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Pulsed field transmission by atomic frequency combs and random spike media:
The prominent role of dispersion

P. R. Berman
Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA

J.-L. Le Gouët
Laboratoire Aimé Cotton, CNRS, Univ. Paris Sud, bâtiment 505, campus universitaire, 91405 Orsay, France

(Received 1 February 2021; accepted 12 April 2021; published 30 April 2021)

A theory of pulse transmission is presented in which the medium through which the pulse propagates is
characterized by an inhomogeneous distribution that is either an atomic frequency comb (AFC) or a medium of
randomly spaced frequency spikes (RSM). For an AFC, we obtain analytic expressions for the transmitted field
amplitude, which is composed of the (partially) transmitted incident pulse, plus a train of equally spaced echoes.
For RSM, we derive expressions for the average transmitted field amplitude and field intensity. In the limit that
the spike width is much less than the spike separation, normally encountered with AFC, the overall atom-field
dynamics is dominated by dispersion—absorption plays a negligible role. The importance of the average group
time delay of the pulse is discussed.
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I. INTRODUCTION

For the past 20 years or so, a strong interest in opti-
cally carried quantum information has stimulated research on
light-atom interactions. For quantum information storage and
retrieval, various schemes have been proposed and demon-
strated, such as electromagnetically induced transparency
(EIT) [1,2] and atomic frequency combs (AFC) [3–5].

In EIT, the incoming signal pulse travels through a trans-
parency window that a control field has opened within the
absorption line. Because of the control field, EIT works in
three-level systems, but a similar process can be observed in
two-level systems, when a spectral hole is burned in the in-
homogeneously broadened profile of an absorption line [6,7].
The resulting refractive index dispersion may strongly reduce
the group velocity inside that window, far beneath the phase
velocity. Provided the signal bandwidth is sufficiently small,
all the spectral components are confined to the middle of
the transparency window and experience the same group de-
lay. Hence the signal emerges from the sample with neither
shape distortion nor energy loss, with a delay that is fully
determined by the refractive index dispersion. Although ab-
sorption is not involved in the process, nearly all the signal
energy is transferred either to the control field, in EIT, or to
the off-resonance atoms, in the hole-burning variant, during
the signal transit. The signal recovers its initial energy at the
medium output. Such a momentary pulse energy transfer to
off-resonance atoms, without shape distortion, also exists in
adiabatic following [8].

Of course, the absorption coefficient and the refractive in-
dex are linked by the Kramers-Krönig relation, which follows
from causality. At first glance, it might seem to be pointless
to separate one from the other since both affect the atom-field
dynamics. However, as is evidenced in the analysis of EIT
signals, such an approach may prove productive.

In contrast to EIT, AFC is usually analyzed in terms of
absorption rather than dispersion. The AFC scheme is based
on the capture of the incoming pulse by an inhomogeneously
broadened spectral profile, which has been shaped in the form
of evenly spaced absorbing spikes, with no absorption in the
interval between them. The stored radiation is progressively
released through successive echoes. One may question the
absorption oriented analysis. Indeed, when the spike width is
much smaller than the comb spectral period, the imaginary
part of susceptibility has a negligible effect on the atom-field
dynamics. As in EIT, the interaction with the active medium
is actually dominated by dispersion but, unlike EIT, the group
velocity is not uniform over the pulse bandwidth, which re-
sults in a temporal shape distortion of the incoming signal.
Specifically, the AFC output consists of the (partially) trans-
mitted incident pulse, followed by a series of equally spaced
echoes.

It was noticed quite early that nearly all the incident pulse
energy is transmitted through the AFC filter, without ab-
sorption, in the narrow spike limit [4,9,10]. However, since
analytic expressions for the successive echo contributions
were not derived, one could not obtain the time profile of
the energy retrieval. In the present work we remedy this
situation, allowing us to determine the characteristic time of
the radiation recovery. In addition, we extend the calculation
to random spike media (RSM), consisting of randomly dis-
tributed absorbing spikes. For such a filter, the signal no longer
consists of a number of echoes, although the average field
energy is radiated on a time scale comparable to that of an
AFC whose spike separation is equal to the average frequency
spacing of the RSM. The importance of dispersion has also
been stressed by Delagnes and Bouchene [11] for the case of
pulse transmission through a medium consisting of a single,
narrow absorption spike.
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The paper is organized as follows. In Sec. II, we provide a
basic formalism for the problem, along the lines of Crisp [12].
To simplify matters, we adopt a model in Sec. III in which
the incident pulse has a Gaussian temporal profile and the
inhomogeneous frequency distribution of the atoms consists
of a comb of Lorentzian spikes or “teeth.” In Sec. IV, we
obtain an analytic expression for the transmitted field am-
plitude for regularly spaced spikes (AFC). We then consider
RSM in Sec. V, in which the spikes are placed at random
positions in frequency space with some predetermined aver-
age spacing; analytic expressions are derived for the average
transmitted field amplitude and intensity. In Sec. VI, we relate
the characteristic time for energy transmission to the average
group time delay of the pulse. The results are summarized in
Sec. VII. In Appendix A, the results are generalized to al-
low for arbitrary pulse envelopes and arbitrary spike profiles,
along with specific results for Gaussian and rectangular spike
profiles. In Appendix B, derivations are provided for some of
the asymptotic limits discussed in the main text.

II. BASIC FORMALISM

In general, when a radiation pulse is incident on an atomic
medium, the resulting atom-field dynamics can be quite com-
plicated, depending on the characteristics of the radiation
pulse and the properties of the medium. We limit our discus-
sion to a medium that has a broad inhomogeneous distribution
of transition frequencies centered around frequency ω0. From
this distribution, an initial state is prepared which consists
of an array of spikes, each having width γs. The atoms in
the medium are modeled as two-level atoms, having upper
level 2, lower level 1, and frequencies ω21(δ) = ω0 + δ. The
values of δ are determined by the state preparation and are
characterized by a frequency distribution g(δ). Two situations
are envisioned. Either the spikes are equally spaced with fre-
quency separation δ0 � γs to form an AFC or the spikes are
centered at random frequencies having an average separation
δ0 (RSM—random spike media). A radiation pulse, incident
on the sample, is assumed to have a smooth envelope with
temporal width Tp and a central frequency equal to ω0. The
excited-state decay rate of the atoms, γ2, is assumed to be
much smaller than γs and the pulse bandwidth δp = 1/Tp is
assumed to be much larger than δ0; that is, the pulse band-
width covers a large number of the spikes (although many of
the expressions to be derived are valid for arbitrary ratios of
δp/δ0). The overall inhomogeneous width γw of the ensemble
is much larger than the pulse bandwidth. The pulse area is as-
sumed to be much less than unity. The situation is summarized
in Fig. 1.

The starting point of the calculation is the Maxwell-Bloch
(MB) equations in the slowly varying amplitude and phase
approximation for small area pulses [12]. The (stationary)
atoms are confined to a cylindrical volume having length L.

