
dimensional (1D) tensor networks. With the help of this technique, we analyze finite-temperature multipartite
nonlocality in several typical 1D spin chains, including an XX model, an XXZ model, and a Kitaev model. For
the XX model and the XXZ model, in a finite-temperature region, the logarithm measure of nonlocality (log2 S)
is a linear function of the temperature T , i.e., log2 S ∼ −aT + b. It provides us with an intuitive picture about
how thermodynamic fluctuations destroy multipartite nonlocality in 1D quantum chains. Moreover, in the XX
model S presents a magnetic-field-induced oscillation at low temperatures. This behavior has a nonlocal nature
and cannot be captured by local properties such as the magnetization. Finally, for the Kitaev model, we find that
in the limit T → 0 and N → ∞ the nonlocality measure may be used as an alternative order parameter for the
topological-type quantum phase transition in the model.
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I. INTRODUCTION

Quantum entanglement is a well-known concept in the
fields of quantum information and condensed-matter physics
[1–5]. For instance, as bipartite measures of entanglement,
entanglement concurrence [6] and entanglement entropy [7]
have been widely used to characterize quantum phase tran-
sitions (QPTs) [8] in various quantum systems. It needs
mention that, in addition to bipartite entanglement, it is also
quite natural to consider multipartite correlations in quantum
many-body systems [9,10]. A feasible method to analyze mul-
tipartite correlations is to use Bell-type inequalities [11–20].
In the literature, multipartite correlation observed by Bell-type
inequalities is usually called multipartite nonlocality.

Despite the complexity involved in its definition and
calculations, multipartite nonlocality has still been used
to study various low-dimensional spin lattices, including
one-dimensional (1D) spin chains [21–27], spin ladders
[28], two-dimensional (2D) quantum lattices [29], and the
Lipkin-Meshkov-Glick model [30]. Some interesting behav-
iors have been reported. For instance, careful analysis of
the ground-state nonlocality discloses that QPTs are usually
accompanied by dramatic changes of the hierarchy of multi-
partite correlations [24]. Moreover, nonlocality also deepens
our understanding about boundary effects in spin chains [31].
One can see that multipartite nonlocality indeed offers us a
valuable perspective to characterize low-dimensional quan-
tum models.

Previous studies about multipartite nonlocality in low-
dimensional quantum systems are mainly about zero tem-
perature. In this paper, we will extend the studies to finite
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temperatures. Our first motivation is that, according to the
third law of thermodynamics, real materials are inevitably af-
fected by thermal fluctuations. We would like to mention that
thermal-state nonlocality has been studied in several models
[21,30]. Limited by their algorithms, nevertheless, only small
lattices with N � 12 have been studied. Thereby, the picture
about finite-temperature nonlocality in low-dimensional quan-
tum models is far from complete.

The second motivation to consider finite temperatures is
that in some quantum systems the ground states are (highly)
degenerate, for instance, in some quantum models with long-
range topological order [32,33]. As a result, when one uses
some variational algorithms to figure out a ground state, the
converged wave function may be any random state in the
ground-state manifold. An alternative solution to overcome
this randomness is to study the thermal-state density matrix
ρ̂T = e−βĤ with β the inversed temperature and Ĥ the Hamil-
tonian of the systems. It is clear that in the low-temperature
limit T → 0, ρ̂T can capture all the bases of the ground-state
manifold with equal weights. Thereby, it would be interesting
to check whether the thermal-state nonlocality can be used to
characterize these models.

In this paper, we will propose a tensor-network algorithm
to calculate finite-temperature nonlocality in general quantum
chains. Especially, we will show that a widely used nonlocal-
ity operator—the Mermin-Klyshko operator [34–36]—can be
exactly rewritten as a matrix product operator (MPO) with a
bond dimension D = 2. Then the calculation of nonlocality
can be simplified into standard 1D tensor networks [37]. We
will use the algorithm to study finite-temperature nonlocality
in several typical 1D quantum spin chains. We will report
a quantitative formula which describes how thermodynamic
fluctuations destroy multipartite nonlocality in the XX model
and the XXZ model. Then in the Kitaev chain, we will show
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that the nonlocality measure can be used to characterize the
topological-type QPT in the model.

This paper is organized as follows. In Sec. II, the concepts
of Bell-type inequalities, multipartite nonlocality, and corre-
sponding numerical algorithms will be introduced. In Sec. III,
results for the XX model, the XXZ model, and the Kitaev
chain will be reported. A summary will be given in Sec. IV,
where some in-depth discussions about the MPO form of the
Bell operators will also be presented.

II. MULTIPARTITE NONLOCALITY AND ALGORITHMS

In this section, first, we will introduce the concepts of
Bell-type inequalities and multipartite nonlocality in Sec. II A.
Previous algorithms for calculating nonlocality will be re-
viewed briefly in Sec. II B. The shortcoming of the algorithms
will also be pointed out. To overcome this shortcoming, in
Sec. II C we show how to rewrite the Mermin-Klyshko op-
erator as an MPO with a bond dimension D = 2. Finally,
we will propose a concise tensor network to calculate finite-
temperature nonlocality in Sec. II D.

A. Bell-type inequalities and multipartite nonlocality

We will consider a quantum system consisting of n qubits.
First, on each qubit i, one should define two observables as

m̂i = ai · σ,

m̂′
i = bi · σ, (1)

where ai and bi are unit vectors, and σ = [σ̂x, σ̂y, σ̂z]. For
convenience, we shall use a 2 × 2 × 2 tensor mi(ki ) to denote
these two observables, i.e., mi(0) = m̂i and mi(1) = m̂′

i. Then
a general n-qubit full-correlation Bell operator is defined as
[34–36,38]

M̂g(a) =
∑

k∈{0,1}n

βk1k2...kn m1(k1)m2(k2) · · · mn(kn), (2)

where a denotes a set of the 2n unit vectors, i.e., a =
{a1, b1 . . . an, bn}, and k is a shorthand notion for k1k2 · · · kn.
The coefficient βk1k2...kn is arbitrary and should satisfy

max
a

〈M̂g(a)〉 � 1 (3)

for all product states. For some system (or some state), if
the inequality is violated, one can conclude that the system
contains some kind of quantum correlations, which is usually
called multipartite quantum nonlocality.