The cylinder axis is taken to be the z axis and diffraction
is neglected; that is, the incident and reradiated fields are
assumed to be constant over the cross-sectional area of the
medium. The electric field is of the form

ET (z, t ) = 1
2 E (z, t )eikz−iω0t + c.c., (1)

FIG. 1. Inhomogeneous frequency distribution g(δ). The spikes
or teeth are separated by δ0 and the spike width is γs. The dashed red
curve is the frequency spectrum of the input pulse, whose temporal
width is Tp. Not shown is the very broad inhomogeneous envelope of
the frequency distribution, having width γw � 1/Tp.

where k = ω0/c = 2π/λ. We define a dimensionless slowly
varying field amplitude by

F (z, t ) =
√

ε0c

2NLh̄ω0γ2
E (z, t ), (2)

where E (z, t ) is the field amplitude and N is the the atomic
density, a dimensionless time by

τ = t/Tp, (3)

a dimensionless distance by

Z = z/L, (4)

and a dimensionless frequency distribution by

G(	) = 1

Tp
g

(
	

Tp

)
, (5)

where 	 = δTp is a dimensionless frequency.
In terms of these dimensionless units, the MB equations

can be written as(
∂

∂Z
+ 1

ξ

∂

∂τ

)
F (Z, τ ) = i

√
C

∫
ρ21(Z, τ,	)d	, (6a)

∂ρ21(Z, τ,	)

∂τ
= i
2

√
CF (Z, τ )G(	)

−
(


2

2
+ i	

)
ρ21(Z, τ,	), (6b)

where

ξ = cTp

L
(7)

is the spatial extent of the initial pulse divided by the length
of the medium,

C = 3

8π
Nλ2L (8)

is a cooperativity parameter, and


2 = γ2Tp. (9)
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All frequencies have been expressed in units of T −1
p . We have

used a field interaction representation for the off-diagonal
density-matrix element,

ρ21(Z, τ,	) = ρ̃21(Z, τ,	)eikLZ−iω0Tpτ , (10)

and have dropped the tilde. The off-diagonal density-matrix
element ρ21(Z, τ,	) is that associated with an atom having
transition frequency ω21(δ) = ω0 + δ. Although not neces-
sary, we shall assume that ξ � 1, typical of AFC experiments,
which allows us to neglect the time derivative term in Eq. (6a).

The solution for ρ21(Z, τ,	) is

ρ21(Z, τ,	)

= i
2

√
CG(	)

∫ τ

−∞
F (Z, τ ′)e−( 
2

2 +i	)(τ−τ ′ )dτ ′

= i
2

√
CG(	)

∫ ∞

0
F (Z, τ − τ ′)e−( 
2

2 +i	)τ ′
dτ ′, (11)

which, when substituted into the field equation, yields

∂F (Z, τ )

∂Z
= −
2C

∫
d	 G(	)

×
∫ ∞

0
F (Z, τ − τ ′)e−( 
2

2 +i	)τ ′
dτ ′. (12)

This can be solved easily using Fourier transforms [12]. We
set

F̃ (Z,�) =
∫ ∞

−∞
ei�τ F (Z, τ )dτ (13)

(� = ωTp is dimensionless) to arrive at

∂F̃ (Z,�)

∂Z
= −
2CA(�)F̃ (Z,�), (14)

where

A(�) =
∫

d	
G(	)


2
2 + i(	 − �)

. (15)

Note that the electric susceptibility χ (�) can be written in
terms of A(�) as

χ (�) = i
2
2CA(�)

kL
. (16)

The solution for F̃ (Z,�) is

F̃ (Z,�) = F̃ (0,�) exp [−
2CA(�)Z]. (17)

Taking the inverse Fourier transform we find

F (Z, τ ) = 1

2π

∫ ∞

−∞
e−i�τ F̃ (0,�)e−
2CZA(�)d�. (18)

The transmitted field intensity at the exit plane of the sam-
ple at time τ is proportional to a quantity T (τ ) defined by

T (τ ) = |F (1, τ )|2, (19)

the total energy that has exited the sample at time τ , normal-
ized to the input field energy, is given by

W (τ ) =
∫ τ

−∞ |F (1, τ )|2dτ ′∫ ∞
−∞ |F (0, τ )|2dτ

, (20)

and the total energy that exits the sample, normalized to the
input field energy, is calculated as

W = W (∞) =
∫ ∞
−∞ |F (1, τ )|2dτ∫ ∞
−∞ |F (0, τ )|2dτ

=
∫ ∞
−∞ |F̃ (0,�)|2e−2
2C Re[A(�)]d�∫ ∞

−∞ |F̃ (0,�)|2d�
. (21)

If Re [A(�)] = 0 or, equivalently, if Im [χ (�)] = 0, then it
follows from Eq. (21) that W = 1—there is no absorption.

Under normal AFC experimental conditions,


2 � 
s � 	0 � 1, (22)

where 
s = γsTp is the (dimensionless) spike width and 	0 =
δ0Tp is the (dimensionless) average spacing between spikes.
As a consequence, we will always neglect terms of order

2/
s. Moreover, we will always assume that 
s/	0 � 1
and, in some cases, we will consider the asymptotic limit that

s/	0 ∼ 0, that is, the limit in which 
s/	0 tends to zero. It
should be noted that, for finite 
s, the normalized total trans-
mitted energy is not equal to unity, even though 
2/
s � 1,
since there is some net absorption resulting from the inho-
mogeneous frequency distribution associated with each spike.
In these dimensionless units, 1/	0 is the number of spikes
contained in the bandwidth of the incident pulse.

III. GAUSSIAN INPUT PULSE AND LORENTZIAN
FREQUENCY SPIKES

We now assume that the incident pulse has a Gaussian
temporal profile,

F (0, τ ) = F0e−τ 2/2, F̃ (0,�) =
√

2πF0e−�2/2. (23)

Moreover, to simplify the presentation in the main text, we
assume that the inhomogeneous frequency distribution con-
sists of a number of Lorentzian spikes superimposed on a
very broad Gaussian distribution. That is, we take a frequency
distribution

GL(	) = κ√
π
w

e−	2/
2
w

∞∑
n=1

1

π

1

1 + (
	−Dn


s

)2

≈ κ√
π
w

∞∑
n=1

1

π

1

1 + (
	−Dn


s

)2 , (24)

where 
w = γwTp � 1 is the total inhomogeneous width (in
units of T −1

p ), Dn is the dimensionless displacement of spike
n from the central frequency of the inhomogeneous frequency
distribution, and κ < 1 is a factor whose value depends on the
manner in which the frequency distribution of the spikes was
created in the preparation stage. The integral of GL(	) over 	

is of order κ (
s/
w )Nst � 1, where Nst is the total number of
spikes covered by the inhomogeneous frequency distribution,
accounting for the fact that only a small percentage of the
total inhomogeneous distribution is excited to the initial state.
Although a Lorentzian spike profile results in more net ab-
sorption than a Gaussian profile having the same 
s owing to
the long Lorentzian tails, in the limit that 
s/	0 ∼ 0, which is
of some interest in this paper, the transmission is independent
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of the spike profile. In Appendix A, the results are generalized
to arbitrary pulse and spike profiles.

For a Gaussian incident pulse and Lorentzian spikes,
Eq. (15) becomes

A(�) = κ
s√
π
w

∞∑
n=1

1


s − i(� − Dn)
(25)

and Eq. (18) reduces to

F (Z, τ ) = F0√
2π

∫ ∞

−∞
d� e−i�τ e−�2/2

× exp

(
− α̃0
sZ

2

∞∑
n=1

1


s − i(� − Dn)

)
, (26)

where α̃0 = α0L is the dimensionless cw absorption coeffi-
cient on resonance for a single spike given by

α̃0 = 2
2Cκ√
π
w

. (27)

Consistent with our approximations, we have neglected terms
of order 
2/
s in the final expression for A(�) [although for
Lorentzian spikes they could be included simply by replacing

s with (
2/2 + 
s)].

Equation (26) can help us decide the relative importance
of dispersion versus absorption in the narrow spike limit. As

s ∼ 0, we can use the identity [13]

lim

s→0

1


s − i(� − Dn)
= πδ(� − Dn) + iP

(
1

� − Dn

)
,

(28)

where P is the Cauchy principal value, to rewrite Eq. (26) as

F (Z, τ ) ∼ F0√
2π

∫ ∞

−∞
d� e−i�τ e−�2/2

× exp

(
− α̃0
sZ

2

∞∑
n=1

[πδ(� − Dn)

+ iP

(
1

� − Dn

)])
. (29)

At � − Dn = 0,

exp

(
− α̃0
sZ

2

∞∑
n=1

πδ(� − Dn)

)
∼ 0, (30)

but these are sets of measure zero, implying that the real part
of A(�) (or, equivalently, the imaginary part of the suscepti-
bility) does not modify the expression for the field amplitude.
As a consequence, the atom-field dynamics is determined en-
tirely by the dispersive part of the susceptibility in the narrow
spike limit. This will become even more apparent when we
consider the specific cases of regularly and random spaced
spikes.

IV. ATOMIC FREQUENCY COMBS (AFC)

For an AFC, GL(	) can be written as

GL(	) = κ√
π
w

∞∑
n=−∞

1

π

1

1 + (
	−n	0


s

)2 , (31)

where 	0 is the (dimensionless) comb spacing. There are
approximately 2

√
2 ln 2/	0 spikes within the full width at

half maximum of F̃ (0,�). For this choice of GL(	), it is
possible to express A(�) given in Eq. (15) as

AL(�) = κ
s√
π
w

∫ ∞

−∞
d	D	0 (� − 	)

1


s − i	
, (32)

where D	0 (	) stands for the Dirac comb distribution func-
tion,

D	0 (	) =
∞∑

n=−∞
δ(	 − n	0) = 1

	0

∞∑
n=−∞

e2iπn	/	0 . (33)

Substituting the second form of D	0 (	) into Eq. (32), we
obtain

AL(�) =
√

πκ


w


s

	0

[
1 + 2

∞∑
n=1

e2π in�/	0 e−2πn
s/	0

]
. (34)

Writing AL(�) in this form simplifies the calculation of the
transmitted field. We shall see that transmitted signal at time
τq = 2πq/	0 depends only on those terms in the summation
for which n � q. If the expression given in Eq. (31) is used
for GL(	) it would be necessary to include nmax ≈ 	0/
s

terms in the summation to calculate the transmitted fields.
Note that, on integrating over 	 in Eq. (32), only positive n
values contribute to Eq. (34). This is a reflection of causality,
successively propagated from the atomic response, character-
ized by the frequency denominator [
2

2 − i(� − 	)], to the
contributions from the spikes characterized by the frequency
denominator [
s − i(� − n	0)], and finally to AL(�).

The field amplitude can then be written as

FL(Z, τ ) = F0√
2π

∫ ∞

−∞
d� e−i�τ e−�2/2

× KL(α̃cZ, 
s/	0,�/	0), (35)

where the kernel KL(α̃Z, 
s/	0,�/	0) is defined as

KL(α̃cZ, 
s/	0,�/	0)

= exp

[
− α̃cZ

2

(
1 + 2

∞∑
n=1

e
2π in
	0

(�+i
s )

)]
(36)

and

α̃c = α̃0
π
s

	0
= 2

√
πC
2κ


w


s

	0
(37)

is an effective comb absorption coefficient.
The kernel K is a periodic function of �/	0 and can be

expanded in a Fourier series as

KL(α̃cZ, 
s/	0,�/	0) =
∞∑

p=−∞
cpL(α̃cZ, 
s/	0)e2π ip�/	0 ,

(38)
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where

cpL(α̃cZ, y) =
∫ 1/2

−1/2
dx KL(α̃cZ, y, x)e−2π ipx. (39)

By carrying out the summation in Eq. (36) and combining the
resulting equation with Eq. (39), we obtain

cpL(α̃cZ, y)

= e−α̃cZ/2
∫ 1/2

−1/2
dx exp

(
−α̃cZ

e2π i(x+iy)

1 − e2π i(x+iy)

)
e−2π ipx

= e−α̃cZ/2
∫ 1/2

−1/2
dx

∞∑
q=0

L−1
q (α̃cZ )e2π i(x+iy)qe−2π ipx

=
{

e−α̃cZ/2e−2π pyL−1
p (α̃cZ ), p � 0,

0, p < 0,
(40)

where we have used the generating function for the general-
ized Laguerre polynomial L−1

p (x), namely

exp

(
− xh

1 − h

)
=

∞∑
q=0

L−1
q (x)hq. (41)

As a consequence, the field amplitude can be written as

FL(Z, τ ) =
∞∑

p=0

F (0, τ − 2π p/	0)cpL(α̃Z, 
s/	0)

= F0e−α̃cZ/2
∞∑

p=0

e−(τ−2π p/	0 )2/2e−2π p
s/	0 L−1
p (α̃cZ ).

(42)

The output field amplitude consists of the initial transmis-
sion plus a number of echoes, spaced at integral multiples of
2π/	0. The field amplitude at the center of the nth echo is
F0e−α̃cZ/2e−2πn
s/	0 L−1

p (α̃c).
If the echoes are well separated in time, the total normal-

ized transmitted energy is

WL = 1√
π |F0|2

∫ ∞

−∞
|FL(1, τ )|2dτ

= e−α̃c

∞∑
p=0

e−4π p
s/	0
[
L−1

p (α̃c)
]2

. (43)

For 
s = 0.001, 	0 = 0.06, and α̃c = 2,WL = 0.650. Had
we chosen Gaussian or rectangular spikes with the same width

s, the total transmitted energy would be much closer to unity
(see Appendix A), since those spike profiles do not have the
long frequency tails that characterize a Lorentzian profile. In
other words, Lorentzian spikes having the same full width at
half maximum as either Gaussian or rectangular spikes result
in more absorption.

A. �s/�0 ∼ 0

If 
s/	0 ∼ 0, Eq. (42) reduces to

F (Z, τ ) = F0e−α̃cZ/2
∞∑

p=0

e−(τ−2π p/	0 )2/2L−1
p (α̃cZ ). (44)

The corresponding ratio of the energy in the nth echo to the
initial pulse energy (assuming the echoes are well separated
in time) is

Wn(α̃c) = e−α̃c
[
L−1

n (α̃c)
]2

, (45)

which also holds for the initial transmitted field, n = 0. For
example, with α̃c = 2, 0.135 of the incident pulse energy is
transmitted initially by the medium, followed by 0.54 of the
incident pulse energy in the first echo. That is, 0.54/0.87 =
0.62 of the energy stored in the medium from the incident
pulse is radiated in the first revival. This is clearly a collective
emission, resulting from stimulated emission as the radiation
propagates in the medium. With different choices of α̃c, you
can maximize the intensity in the nth echo. From conservation
of energy, we should expect that

∞∑
n=0

Wn(α̃c) = e−α̃c

∞∑
n=0

[
L−1

n (α̃c)
]2 = 1. (46a)

A proof of this identity is given in Appendix B.
The energy in successive echo pulses, Wn(α̃c), converges

slowly with n, since, for n � 1 and n � α̃c,

Wn(α̃c) = e−α̃c
[
L−1

n (α̃c)
]2 ∼

√
α̃c

2n3/2π
[1 − sin(4

√
nα̃c)].