It is quite clear that one can define different Bell operators
by setting the coefficient βk1k2...kn . In this paper, we will con-
sider a special class of Bell operators proposed by Mermin,
Klyshko, and Svetlichny (see Refs. [34–36]):

M̂[1...n] = 1
2 M̂[1...n−1] ⊗ (m̂n + m̂′

n)

+ 1
2 M̂ ′

[1...n−1] ⊗ (m̂n − m̂′
n). (4)

It is usually called the Mermin-Klyshko operator (or Mermin-
Svetlichny operator). In the formula, the operator M̂ ′ is
obtained by exchanging all the ai and bi in the correspond-
ing operator M̂. In this paper, we will use the symbol M̂g

to denote the general Bell operator, and M̂ to denote the
Mermin-Klyshko operator. It is not difficult to prove that the

FIG. 1. Schematic diagram of various hierarchies of multipartite
correlations. Pink shadow denotes that sites can share correlations
only with others in the same group. Bell-type inequalities and the
nonlocality measure S can capture the hierarchies of multipartite
correlations in quantum states.

Mermin-Klyshko operator M̂ is a special form of the general
Bell operator M̂g. A key advantage of the Mermin-Klyshko
operator is that it has explicit upper bounds for various hi-
erarchies of multipartite nonlocality in many-body quantum
systems [11,13–15], and thus can offer an intuitive descrip-
tion of multipartite quantum correlations in low-dimensional
quantum lattices.

Hierarchy of multipartite nonlocality

Quantum systems which consist of many qubits can present
various hierarchies of multipartite nonlocality. Please see
Fig. 1. For a quantum state, in order to identify its hierarchy
of multipartite nonlocality, one should consider the following
high-rank Mermin-Klyshko inequalities [11,13–15]:

S =
{

maxa〈M̂[1...n](a)〉 � 2
n−g

2 for n − g is even,

maxa〈Ŝ[1...n](a)〉 � 2
n−g

2 for n − g is odd,
(5)

where the operator Ŝ[1...n] is defined as

Ŝ[1...n] = 1√
2

(
M̂[1...n] + M̂ ′

[1...n]

)
. (6)

g = 2, 3, . . . , n labels a full series of Mermin-Klyshko in-
equalities. In these inequalities, the highest-rank one is S �
2

n−2
2 . If it is violated, we can conclude that the quantum state

contains the highest hierarchy of multipartite nonlocality, i.e.,
genuine multipartite nonlocality. The lowest-rank inequality is
just S � 2

n−n
2 = 1. If S � 1 is violated, we say that the state

contains the lowest hierarchy of multipartite nonlocality.
In condensed-matter physics, we are just interested in the

qualitative behavior of multipartite correlations, rather than
the specific “hierarchy number.” Thereby, we will ignore the
parity in Eq. (5), and just consider the nonlocality measure
S = maxa〈M̂[1...n](a)〉. Generally speaking, a larger value of
S indicates that the quantum system presents a higher hierar-
chy of multipartite nonlocality.

B. Ground-state nonlocality

We will review previous algorithms to calculate nonlocality
for 1D quantum chains at zero temperature [26]. The short-
coming of the algorithms will also be pointed out.

The entire procedure contains two steps. In step 1, one shall
use matrix product states (MPSs) to approximately describe
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the ground states |ψ〉 of the concerned quantum chains [37].
In step 2, one needs to carry out a numerical optimization to
figure out the nonlocality measure:

S = max
a

〈ψ |M̂[1...n](a)|ψ〉. (7)

Multivariate optimization is a highly nontrivial problem,
and a two-site update algorithm has been proposed to carry out
the optimization [26]. The basic idea is to transform the n-site
optimization into a series of two-site optimizations, and sweep
the chains several times until some convergence is achieved.
More technique details can be found in Ref. [26].

The objective function 〈ψ |M̂|ψ〉 plays a central role in the
optimization. In Ref. [26], in order to carry out the two-site
update optimization, we have to decompose 〈ψ |M̂|ψ〉 into the
following four terms as 〈ψ |M̂|ψ〉 = ( f1 + f2 + f3 − f4) × 1

2 :

f1 = 〈ψ |M̂[1...k−1] ⊗ M̂[k,k+1] ⊗ M̂ ′
[k+2...N]|ψ〉,

f2 = 〈ψ |M̂ ′
[1...k−1] ⊗ M̂[k,k+1] ⊗ M̂[k+2...N]|ψ〉,

f3 = 〈ψ |M̂[1...k−1] ⊗ M̂ ′
[k,k+1] ⊗ M̂[k+2...N]|ψ〉,

f4 = 〈ψ |M̂ ′
[1...k−1] ⊗ M̂ ′

[k,k+1] ⊗ M̂ ′
[k+2...N]|ψ〉. (8)

Moreover, in the above expressions, M̂[1...k−1], M̂ ′
[1...k−1],

M̂[k+2...N], and M̂ ′
[k+2...N] also need to be treated carefully.

The shortcoming of the above algorithm is that the expres-
sion for the objective function 〈ψ |M̂|ψ〉 is rather complex.

For a given MPS |ψ〉, it is well known that if an operator
Ô can be expressed as an MPO its average value 〈ψ |Ô|ψ〉
can be calculated conveniently [39]. The first contribution of
this paper is that we will show the Mermin-Klyshko operator
M̂[1...N] can be expressed exactly as an MPO with a quite small
bond dimension, i.e., D = 2.