(47)

For α̃c of order unity, Eq. (47) is a remarkably good approx-
imation for n � 3. If we set n = 	0τ/2π , we see that the
normalized energy in the nth echo falls off as τ−3/2. Moreover,
the total normalized transmitted energy at time τn for n � 3
and α̃c of order unity is given approximately by

W

(
τn = 2πn

	0

)
=

n∑
p=0

Wn(α̃c)

≈ 1 − 1

π

√
α̃c

n
= 1 −

√
2α̃c

π	0τn
. (48)

In other words, the characteristic time for energy transmission
is of order (2α̃c/π	0). From Eq. (37), it then follows that
the characteristic time is proportional to the cooperativity C,
reminiscent of subradiant decay from an atomic ensemble
[14].

B. Finite �s/�0

Of course, Eq. (48) holds only in the limit 
s/	0 ∼ 0. For
a finite ratio of 
s/	0, there are two time scales for the fall-off
with n of the radiated echo signals. One is given by Eq. (48),
with a time scale on the order of several τ0 ≈ 2π/	0, for
α̃c of order unity The second time scale is determined by
the condition that n
s/	0 ≈ 1, giving a time scale of order
τs ≈ 2π/
s, effectively determined by the spike width, as in
“normal” free induction decay. If 
s/	0 � 1, as has been
assumed, the signal falls off on a time scale τ0 for α̃c of order
unity.

For finite 
s/	0, the total normalized transmitted energy is
no longer equal to unity—an energy of order 
s/	0 is stored
in the medium for times 
−1

2 � τ � 
−1
s . That is, there is

some net absorption of the incident energy by the atoms
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that would ultimately be radiated as incoherent spontaneous
emission for times 
2τ = γ2t > 1. For example, in Appendix
B, it is shown that, for 4π
s/	0 � 1 and α̃c of order unity,

WL ≈ 1 − 2

√
α̃c
s

	0
. (49)

The corresponding results for Gaussian and rectangular spikes
are given in Appendix A.

C. Absorption versus dispersion

Before leaving this section, we would like to return to the
relative contributions of absorption and dispersion to the sig-
nal in the narrow spike limit. By carrying out the summation
in Eq. (36), it follows that

KL(α̃cZ, y, x) = exp

[
− α̃cZ

2

(
1 + e2π i(x+iy)

1 − e2π i(x+iy)

)]

= e−i α̃cZ
2 cot [π (x+iy)], (50)

which, together with Eq. (35), implies that

FL(Z, τ ) = 1√
2π

∫ ∞

−∞
e−i�τ e−�2/2e−i α̃cZ

2 cot [π (�+i
s )/	0]d�.

(51)

Equation (51) provides explicit proof that, in the limit

s/	0 ∼ 0, it is only the real part of the susceptibility that
contributes to the field dynamics.

V. RANDOM SPIKE MEDIA (RSM)

We now examine how the situation changes if we replace
the AFC by a medium whose G(	) is characterized by fre-
quency spikes placed at random positions, having an average
spacing equal to 	0. The initial transmission is about the same
as for a regularly spaced comb, as is the total transmitted en-
ergy. Where the results differ is that the average field intensity
following the initial pulse no longer consists of a sequence of
echoes—instead there is a slowly decreasing average intensity
that falls off in a time of order of several 2π/	0.

The field amplitude is given by Eq. (26), namely

FrL(Z, τ ) = F0√
2π

∫ ∞

−∞
d� e−i�τ e−�2/2

× exp

(
− α̃0
sZ

2

Ns∑
n=1

1


s − i(� − Dn)

)
. (52)

For a specific history, this expression can be evaluated nu-
merically with the Dn chosen at random in the interval
(−Ns	0/2, Ns	0/2), where Ns is the total number of spikes.
To average over all histories of random spike positions in

frequency space, we recognize that, on average, each factor
in the product is the same; in other words,

〈FrL(Z, τ )〉 = F0√
2π

∫ ∞

−∞
e−i�τ e−�2/2

×
〈
exp

[
− α̃0
sZ

2

1


s − i(� − Dn)

]〉Ns

, (53)

where the average of any function v(Dn) is defined as

〈v(Dn)〉 = 1

Ns	0

∫ Ns	0/2

−Ns	0/2
v(Dn)dDn. (54)

Let us set

ψL =
〈
exp

(
− α̃0
sZ

2

1


s − i(� − Dn)

)〉
(55)

and expand the exponential to obtain

ψL = 1

Ns	0

∫ Ns	0/2

−Ns	0/2
dDn

∞∑
q=0

[
− α̃0
sZ

2

1


s − i(�−Dn)

]q 1

q!

≈ 1 + lim
Ns→∞

1

Ns	0

∞∑
q=1

∫ ∞

−∞
dy

[
− α̃0
sZ

2

1


s + iy

]q 1

q!
,

(56)

where we have allowed the number of spikes to approach
infinity. Note that the result no longer depends on �, implying
that

〈FrL(Z, τ )〉 = F (0, τ ) lim
Ns→∞

ψ
Ns
L . (57)

Using the fact that, for q � 1,∫ ∞

−∞
dy

[
1


s + iy

]q

= πδq,1, (58a)

we obtain

lim
Ns→∞

ψ
Ns
L = lim

Ns→∞

(
1 − πα̃0
sZ

2Ns	0

)Ns

= e−α̃cZ/2 (59)

and

〈Fr (Z, τ )〉 = F (0, τ )e−α̃cZ/2 = F0e−α̃cZ/2e−τ 2/2, (60)

where α̃c, as defined by Eq. (37), is the analogous value of
α̃c for a regularly spaced comb with spacing 	0. The average
transmitted field amplitude has the same temporal profile as
the input field amplitude and vanishes once the input field has
traversed the sample. This is a general result, valid for any
spike profile (see Appendix A), which is why the L subscript
has been suppressed in Eq. (60). Although the temporal profile
of the average transmitted field is identical to that of the input
field, the same cannot be said of the average transmitted field
intensity.

The transmitted intensity at time τ , defined by Eqs. (19)
and (26), is

TrL(τ ) = |F0|2
2π

∫ ∞

−∞
d�′

∫ ∞

−∞
d� e−(�2+�′2 )/2e−i(�−�′ )τ exp

[
− α̃0
s

2

∞∑
n=1

[2
s + i(�′ − �)]

[
s − i(� − Dn)][
s + i(�′ − Dn)]

]
. (61)
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Setting

�̄ = �′ − �, (62)

we can average Eq. (61) over all the Dn’s and write it as

〈TrL(τ )〉 = |F0|2
2π

lim
Ns→∞

∫ ∞

−∞
d�̄

×
∫ ∞

−∞
d� e−[�2+(�+�̄)2]/2ei�̄τ [ψL1(�̄,�)]Ns ,

(63)

where

ψL1(�̄,�) = 1

Ns	0

∫ Ns	0/2

−Ns	0/2
dDn exp [−α̃c	0HL(�̄,�, Dn)]

(64)

and

HL(�̄,�, Dn) = 1

2π

(2
s + i�̄)

[
s − i(�− Dn)][
s+i(�̄+ �− Dn)]
.

(65)

In the case of the field amplitude, it was possible to expand
the exponential and carry out the integrations over Dn since
all but the first two terms in the expansion vanished. The
situation is not so simple here since all terms in the expansion
contribute; however, for the Lorentzian spike profile that we
have chosen, it is still possible to analytically evaluate all the
integrals. To see this, we write Eq. (64) as

ψL1(�̄,�) = 1 + lim
Ns→∞

1

Ns	0

∞∑
q=1

×
∫ ∞

−∞
dDn

[−α̃c	0HL(�̄,�, Dn)]q

q!
. (66)

We can now change the integration variable from Dn to Dn =
(Dn − �) so that the integrand no longer depends on �. We
then carry out the integration over � in Eq. (63) to arrive at

〈TrL(τ )〉 = |F0|2
2
√

π
lim

Ns→∞

∫ ∞

−∞
d�̄ e−�̄2/4ei�̄τ [ψ̃L1(�̄)]Ns ,

(67)

where

ψ̃L1(�̄) = 1 + lim
Ns→∞

1

Ns	0

∞∑
q=1

∫ ∞

−∞
dD̄n

(−α̃c	0)q

q!

×
[

1

2π

(2
s + i�̄)

(
s + iD̄n)[
s + i(�̄ − D̄n)]

]q

. (68)

The integral of each term in the sum can be calculated analyt-
ically, leading to

ψL1(�) = 1 + lim
Ns→∞

2π i(� − 2i
s)

Ns	0

∞∑
q=1

[iβ(�)/2]q

q!

×
(

2q − 2

q − 1

)
, (69)

FIG. 2. Square root of the averaged transmitted intensity√〈Tr (τ )〉/F0 (red, solid curve) for a RSM as a function of τ for
α̃c = 2, 
s = 0, and an average spike spacing 	0 = 0.06. The blue,
dashed curve is the corresponding AFC result.

where

β(�) = α̃c	0

π (� − 2i
s)
. (70)

Using the fact that
∞∑

q=1

[iβ(�)/2]q 1

q!

(
2q − 2

q − 1

)

= [iβ(�)/2]eiβ(�){I0[iβ(�)] − I1[iβ(�)]}, (71)

where In is a modified Bessel function of the first kind, and
Eqs. (64) and (69), we obtain the average transmitted field
intensity at time τ as

〈TrL(τ )〉 = |F0|2
2
√

π

∫ ∞

−∞
d� e−�2/4ei�τ

× e−α̃ceiβ(�){I0[iβ(�)]−I1[iβ(�)]}. (72)

In Fig. 2, we plot
√〈Tr (τ )〉/F0 for α̃c = 2, 
s = 0, and 	0 =

0.06, along with the corresponding results for a regularly
spaced comb [for 
s = 0, Eq. (72) is valid for an arbitrary
spike profile so the L subscript is dropped]. The transmitted
intensity initially follows the input pulse profile, but then
develops a long tail.

The normalized averaged transmitted energy at time τ ,

〈WrL(τ )〉 = 1

2π

∫ τ

−∞
dτ ′

∫ ∞

−∞
d� e−�2/4

× ei�τ ′
e−α̃ceiβ(�){I0[iβ(�)]−I1[iβ(�)]}, (73)

is plotted as a function of τ for both a regularly spaced comb
and a RSM, for the same parameters as those in Fig. 3. It
can be seen from the figure that the RSM transmitted energy
is roughly the same as for an AFC for long times. This is
consistent with the fact, derived in Appendix B, that, for

s/	0 ∼ 0, the asymptotic form of 〈WrL(τ )〉 is identical to
that of the corresponding AFC [Eq. (48)].

Finally, the total average transmitted energy is given by

〈WrL〉 = 〈WrL(∞)〉 = e−α̃ceiβ(0){I0[iβ(0)]−I1[iβ(0)]}

= e−α̃ce−σ [I0(σ )+I1(σ )], (74)
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FIG. 3. Transmitted AFC energy (blue, dashed curve) and aver-
age RSM transmitted energy (red, solid curve) for α̃c = 2, 
s = 0,

and 	0 = 0.06. The transmitted energy is normalized to the input
field energy.

where

σ = −iβ(0) = α̃c	0

2π
s
. (75)

For 
s = 0.001, 	0 = 0.06, and α̃c = 2, 〈WrL〉 = 0.696,
which is slightly larger than the corresponding value WL =
0.650 for a regularly spaced comb (the corresponding dif-
ference between the AFC and RSM results for Gaussian
rectangular spikes having the same width 
s is much smaller,
since the spikes in those cases have less overlap). In the limit
that σ � 1, it follows from the asymptotic form of the Bessel
functions that

〈WrL〉 ≈ exp

(
−2

√
α̃c
s

	0

)
. (76)

If, in addition, α̃c
s/	0 � 1,

〈WrL〉 ≈ 1 − 2

√
α̃c
s

	0
(77)

and we recover the same result as that given in Eq. (49) for
an AFC. In the limit that 
s/	0 ∼ 0, 〈WrL〉 ∼ 1—there is no
absorption. We present in Table I a summary of the results.

VI. CONNECTION BETWEEN ENERGY TRANSMISSION
TIME AND GROUP DELAY

The delayed transit of a light pulse in an EIT medium [1,2]
or in a medium having a spectral hole burned in its inhomo-
geneous frequency distribution [6,7] is conveniently analyzed
in terms of the pulse’s group velocity vg. Such an approach
is appropriate because vg is uniform over the incoming pulse
spectrum, resulting in pulse propagation without distortion.
As already pointed out, the incoming pulses undergo strong
distortion in other dispersion-dominated processes such as
AFC. The question then remains as to whether or not the
concept of group velocity is of any use in explaining pulse
propagation in AFC. As we shall see, the characteristic time
for energy transmission in an AFC is related to the average
group velocity of the pulse.

An analytical expression of the AFC field amplitude has
been obtained in Sec. IV as a summation of the contributions
from all the frequency spikes in the inhomogeneous frequency
distribution. From Eqs. (18) and (51), it follows that, in the
limit 
s/	0 ∼ 0, the Fourier transform of the field amplitude
is given by

F̃ (Z,�) = F̃ (0,�)eiK (�)Z , (78)

where

K (�) = − α̃c

2
cot (π�/	0) (79)

is a dimensionless propagation constant, K (�) = k(�)L. The
dimensionless group velocity, Vg(�) = vgTp/L, as defined by

Vg(�) =
(

dK

d�

)−1

= 2	0

πα̃c
sin2 (π�/	0), (80)

is a periodic function of �.
At the centers, �c,n = (n + 1/2)	0, of the intervals be-

tween adjacent spikes, Vg is maximum, while it equals zero
at the spike positions. Averaging over one period, we find
V̄g = 	0/πα̃c, with relative standard deviation 1/

√
2. At

the exit plane of the medium, Z = 1, the corresponding
(dimensionless) average time delay is defined by

τ̄g = tg
Tp

= 1

V̄g
= πα̃c

	0
. (81)

TABLE I. Summary of results for Lorentzian spikes and a Gaussian input pulse. The asymptotic results are valid for α̃c of order unity. In
the limit that 
s/	0 ∼ 0, the results are valid for arbitrary spike profiles. The quantity β(�) is defined by Eq. (70).