C. Bell operators in the form of matrix product operators

First, we shall show that the general Bell operator M̂g in
Eq. (2) can be expressed as an MPO. For such a purpose, we
will just consider an n-qubit 1D quantum chain which is in its
ground state, i.e.,

|ψ〉 =
∑

s′∈{0,1}n

αs′
1s′

2...s
′
n
|s′

1〉 ⊗ |s′
2〉 ⊗ · · · |s′

n〉, (9)

where s′ is a shorthand notion for s′
1s′

2 · · · s′
n. It is well known

that the coefficient tensor αs′
1s′

2...s
′
n

can be expressed efficiently
as an MPS:

αs′
1s′

2...s
′
n
= A1(s′

1)A2(s′
2) · · · An(s′

n). (10)

Similarly, for the general Bell operator M̂g in Eq. (2), we
can treat its coefficient βk1k2...kn as a high-rank tensor. Through
a series of singular value decompositions (SVDs), βk1k2...kn can
also be decomposed into an MPS, i.e.,

βk1k2...kn = B1(k1)B2(k2) · · · Bn(kn). (11)

We are ready to consider the expectation value 〈ψ |M̂g|ψ〉.
According to Eqs. (2), (9), (10), and (11), it is straightforward

FIG. 2. (a) Tensor network illustrating the expectation value
〈ψ |M̂g|ψ〉 for the general full-correlation Bell operator [Eq. (12)].
The ground-state wave function |ψ〉 is in the form of a matrix product
state (see the orange squares). By defining local tensors oi in (b),
the tensor network in (a) is further rephrased into a standard 1D
three-layer tensor network, where the Bell operator is in the form
of a matrix product operator with bond dimensions up to 2

n
2 .

that 〈ψ |M̂g|ψ〉 can be rephrased as

〈ψ |M̂g|ψ〉 =
∑

s′

∑
k

∑
s′′

αs′βkα
∗
s′′ 〈s′

1|m1(k1)|s′′
1〉

× 〈s′
2|m2(k2)|s′′

2〉 · · · 〈s′
n|mn(kn)|s′′

n〉. (12)

In Fig. 2(a) we have drawn a tensor network to illustrate
the above expression, where αs′ , βk, and α∗

s′′ have been de-
scribed as standard 1D tensor networks, and the expression
〈s′

1|m1(k1)|s′′
1〉〈s′

2|m2(k2)|s′′
2〉 · · · 〈s′

n|mn(kn)|s′′
n〉 is denoted by

a direct product of local tensors. Thereby, the expectation
value 〈ψ |M̂g|ψ〉 is completely decomposed into contractions
of local tensors.

To proceed, on each qubit i, we shall further define a tensor
oi = miBi [see Fig. 2(b)]. Then 〈ψ |M̂g|ψ〉 is further rephrased
as a concise 1D tensor network in Fig. 2(c), that is,

M̂g = 〈o1|ô2ô3ô4...|on〉. (13)

In the language of tensor networks [37,39,40], the right-hand
side of Eq. (13) is a standard MPO. It needs mention that,
generally speaking, the obtained MPO should have a bond
dimension as large as D = 2

n
2 . Some advanced compression

techniques may be used to compress this MPO [39,41,42].
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Now we consider the Mermin-Klyshko operator. Thanks to
its recursive definition in Eq. (4), we do not need to first figure
out the coefficient tensor βk1k2...kn and then carry out the SVD
decompositions. Instead, the recursive expression in Eq. (4)
reminds us about how 1D quantum chains are treated with
the famous infinite-size density-matrix renormalization-group
algorithm [37,39,40], where the Hamiltonian can be expressed
concisely as an MPO with a quite small bond dimension.

Along a similar procedure, we have successfully figured
out an MPO expression for the Mermin-Klyshko operator,
with a bond dimension D = 2. The derivation process just
follows Refs. [39,40], and we shall just provide the final result
in this paper. Let us consider an n-site chain. For the leftmost
site, based upon the single-site operators m̂k and m̂′

k defined in
Eq. (1), let us define a bra as

〈o1| = (m̂1, m̂′
1). (14)

For the rightmost site, we define a ket as

|on〉 =
(

1
2 (m̂n + m̂′

n)
1
2 (m̂n − m̂′

n)

)
. (15)

For each intermediate site 1 < i < n, we further define a 2 × 2
operator-valued matrix as

ôi =
(

1
2 (m̂i + m̂′

i )
1
2 (m̂′

i − m̂i )
1
2 (m̂i − m̂′

i )
1
2 (m̂i + m̂′

i )

)
. (16)

Then one can check that the Mermin-Klyshko operator is
equal to the product of these local tensors:1

M̂[1...n] = 〈o1|ô2ô3ô4...|on〉, (17)

i.e., an MPO. According to Eqs. (14)–(16), the bond dimen-
sion of this MPO is merely D = 2.

Alternatively, one can check that the Mermin-Klyshko
operator can be expressed as a general full-correlation Bell
operator, where its coefficient βk1k2...kn has a concise MPS form
in Eq. (11), with Bi(ki ) given by

B1(0) = (1, 0), B1(1) = (0, 1), i = 1;

Bi(0) =
( 1

2 − 1
2

1
2

1
2

)
, Bi(1) =

( 1
2

1
2

− 1
2

1
2

)
, 1 < i < n;

Bn(0) =
( 1

2
1
2

)
, Bn(1) =

( 1
2

− 1
2

)
, i = n.

(18)

Finally, with the help of Eq. (17), the objective function
〈ψ |M̂|ψ〉 can be expressed concisely as a standard 1D tensor
network. Please see Fig. 3(a). Various mature software, such
as ITENSOR [43], can contract this network conveniently.