AFC RSM

FL (Z, τ ), 〈Fr (Z, τ )〉 F0e−α̃cZ/2
∑∞

p=0 e−(τ−2π p/	0 )2/2 F0e−α̃cZ/2e−τ2/2

×e−2π p
s/	0 L−1
p (α̃cZ )

WL (τn = 2πn
	0

), 〈WrL (τ )〉 e−α̃c
∑n

p=0 e−4π p
s/	0 [L−1
p (α̃c )]2 1

2π

∫ τ

−∞ dτ ′ ∫ ∞
−∞ d� e−�2/4ei�τ ′

×e−α̃ceiβ(�){I0[iβ(�)]−I1[iβ(�)]}

WL, 〈WrL〉 e−α̃c
∑∞

p=0 e−4π p
s/	0 [L−1
p (α̃c )]2 e−α̃ce

−(
α̃c	0
π
s

)
[I0 (

α̃c	0
π
s

)+I1(
α̃c	0
π
s

)]


s/	0 ∼ 0; W (τ ), 〈Wr (τ )〉 1 −
√

2α̃c
π	0τ

; τ � 	−1
0

4π
s/	0 � 1; WL, 〈WLr〉 1 − 2
√

α̃c
s
	0
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It turns out that τ̄g provides a rough estimate of the time at
which the echo having the most energy is radiated. The echo
having the maximum intensity is centered at τ = rτ̄g, where
r equals unity for α̃c = 2, and decreases with increasing α̃c,
asymptotically approaching a value r ≈ 0.5. It is noteworthy
that, for α̃c = 2, the first echo contains the most energy and is
centered at τ = τ̄g.

Given the strong distortion of the incoming pulse temporal
shape by the AFC filter, it might be better to associate the
average time delay with the normalized, integrated retrieved
energy W (τ ) defined by Eq. (20) rather than the transmitted
field itself. For an AFC, the normalized transmitted energy
following the nth echo is

W

(
α̃c, τn = 2πn

	0

)
= e−α̃c

n∑
q=0

[
L−1

q (α̃c)
]2

. (82a)

Of course, τ̄g = 0 if α̃c = 0. Rather remarkably, for n = α̃c,
W (α̃c, τn) ≈ 2/3 (if α̃c is not integral, that is, if α̃c = n0 +
s, where 0 � s � 1, [(1 − s)W (α̃c, τn0 ) + sW (α̃c, τn0+1)] ≈
2/3). In other words, approximately 2/3 of the incident pulse
energy is transmitted in a time of order 2τ̄g. This result is
consistent with Eq. (48), derived for large values of n,

W

(
α̃c, τn = 2πn

	0

)
≈ 1 − 1

π

√
α̃c

n
= 1 −

√
2

π

√
τ̄g

τn
, (83)

which predicts that 2/3 of the energy is transmitted for
τn = 2τ̄g(3/π )2.

These results suggest that both the emission time of the
maximum echo, as well as the characteristic time for a large
fraction of the incident pulse energy to be transmitted, is
linked to the average group delay. It is more difficult to de-
fine an average group delay for RSM. However, the temporal
evolution of the AFC retrieved energy is very similar to that
of RSM, as illustrated in Fig. 3.

VII. CONCLUSIONS

We have studied the transmission properties of regularly
and randomly spaced atomic frequency arrays. Throughout
the discussion, we have emphasized that the transmission
originates from a continuous exchange of energy between the
atoms and the field. In the limit of narrow spikes, there is
negligible absorption of the field by the medium, even though
the field energy may be temporarily stored in the medium.
In other words, it is optical dispersion rather than absorp-
tion that determines the atom-field dynamics. For a regularly
spaced comb, the output consists of the (partially) transmitted
incident pulse, followed by a succession of regularly spaced
echoes. For a RSM, the output intensity has a continuous
rather than echolike dependence. The time scale for total
transmission depends on both the spacing of the absorption
teeth and the ratio of the tooth width to the tooth spacing.
In the limit that the spike width is much less than the spike
separation, the time of emission for an AFC has been related
to the group delay of the medium.
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APPENDIX A: GENERALIZED RESULTS

In this Appendix, we generalize the results to allow for ar-
bitrary pulse and spike profiles. The resulting expressions are
then evaluated for a Gaussian input pulse and both Gaussian
and rectangular spike profiles.

1. AFC

We replace the frequency distribution given by Eq. (24)
with

G(	) = κ√
π
w

e−	2/
2
w

∞∑
n=−∞

h

(
	 − n	0


s

)

≈ κ√
π
w

∞∑
n=−∞

h

(
	 − n	0


s

)
, (A1)

where the function h(x) is an arbitrary function having a width
of order unity normalized such that∫ ∞

−∞
h

(
	


s

)
d	 = 
s

∫ ∞

−∞
h(x)dx = 
s. (A2)

Then, following the same procedure as in Sec. IV, we find

A(�) = πκ√
π
w


s

	0

[
1 + 2

∞∑
n=1

e2π in�/	0 bn(
s/	0)

]
, (A3)

with

bn(y) =
∫ ∞

−∞
dx h(x)e−2π inxy. (A4)

In the asymptotic limit that 
s/	0 ∼ 0, bn(
s/	0) ∼ 1, prov-
ing that the results are independent of the shape of the spikes
in this limit.

Setting

α̃c = 2
√

πC
2κ


w


s

	0
= α̃0

h(0)


s

	0
, (A5)

where

α̃0 = 2
√

π
2Cκ


w

h(0) (A6)

is the dimensionless cw absorption coefficient on resonance
for a single spike, we obtain the field amplitude as

F (Z, τ ) = 1

2π

∫ ∞

−∞
e−i�τ F̃ (0,�)K (α̃cZ, 
s/	0,�/	0)d�,

(A7)
with

K (α̃cZ, 
s/	0,�/	0)

= e−α̃cZ/2 exp

[
−α̃cZ

∞∑
n=1

bn(
s/	0)e2π in�/	0

]
. (A8)

The quantity α̃c is an effective comb absorption coefficient.
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When the kernel is expanded as in Eq. (38),we find the expansion coefficients

cp(α̃cZ, 
s/	0) =
{

e−α̃cZ/2Qp(α̃cZ, 
s/	0), p � 0,

0, p < 0
(A9)

and

F (Z, τ ) = F0e−α̃cZ/2
∞∑

p=0

e−(τ−2π p/	0 )2/2Qp(α̃cZ, 
s/	0), (A10)

with

Qp(x, y) =
∫ 1/2

−1/2
dσ exp

(
−x

∞∑
n=1

bn(y)e2π inσ

)
e−2π ipσ . (A11)

The exponential can be expanded as

exp

(
−x

∞∑
n=1

bn(y)e2π inσ

)
=

∞∏
n=1

∞∑
q=0

(−x)q

q!
bq

n(
s/	0)e2π inqσ

=
[

1 − xb1(y)e2π iσ + [xb1(y)]2

2!
e4π iσ − [xb1(y)]3

3!
e6π iσ + [xb1(y)]4

4!
e8π iσ − [xb1(y)]5

5!
e10π iσ

]

×
[

1 − xb2(y)e4π iσ + [xb2(y)]2

2!
e8π iσ

]
[1 − xb3(y)e6π iσ ][1 − xb4(y)e8π iσ ][1 − xb5(y)e10π iσ ],

(A12)

where we have written out a few terms. The integral in Eq. (A11) is now calculated easily using∫ 1/2

−1/2
dσ exp e2π inσ e−2π ipσ = δn,p, (A13)

where δn,p is a Kronecker delta. In this manner, we obtain

Q0(x, y) = 1, (A14a)

Q1(x, y) = −b1x, (A14b)

Q2(x, y) = −b2x + b2
1

x2

2
, (A14c)

Q3(x, y) = −b3x + (b2b1)x2 − b3
1

x3

3!
, (A14d)

Q4(x, y) = −b4x +
(

b3b1 + b2
2

2!