D. Finite-temperature nonlocality

We move on to show how to calculate nonlocality in a spin
chain at finite temperatures. The quantum state of the system

1The operator Ŝ[1...n] in Eq. (6) can also be expressed as a ma-
trix product operator. On the rightmost site let us define a ket

as |õn〉 = 1√
2
(m̂′

n
m̂n

), then it is not difficult to prove that Ŝ[1...n] =
〈o1|ô2ô3ô4 . . . |õn〉.

FIG. 3. (a) Tensor network illustrating the ground-state expecta-
tion value 〈ψ |M̂|ψ〉 for the Mermin-Klyshko operator. The ground
state |ψ〉 is in the form of a matrix product state (see the origin
squares). The Mermin-Klyshko operator M̂ is in the form of a matrix
product operator with a bond dimension D = 2 (see the circles).
(b) Tensor network used in calculating finite-temperature nonlocality.
The thermal-state operator e−βĤ is expressed in a quadratic form to
maintain its positive definiteness, and periodic boundary conditions
should be imposed in the vertical direction. These standard 1D tensor
networks can be contracted conveniently by mature software, such as
ITENSOR [43].

shall be described by a thermal-state operator e−βĤ , where
Ĥ is the Hamiltonian of the quantum chain, and β = 1

kBT is
the inversed temperature. The Boltzmann constant is set as
kB = 1.

First of all, one shall figure out e−βĤ . For such a purpose,
we will use the standard imaginary-time-evolution algorithm
[41]. The basic idea is as follows. We start from an imaginary-
time-evolution operator:

Û1 = e−�τ Ĥ , (19)

where �τ is a small number (for instance, �τ = 0.05) denot-
ing a time slice. Û1 can be expressed as an MPO faithfully by
a second-order Trotter-Suzuki approximation [41]. Then we
carry out the following recursive procedure:

Ûm = Ûm−1Û1. (20)

It is clear that at the mth step the operator Ûm is equal
to e−βmĤ with βm = m�τ . Thereby, as the recursive pro-
cedure continues, the temperature T = 1

βm
= 1

m�τ
gradually

decreases.
In practice, the bond dimension of the matrix product oper-

ator Ûm would increase exponentially as m increases. Thereby,
we would use some mature compression method [39,41] to
keep the bond dimension of Ûm controllable. Moreover, in
order to maintain the positive definiteness of the thermal-state
operator e−βĤ , it is helpful to use the square of Ûm to construct
e−βĤ , i.e., ÛmÛm → e−βĤ [41]. Thus, at step m, the actual
temperature becomes T = 1

2m�τ
. Finally, we should normal-

ize the thermal state as e−βĤ

Tre−βĤ .
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FIG. 4. Two approaches are used in this paper to investigate
nonlocality in quantum chains. (a) Subchain nonlocality is defined
on the reduced density matrices of continuous n-site subchains in
infinite-size chains. (b) Global nonlocality is defined on the density
matrices of entire finite-size chains with total length N .

After figuring out the normalized thermal state e−βĤ , we
are ready to calculate the nonlocality measure:

S = max
a

Tr
[
M̂[1...N](a) · e−βĤ

]
. (21)

It is straightforward that the objective function can be ex-
pressed as a 1D tensor network as shown in Fig. 3(b). The
optimization should follow the idea of the two-site update
algorithm in Ref. [26].

III. MODELS AND MAIN RESULTS

In this paper, we will consider three typical 1D quantum
chains (i.e., the XX model, the XXZ model, and the Kitaev
chain) at finite temperatures. A direct calculation of the nonlo-
cality for the entire infinite-size chains is intractable. Thereby,
we will investigate “subchain nonlocality” [Fig. 4(a)] by con-
sidering continuous n-site subchains in infinite-size systems.
When necessary, we will also investigate “global nonlocality”
[Fig. 4(b)] in the entire finite-size chains with total length N .

Some numerical details are as follows. In calculating the
thermal-state operator e−βĤ , �τ is set to 0.05, and a second-
order Trotter-Suzuki decomposition is used. The maximum
bond dimension for the matrix product operator Ûm is D0 =
40–80. In the numerical optimization of Eq. (21), in order
to obtain reliable results, for each set of physical parame-
ters, we use 20 independent initial points to carry out the
optimizations.

A. XX model

The 1D antiferromagnetic XX model under a magnetic
field is described by [45,46]

Ĥ =
∑

i

(
σ̂ i

xσ̂
i+1
x + σ̂ i

yσ̂
i+1
y

) − h
∑

i

σ̂ i
z . (22)

σ̂ i
x,y,z denote Pauli matrices on site i. The first summation

denotes the nearest-neighboring interaction in the x-y plane. h
denotes the strength of the magnetic field along the z direction.

FIG. 5. (a) Magnetization curve of the infinite-size XX model
at a finite temperature T = 0.1. h denotes the magnetic field, and
hc = 2 is the ground-state QPT point. (b) Influence of the magnetic
field upon the global nonlocality in the entire XX chain by consider-
ing a finite-size model with N = 20 and T = 0. The ground state is
calculated by ALPS [44] with a maximum bond dimension D = 100.

hc = 2 is the ground-state QPT point of the model. Figure 5(a)
shows the magnetization curve of the model at a fixed tem-
perature T = 0.1. Figure 5(b) offers a brief description about
the effect of the magnetic field upon the global nonlocality
by considering a finite-size chain. It is clear that the magnetic
field tends to destroy the global nonlocality in the model.

Then we pay our attention to subchain nonlocality. First of
all, in Fig. 6(a), we have shown the subchain nonlocality as a
function of the magnetic field in the infinite-size XX model at
finite temperatures. One can find that in the two phases h < hc

and h > hc, the nonlocality measure S presents quite different
behavior. We take the curve with T = 0.1 for instance. For
h > hc, it holds that S � 1, thus the Mermin-Klyshko inequal-
ity in Eq. (5) is not violated and nonlocality is not observed.
For most areas in h < hc, nevertheless, S is larger than 1, thus
nonlocality is observed. In fact, in Fig. 6(a), in some regions
the value of S is larger than 8. According to Eq. (5), some
high hierarchy of multipartite nonlocality is observed.

Furthermore, in the phase h < hc, it is remarkable that
the S (h) curve presents a clear oscillation behavior. As the
temperature increases, the amplitude of the oscillation is sup-
pressed gradually. However, one sees that the oscillation can
still be observed with the temperature up to T = 0.5. Finally,
when the temperature is high enough (i.e., T = 1), the nonlo-
cality measure S vanishes.

The oscillation of the nonlocality discloses that, behind the
simple magnetization curve in Fig. 5(a), there is a hidden and
rich change of multipartite correlations in the reduced density
matrices ρ̂n of the subchains. Real materials always contain
countless atoms. In real experiments, nevertheless, due to the
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FIG. 6. (a) Subchain-nonlocality measure S as a function of the magnetic field h in the infinite-size XX model at finite temperatures T .
The length of the subchain is n = 20. It is remarkable that in the phase h < hc = 2, S presents a magnetic-field-induced oscillation at low
temperatures. This rich behavior in multipartite nonlocality cannot be captured by studying local properties such as the magnetization (see
Fig. 5). (b) Logarithm measure log2 S as a function of T with several h. In a finite-temperature region, log2 S presents an approximate linear
decrement. It provides us with an intuitive picture about how the nonlocality gradually disappears as the temperature rises.

actual size of the equipment, only a limited number of atoms
would be measured. Thereby, an oscillation curve of subchain
nonlocality [Fig. 6(b)], rather than the monotonic decreasing
curve of the global nonlocality [Fig. 5(b)], is more likely to be
observed in an experiment.

We would like to mention that the oscillation behavior of
nonlocality has also been reported in a zero-temperature spin
ladder in a quite recent paper [28]. In Ref. [28], by using
careful numerical analysis, the authors have pointed out that
the mechanism for the oscillation of the nonlocality is the
“major component transitions” in the reduced density matri-
ces ρ̂n of the subchains. Moreover, they have found that the
oscillation of the subchain nonlocality would be modulated
by global nonlocality. Comparing Figs. 5(b) and 6(a), one sees
that the envelope curve of the subchain-nonlocality oscillation
in Fig. 6(a) is a monotonic decreasing curve, which is indeed
quite similar to the global-nonlocality curve in Fig. 5(b). Nev-
ertheless, the results reported in this model have additional
contributions. First, our results ambitiously indicate that the
oscillation of the nonlocality can survive at finite tempera-
tures, thus may be observed in laboratory. In addition, our
results reveals how the oscillation is suppressed gradually as
the temperature rises. Secondly, comparing the oscillation be-
havior in the XX model and in the ladder model [28], we find
three common characteristics: Both models have U (1) sym-
metry; oscillation occurs in the procedure where the models
are being polarized by an external magnetic field; oscillation is
observed in subchain nonlocality, but not in global nonlocality
in the entire lattice. We hope these features point us in the right
direction to search for similar phenomena.

Figure 6(a) also shows that as the temperature rises non-
locality weakens gradually. In order to draw a more intuitive
picture about the effect of the temperature upon the nonlo-
cality, in Fig. 6(b) we have illustrated the logarithm measure
log2 S as a function of the temperature T . It needs mention
that S = 1 (i.e., log2 S = 0) is the threshold value of the
lowest-rank Mermin-Klyshko inequality S � 1. One can see
that (at least) in the vicinity of the threshold value log2 S = 0,

the logarithm measure log2 S can be expressed as a linear
function of T approximately, i.e.,

log2 S ≈ −aT + b. (23)

It is well known that in the high-temperature limit T → ∞ all
correlations (including quantum nonlocality) should vanish.
On the other hand, in the low-temperature region T ≈ 0,
the behavior of quantum nonlocality should be determined
by the lowest-lying energy states. However, in the middle-
temperature regions, a general description is still unclear. The
linear behavior reported in Fig. 6(b) supplements part of the
missing picture in the middle-temperature regions. As we will
show in the next section, the behavior in Eq. (23) is also
observed in the XXZ model.

B. XXZ model

The 1D XXZ model is described by the Hamiltonian [8,22]

Ĥ =
∑

i

(
σ̂ i

xσ̂
i+1
x + σ̂ i

yσ̂
i+1
y + �σ̂ i

z σ̂
i+1
z

)
, (24)

where � is the anisotropic parameter. The ground-state phase
diagram of the model is quite clear [22]. In the limit � → ∞
and � → −∞, the model would be in an antiferromagnetic
state and a ferromagnetic state, respectively. It is expected
that in the intermediate regions one or more QPTs should take
place. Further research shows that there is a first-order QPT at
� = −1 and an infinite-order QPT at � = +1.

The zero-temperature nonlocality of the XXZ model has
been studied in several papers [22,25]. We will pay our at-
tention to finite-temperature nonlocality in the model and
concentrate on a positive �. In Fig. 7(a) we have shown the
dependence of the subchain nonlocality upon the anisotropic
parameter � at several temperatures. First of all, when the
temperature is high enough (i.e., T = 0.5 and 1), the value
of nonlocality measure S is quite small, thus the lowest-rank
Mermin-Klyshko inequality S � 1 is not violated at all. In
other words, nonlocality is not present at high temperatures.
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FIG. 7. (a) Subchain-nonlocality measure S as a function of the anisotropic parameter � in the infinite-size XXZ model at finite
temperatures T . The length of the subchain is n = 20. It is remarkable that S presents cusplike singularity at the QPT point �c = 1 at
finite temperatures. (b) Logarithm measure log2 S as a function of T with several �. Similar to Fig. 6 for the XX model, log2 S in the XXZ
model also presents a linear decrement in a finite-temperature region. Moreover, when � = 2, we observe some thermal enhancement of S in
the low-temperature regions T � 0.9.