)
x2 − b2b2

1

2!
x3 + b4

1
x4

4!
, (A14e)

Q5(x, y) = −b5x + (b4b1 + b3b2)x2 −
(

b3b2
1

2!
+ b1b2

2

2!

)
x3 + b2b3

1
x4

3!
− b5

1
x5

5!
, (A14f)

Q6(x, y) = −b6x +
(

b5b1 + b4b2 + b2
3

2!

)
x2 −

(
b4b2

1

2!
+ b3

2

3!
+ b1b2b3

)
x3 +

(
b3b3

1

3!
+ b2

1

2!

b2
2

2!

)
x4 − b2

b4
1

4!
x5 + b6

1
x6

6!
,

(A14g)

where bn ≡ bn(y). No further simplification is possible, as was
the case for Lorentzian spikes. In the limit that 
s/	0 ∼ 0, all
the bn’s can be set equal to unity and we recover

cp(α̃cZ, 0) ≈ cpL(α̃cZ, 0) = e−α̃cZ/2L−1
p (α̃cZ ), (A15)

found previously for narrow Lorentzian spikes.

2. RSM

The distribution G(	) is still given by Eq. (24), with the
sum from n = −∞ to ∞ replaced by a sum from n = 1 to

n = Ns and with n	0 replaced by Dn, where Dn is a frequency
chosen at random in the interval (−Ns	0/2, Ns	0/2), with Ns

allowed to approach infinity. The field amplitude is then given
by

Fr (Z, τ ) ≈ 1

2π

∫ ∞

−∞
e−i�τ F̃ (�, 0)

× exp

[
− α̃0Z

2πh(0)

Ns∑
n=1

∫ ∞

−∞

h
(

	−Dn

s

)

2
2 − i(� − 	)

d	

]
,

(A16)
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which can be rewritten as

Fr (Z, τ ) = 1

2π

∫ ∞

−∞
e−i�τ F̃ (�, 0)

×
Ns∏

n=1

exp

(
− α̃0Z
s

2πh(0)

∫ ∞

−∞

h
(

	−Dn

s

)

2
2 − i(� − 	)

d	

)
.

(A17)

This expression can be evaluated numerically with the Dn

chosen at random in the interval (−Ns	0/2, Ns	0/2)
We now want to average this expression over random spike

positions in frequency space. On average, each factor in the

product is the same; in other words,

〈Fr (Z, τ )〉 = 1

2π

∫ ∞

−∞
e−i�τ F̃ (�, 0)

×
〈

exp

(
− α̃0Z

2πh(0)

∫ ∞

−∞

h
(
	−Dn


s

)

2
2 − i(� − 	)

d	

)〉Ns

.

(A18)

Let us define

ψ =
〈

exp

(
− α̃0Z

2πh(0)

∫ ∞

−∞

h
(

	−Dn

s

)

2
2 − i(� − 	)

d	

)〉
(A19)

and expand the exponential to obtain

ψ = 1

Ns	0

∫ Ns	0/2

−Ns	0/2
dDn

∞∑
q=0

[
− α̃0Z

2πh(0)

∫ ∞

−∞

h
(

	−Dn

s

)

2
2 − i(� − 	)

d	

]q
1

q!

≈ 1 + lim
Ns→∞

1

Ns	0

∞∑
q=1

∫ ∞

−∞
dDn

[
− α̃0Z

2πh(0)

∫ ∞

−∞

h
(

x

s

)

2
2 − i(� − x − Dn)

dx

]q
1

q!

= 1 + lim
Ns→∞

1

Ns	0

∞∑
q=1

∫ ∞

−∞
dy

[
− α̃0Z

2πh(0)

∫ ∞

−∞

h
(

x

s

)

2
2 + i(y + x)

dx

]q
1

q!
, (A20)

where x = 	 − Dn and we have used the fact that the number of spikes is taken to approach infinity. Note that the result no
longer depends on �, implying that

Fr (Z, τ ) = F (0, τ ) lim
Ns→∞

ψNs . (A21)

Using the fact that ∫ ∞

−∞
dy

[∫ ∞

−∞

h
(

x

s

)

2
2 + i(y + x)

dx

]q

= π
sδq,1, (A22a)

and letting Ns approach infinity, we obtain

Fr (Z, τ ) = F (0, τ ) exp

(
− α̃0

2h(0)


s

	0
Z

)
= F (0, τ )e−α̃cZ/2, (A23)

where

α̃c = α̃0

h(0)


s

	0
(A24)

is the analogous value of α̃c for a regularly spaced comb with spacing 	0. Regardless of the spike profile, the average transmitted
field has the same temporal profile as the input field and vanishes once the input field has traversed the sample.

The transmitted intensity at time τ , defined by Eq. (19), is

Tr (τ ) = 1

4π2

∫ ∞

−∞
d�′

∫ ∞

−∞
d� F̃ (�, 0)

[
F̃ (�′, 0)

]∗
e−i(�−�′ )τ

× exp

(
− α̃0

2πh(0)

∞∑
n=1

∫ ∞

−∞

h
(

	−Dn

s

)
[
2 + i(�′ − �)][


2
2 − i(� − 	)

][

2
2 + i(�′ − 	)

]d	

)
. (A25)

Setting

�̄ = �′ − �, (A26)

y = 	 − �, (A27)

and defining

B(�̄) = 1

2π

∫ ∞

−∞
d� F̃ (�, 0)[F̃ (�̄ + �, 0)]∗, (A28)
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we can average Eq. (61) and write it as

〈Tr (τ )〉 = 2π lim

2→0

∫ ∞

−∞
d� B(�)ei�τ [ψ1(�)]Ns , (A29)

where

ψ1(�) = 1

Ns	0
lim


2→0

∫ Ns	0/2

−Ns	0/2
dDn exp

(
− α̃0

2πh(0)

×
∫ ∞

−∞

(
2 + i�)h
( y−�−Dn


s

)
[


2
2 + iy

][

2
2 − i(y − �)

]dy

)
. (A30)

For convergence, we need to retain the 
2’s in the denomina-
tor.

We define

H (�, Dn) = 1

2π
s
lim


2→0

∫ ∞

−∞

(
2 + i�)h
( y−�−Dn


s

)
[


2
2 + iy

][

2
2 − i(y − �)

]dy,

(A31)

such that

ψ1(�) = 1

Ns	0
lim


2→0

∫ Ns	0/2

−Ns	0/2
dDn exp [−α̃c	0H (�, Dn)].