Then we turn our attention to low temperatures. Let us
take T = 0.05 for instance. We find that the S (�)T =0.05 curve
is quite similar to the zero-temperature curve previously re-
ported in Ref. [25]. First, in most regions, one can see that S >

1, thus multipartite nonlocality is indeed observed. Second,
at the QPT point �c = 1, S presents a cusplike singularity.
When the temperature is enhanced from T = 0.05 to 0.1,
this cusplike singularity survives, and the location is still at
�c = 1. This result indicates that this QPT can be detected by
multipartite nonlocality even at finite temperatures.

In Fig. 7(a), for most values of �, increasing temperature
tends to destroy quantum nonlocality. However, in a narrow
region near � = 2, we observe a thermal enhancement be-
havior. That is, the S (�)T =0.1 curve is above the S (�)T =0.05

curve. This thermal enhancement should be due to the in-
fluence of low-lying excited states. We denote the ground
state and the first excited state as |ψ0〉 and |ψ1〉, respectively.
First of all, when the temperature T is low enough, the ther-
mal state e−βĤ can be approximately expressed as e−βĤ ≈
ω0|ψ0〉〈ψ0| + ω1|ψ1〉〈ψ1|, with ωi the weights of correspond-
ing states. When T = 0, the system should be in the ground
state, thus ω0 = 1 and ω1 = 0. As the temperature increases
and is slightly larger than zero, the weight ω0 for the ground
state |ψ0〉 decreases and the weight ω1 for the first excited
state |ψ1〉 increases gradually. Suppose |ψ1〉 contains more
quantum nonlocality than |ψ0〉; it is expected that there will be
a thermal enhancement in the low-temperature regions. This is
just what happens in the vicinity of � = 2 in the XXZ model
in Fig. 7.

In order to offer an intuitive picture about how the tem-
perature affects the subchain nonlocality in the XXZ model,
we have plotted the logarithm measure log2 S as a function
of T in Fig. 7(b). First, when � = 2, in the low-temperature
regions one can see the thermal enhancement of S clearly.
Second, just as in the XX model in the previous section,
we find that (at least) in the vicinity of the threshold value
log2 S = 0, the logarithm measure log2 S can also be ex-

pressed as a linear function of T approximately, i.e., log2 S ≈
−aT + b.

C. Kitaev chain

We will consider a 1D Kitaev chain described by [32,47]

Ĥ = J1

∑
even bonds

σ̂ i
xσ̂

i+1
x + J2

∑
odd bonds

σ̂ i
yσ̂

i+1
y , (25)

where its structure is shown in Fig. 8. On even and odd bonds,
spin-spin interactions only occur along the x and y directions,
respectively. J1 and J2 are corresponding coupling constants.
In fact, the Kitaev chain is just a 1D simplified version of the
Kitaev model on a 2D honeycomb lattice introduced by Kitaev
(see Refs. [47,48]).

For the Kitaev chain defined in Eq. (25), it is convenient
to denote a coupling ratio as γ = J1/J2, and then the Hamil-
tonian is just controlled by γ . It has been found that the
second derivative of the ground-state energy density diverges
at γ = 1 [32]. Moreover, the energy gap between the ground
states and other low-lying excited states also vanishes at γ =
1. Thus γc = 1 is indeed a QPT point. Further studies show
that the string order parameter (denoted as �x in Ref. [32])
is zero for γc < 1 and nonzero for γc > 1. Thereby, the phase
transition is accompanied by a change of the topological order
in the chain.

FIG. 8. Structure of Kitaev chains. J1 and J2 denote the coupling
constants in the even bonds and odd bonds, respectively. We use γ =
J1/J2 to denote the coupling ratio, and γc = 1 is the topological QPT
point in the ground states of the model.
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FIG. 9. (a) Subchain-nonlocality measure S as a function of the coupling ratio γ = J1/J2 in the infinite-size Kitaev chains at finite
temperatures T . The length of the subchain is n = 20. γc = 1 is the ground-state topological QPT point. (b) The influence of the subchain
length n upon the nonlocality curve S(γ ). These results indicate that in the limit T → 0 and n → ∞, S can be used as an order parameter for
the QPT of the Kitaev chains.

It needs mention that for any finite γ , the ground states
of the Kitaev chain are always degenerate, labeled as |ψ1〉,
|ψ2〉, and so on. As a result, when one uses some variational
algorithms to figure out a ground state, the converged wave
function may be any random state in the subspace spanned by
{|ψi〉}. An alternative solution to overcome this randomness
is to study the thermal state ρ̂T . In the low-temperature limit,
the thermal state would become an equally weighted mixed
state of these ground states, i.e., ρ̂T → ∑

j |ψ j〉〈ψ j |. As we
will show, the nonlocality in this thermal state can be used to
characterize the topological QPT in the Kitaev chain.

In Fig. 9(a) we have illustrated the subchain nonlocality
as a function of the coupling ratio γ = J1/J2 with various
T . When the temperature is low enough (i.e., T = 0.05 and
0.1), one can see that in most regions of γ < 1 the measure
S is simply zero, while for γ > 1S is nonzero. Furthermore,
we pay our attention to the vicinity of γc = 1. When the
temperature decreases from T = 0.1 to 0.05, in the regions
γ � 1 and γ � 1, the value of S becomes slightly smaller
and bigger, respectively. It is a clue that in the limit T → 0
the first-order derivative of the measure S would diverge at
γc = 1.

In Fig. 9(b), we move on to investigate the effect of the
length n of the subchains upon the nonlocality measure S .
When n is small, i.e., n = 2, we find that S is nonzero for any
finite γ . When n increases to 20, S vanishes for most regions
in γ < 1. When n increases from 20 to 40, in the vicinity of
γc = 1, the value of S is further reduced. It is expected that
in the limit n → ∞ and T → 0, the nonlocality measure S
would be zero for γ < γc and nonzero for γ > γc. In other
words, just as the string order parameter proposed in Ref. [32],
S may serve as an alternative order parameter for the QPT in
the Kitaev chain.

In Fig. 9, for the subchain nonlocality measure S , it holds
that S � 1 for any T and γ . In fact, as can be seen in Fig. 9(a),
the S (γ )T =0.05 curve and the S (γ )T =0.1 curve almost overlap
each other. Moreover, in Fig. 9(b), the S (γ )n=20 curve and
the S (γ )n=40 curve also overlap with each other. It indicates
that convergence has been achieved and one should still have

S � 1 in the large-n and low-T limits. In other words, we do
not expect to observe nonlocality in the subchains. In the XX
model and XXZ model, nevertheless, we have identified some
high hierarchy of multipartite nonlocality, indicated by the
relatively large value of the nonlocality measure S in Figs. 6
and 7. Thereby, when multipartite correlations are concerned,
the Kitaev chain is qualitatively different from the XX model
and XXZ model.

We would like to mention that in some states, for instance,
in the Greenberger-Horne-Zeilinger (GHZ) state |GHZ〉 =

1√
2
(|000〉 + |111〉) [49], although the subsystems do not

present quantum correlation, the entire system may still
contain some kind of quantum correlations. Based on this
consideration, we will try to capture the multipartite corre-
lations in the entire Kitaev chains with global nonlocality, i.e.,
S = S (ρ̂T ).

Figure 10(a) illustrates global nonlocality in the N-size
Kitaev chains at a fixed temperature T = 0.01. We take the
curve of N = 12 for instance. One can see that the global
nonlocality measure S is zero when the coupling ratio γ is
small enough, and is larger than 1 when γ is large enough.
Thereby, nonlocality is observed in the large-γ regions. More-
over, in the vicinity of γ0 = 0.58, the nonlocality measure
S undergoes a sharp transition, and its first-order derivative
dS
dγ

achieves a maximum. For large N , a scaling analysis of
the transition point γ0 is illustrated in Fig. 10(b). One can
see that as N increases, γ0 moves towards γc = 1 gradually,
i.e., limN→∞ γ0 = γc. Furthermore, at the transition point γ0,
we have also carried out a scaling analysis for the first-
order derivative of S . Please see Fig. 10(c). It is clear that,
as N increases, dS

dγ
|γ=γ0 increases steadily. It indicates that

dS
dγ

|γ=γ0 would diverge in the large-N limit. Finally, we con-
clude that the ground state of the infinite-size Kitaev chain
would undergo a dramatic transition from a phase without
quantum nonlocality (since S = 0) to a phase containing
quantum nonlocality (since S > 1) at the critical point γc = 1.
In Ref. [32], by using the string order parameter, the authors
show that the QPT in the Kitaev chain has a topological na-
ture. Our results in Fig. 10 reveal that this topological QPT is
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FIG. 10. (a) Global-nonlocality measure S in finite-size Kitaev chains as a function of the coupling ratio γ = J1/J2 at a fixed temperature
T = 0.01. N denotes the total length of the chains. For finite N , the first-order derivative of S presents a peak point at some finite γ0. (b) and
(c) denote scaling analysis of the peak location γ0 and the peak value dS

dγ
|γ=γ0 , respectively. The results indicates that in the limit N → ∞, at

γc = 1 the ground states of the Kitaev chain would undergo a sharp transition from a phase without quantum nonlocality (since S = 0) to a
phase containing quantum nonlocality (since S > 1).

accompanied by fundamental changes of multipartite quan-
tum correlations.

IV. SUMMARY AND DISCUSSIONS

Multipartite nonlocality is a measure of multipartite cor-
relations. Previous works on nonlocality in quantum chains
mainly considered zero temperature. In this paper, we have
extended the studies to finite temperatures.

To proceed, we have proposed a tensor-network algorithm
to calculate finite-temperature nonlocality in general 1D quan-
tum chains. We have shown that a general full-correlation
Bell operator can be expressed as an MPO. Especially, the
Mermin-Klyshko operator M̂ can be exactly expressed as an
MPO with a quite small bond dimension D = 2. With the help
of this expression, the average value for M̂ is simplified into
standard 1D tensor networks (Fig. 3), which can be contracted
conveniently by various software such as ITENSOR [43].

With this powerful algorithm, we have studied quantum
nonlocality in three 1D spin models, i.e., the XX model, the
XXZ model, and the Kitaev chain. We have mainly considered
subchain nonlocality defined on the reduced density matrices
of continuous n-site subchains in infinite-size systems. In or-
der to characterize the topological QPT in the Kitaev chains,
we have also investigated the global nonlocality in the entire
system by considering finite-size chains.

Our first main observation is that both in the XX model and
in the XXZ model, in a finite-temperature region, the loga-
rithm nonlocality measure log2 S presents a linear decrement
as the temperature rises. Details can be found in Figs. 6(b)
and 7(b). It is well known that in the high-temperature limit
T → ∞, nonlocality should vanish. On the other hand, in the
low-temperature limit T → 0, one expects that the behavior
of nonlocality would be determined mainly by the lowest-
lying energy levels. Nevertheless, in the middle-temperature
regions, our knowledge about nonlocality is still not com-
plete. The linear behavior reported in this paper supplements

part of the missing picture in the middle-temperature regions
(Fig. 11). Moreover, this linear decrement can be used to esti-
mate precisely the threshold temperature at which multipartite
nonlocality vanishes (i.e., log2 S = 0).

Our second observation is that at low temperatures, the
nonlocality measure can still offer us some nontrivial infor-
mation about QPTs in the models.

The XX model has a second-order QPT at the critical
magnetic field hc = 2. We find that in the two phases the non-
locality presents quite different behavior. In the phase h > hc,
it holds that S � 1 and thus nonlocality is not observed. In the
phase h < hc, the value of S is relatively large and presents an
oscillation. Moreover, as the temperature rises, the oscillation
survives in a finite-temperature zone. The oscillation of the
nonlocality discloses that, behind the monotonic increasing
magnetization curve of the model (Fig. 5), there is a hidden
and rich change of multipartite correlations in the reduced
density matrices ρ̂n of the subchains.

For the XXZ model, we find that the nonlocality measure
S presents a cusplike singularity at infinite-order QPT point
�c = 1 even at finite temperatures.

Nevertheless, the most interesting result in this paper may
be about the Kitaev chain. The ground states of the Ki-
taev chain are degenerate for any finite γ , and undergo a
topological-type QPT at the critical point γc = 1. We have
used the thermal-state operator e−βĤ to capture all the degen-

FIG. 11. The linear behavior log2 S ≈ −aT + b reveals an intu-
itive picture about how thermodynamic fluctuations melt multipartite
nonlocality in quantum systems. (At least) in the vicinity of the
threshold value log2 S = 0, as the temperature T rises the hierarchy
of multipartite nonlocality decreases steadily and linearly.
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erate ground states of the models. Numerical results indicate
that in the limit T → 0 and n → ∞, the subchain nonlocality
measure S would be zero for γ < 1, and be nonzero for γ > 1
(Fig. 9). Thereby, S may be regarded as an alternative order
parameter to characterize this topological QPT. Furthermore,
by considered global nonlocality in finite-size Kitaev chains
(Fig. 10), we find that in the limit N → ∞, at γc = 1 the sys-
tem would undergo a dramatic transition from a phase without
nonlocality (since S = 0) to a phase containing nonlocality
(since S > 1). The mechanism for multipartite nonlocality
to successfully capture this QPT is that, just as the string-
order operators �̂x,y used in Ref. [32], the Mermin-Klyshko
operator M̂[1...n] is also a long-range operator. Their difference
is that the construction of �̂x,y depends upon an analytical
understanding of the specific models, and the construction
of M̂[1...n] does not depend upon a priori knowledge of the
models. Instead, it relies on a general numerical optimization
[Eq. (5)]. It would be interesting to check the behavior of mul-
tipartite nonlocality in similar quantum models which undergo
topological-type QPTs, such as the bond-alternating spin-1/2
Heisenberg chains [50].

Finally, we would like to provide some comments on the
MPO form of the Bell operators. This presentation may dis-
close some insight to our previous numerical results in both
1D quantum chains [26,28] and 2D quantum lattices [29]. It
is well known that the Mermin-Klyshko inequality is closely
related to a typical genuine multipartite entangled state, i.e.,
the GHZ state |ψGHZ〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉). Explic-

itly, the Mermin-Klyshko inequality S � 1 is maximally
violated by the GHZ state with S (|ψGHZ〉) = 2

n−1
2 . When we

use the Mermin-Klyshko operator to characterize several 1D
quantum chains, the nonlocality measure S is found to scale
as S ∼ 2an with a � 1

2 a model-dependent constant [26,28].
Thus we believe the Mermin-Klyshko operator has success-
fully captured part of the features of multipartite correlations
in these chains. Its success has some underlying mechanism.
From Eq. (18) one can see that the coefficient tensor Bi of
the Mermin-Klyshko operator is translation invariant (except
for the two boundary points). Thus there is some hidden
adaption or matching between our tool (the Mermin-Klyshko
operator) and our research objects (these translation-invariant
1D quantum chains). An interesting question is whether the
Mermin-Klyshko operator would be a good Bell operator to
characterize 2D quantum states. It is clear that we can always
transform a given 2D tensor network state into an MPS [29].
Nevertheless, this MPS is physically not translation invariant
any more. Thereby, when the Mermin-Klyshko operator is

used to characterize this MPS, some hidden mismatch would
occur. Based on this consideration, we argue that the Mermin-
Klyshko operator may not be the best Bell operator to analyze
2D quantum states.

It needs mention that even if just translation-invariant
quantum states are considered the Mermin-Klyshko inequal-
ity may still not be an optimal Bell inequality to exhibit
the strongest violation. In fact, the violation of the Mermin-
Klyshko inequality is a sufficient but not a necessary condition
to detect general multipartite correlations. A well-known
example is another typical genuine multipartite entangled
state—the W state |ψW 〉 = 1√

3
(|001〉 + |010〉 + |100〉) [51].

The Mermin-Klyshko inequality is just slightly violated by
the W state [13]. Instead, some special Bell inequalities
have been constructed so as to exhibit strong violation [16].
Nevertheless, the construction of these special Bell inequal-
ities depends heavily upon a priori knowledge of the W
state, thus the approach seems to be useless for us to con-
struct optimal Bell inequalities for other general quantum
states.

We argue that the MPO representation of the gen-
eral full-correlation Bell operator, i.e., M̂g(βk1k2...kn ) =
M̂g(Bk1

1 , Bk2
2 , · · · Bkn

n ), may offer an alternative approach for us
to numerically construct optimal Bell inequalities for general
1D quantum lattices. The goal is to figure out optimal coeffi-
cient tensors {Bi} for some given ρ̂n, so as to exhibit strong
violation. As in the Mermin-Klyshko operator, it would be
quite reasonable to just consider translation-invariant coef-
ficient tensors Bi, i.e., Bi = B̃ for 1 < i < n, with B̃ a 2 ×
D × D tensor. Thereby, the general Bell operator M̂g(βk1k2...kn ),
which seems to depend upon 2n parameters, turns out to be
M̂g(B̃) with merely 2D2 free parameters. It is much easier
to optimize M̂g with respect to these 2D2 parameters, rather
than 2n parameters, to figure out an optimal Bell inequality.
Whether or not this idea is practical would be checked in our
future research.
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