(A32)
For a given spike profile h, it is rather straightforward,
but computationally challenging, to obtain 〈Tr (τ )〉 using a
value Ns	0 � 1, so as to cover the entire bandwidth of
the incident pulse (which is equal to unity in these dimen-
sionless units). Note that, in the asymptotic limit, 
s ∼ 0,
h[(y − � − Dn)/
s] ∼ 
sδ(y − � − Dn), and H (�, Dn) be-
comes independent of spike shape.

3. Specific examples: Gaussian input pulse and Gaussian
and rectangular spike

We would like to present some results for a Gaussian input
pulse

F (0, τ ) = F0e−τ 2/2, F̃ (0,�) =
√

2πF0e−�2/2, (A33)

and both Gaussian and rectangular spike profiles,

hG(	/
s) = 1√
π

e−	2/
s , (A34a)

hR(	/
s) = �

(
1 − |	|


s/2

)
. (A34b)

For a regularly spaced comb of Gaussian or rectangular
spikes,

2C
2AG(�) = α̃0G

∞∑
n=−∞

w

(
� − n	0


s

)

= α̃c

(
1 + 2

∞∑
n=1

e2π in�/	0 e−n2π2
2
s /	2

0

)

= α̃c

[
ET

(
3,

π�

	0
, e−π2
2

s /	2
0

)

+ 2i
∞∑

n=1

sin

(
2πn�

	0

)
e−n2π2
2

s /	2
0

]
, (A35a)

2C
2AR(�) = α̃0R

∞∑
n=−∞

�

(
1 − |� − n	0|


s/2

)

+ i

π
ln

∣∣∣∣∣
�−n	0

s/2 + 1

�−n	0

s/2 − 1

∣∣∣∣∣
= α̃c

(
1 + 2

∞∑
n=1

e2π in�/	0
sin

( nπ
s
	0

)
nπ
s
	0

)

= α̃c

(
1 − i

π

	0


s
[ln

(
1 − ei(2�−
s )/	0

)

− ln
(
1 − ei(2�+
s )/	0

)
]

)
, (A35b)

where ET is a Jacobi theta function (EllipticTheta in Mathe-
matica),

w(x) = e−x2
[1 + �(ix)], (A36)

�(x) is the error function,

α̃0G = 2C
2κ


w

, (A37a)

α̃0R = 2C
2
√

πκ


w

, (A37b)

and

α̃c = α̃0G
√

π

s

	0
= α̃0R


s

	0
= 2

√
πC
2κ


w


s

	0
. (A38a)

For these pulses,

bnG

(

s

	0

)
= e−n2π2
2

s /	2
0 , (A39a)

bnR

(

s

	0

)
= sin

( nπ
s
	0

)
nπ
s
	0

. (A39b)

For an AFC the amplitude of the first several echoes is calcu-
lated easily using Eqs. (A10), (A9), and (A39).

For RSM

2C
2AGr (�) = α̃0G

∞∑
n=1

w

(
� − Dn


s

)
, (A40a)

2C
2ARr (�) = α̃0R

∞∑
n=1

�

(
1 − |� − Dn|


s/2

)

+ i

π
ln

∣∣∣∣∣
�−Dn

s/2 + 1

�−Dn

s/2 − 1

∣∣∣∣∣. (A40b)

The output field amplitude is given by

F (Z, τ ) = 1√
2π

∫ ∞

−∞
e−i�τ e−�2/2e−
2CZA(�)d�. (A41)

The real part of A(�) is equal to zero except for a range of
frequencies of order 
s centered at frequencies �n = n	0 or
�n = Dn, while Im [A(�)] consists of dispersionlike profiles
centered at these values. In calculating the field amplitude,
therefore, it is a very good approximation to neglect the con-
tributions from the real part of A(�) since they are limited
to a narrow frequency range and do not affect the integral
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FIG. 4. Exact transmitted field amplitude FG(1, τ )/F0 (red, solid
curves) and approximate (including only dispersion) transmitted field
amplitude F ap

G (1, τ )/F0 (blue, dashed curves) for the third echo are
plotted for α̃c = 1, 	0 = 0.06, and 
s = 0.001.

significantly. It is the dispersive part of the susceptibility that
determines the field evolution. For example, in the limit that

s/	0 ∼ 0, it follows from Eqs. (A35) and (A41) that the field
amplitude for an AFC becomes

F (Z, τ ) = 1√
2π

∫ ∞

−∞
e−i�τ e−�2/2e− α̃c

2 cot (π�/	0 )d�, (A42)

consistent with Eq. (51).
For finite 
s/	0, the exact field expression for an AFC

with Gaussian spikes is

FG(Z, τ ) ≈ F0√
2π

∫ ∞

−∞
e−i�τ e−�2/2 exp

[
− α̃cGZ

2

×
(

1 + 2
∞∑

n=1

e2π in�/	0 e−n2π2
2
s /	2

0

)]
, (A43)

whereas the approximate expression, neglecting the real part
of the susceptibility, is

F ap
G (Z, τ ) = F0√

2π

∫ ∞

−∞
e−i�τ e−�2/2 exp

[
− iα̃cGZ

×
∞∑

n=1

e−n2π2γ 2
0
/	2

0 sin

(
2πn�

	0

)
d�

]
. (A44)

FIG. 5. Same as Fig. 4, except that 
s = 0.0005.

For 	0 = 0.06, and α̃c = 1, FG(1, τ )/F0 (red, solid curves)
and F ap

G (1, τ )/F0 (blue, dashed curves) for the third echo
are plotted in Fig. 4 for 
s = 0.001 and Fig. 5 for 
s =
0.0005, respectively. As can be seen the two expressions
differ very little and would overlap entirely in the limit that

s/	0 ∼ 0. Although Eqs. (A43) and (A44) are equal in
the limit that 
s/	0 � 1, computationally, in the case of an
AFC, it is easier to use the exact expression for the field
amplitude. That is, to calculate the field amplitude for the
qth echo using the exact expression, it is necessary only to
keep terms in the summation in Eq. (A43) up to nmax = q,
whereas, it is necessary to keep terms in the summation in
Eq. (A43) up to nmax = 	0/
s � 1 at all times. The reason
for this is that only terms varying as exp (2π ip�/	0) with
p � 0 appear in the expansion of the exponential Eq. (A43),
whereas, if we expand the exponential in Eq. (A44), both
positive and negative values of p will enter. In calculating
the approximate amplitude we make an (absolute) error in
the amplitude of each amplitude of order 
s/	0, resulting
from the fact that we have neglected the extinction of the
integrand in small intervals having width

√
π
s centered

about � = 2πn/	0. For 
s/	0 ≈ 0.017, this deviation of
the approximate solution from the exact one can be seen in
Fig. 4.

The total transmitted energy, normalized to the total energy
of the pulse, is

WG = 1√
π

∫ ∞

−∞
e−�2

exp

(
−α̃0G

∞∑
n=−∞

exp

[
−

(
� − n	0


s

)2])
d�

= 1√
π

∫ ∞

−∞
e−�2

exp

[
−α̃cG

(
1 + 2

∞∑
n=1

cos (2πn�/	0)e−n2π2
2
s /	2

0

)]
d�, (A45a)

WGr = 1√
π

∫ ∞

−∞
e−�2

exp

(
−α̃0G

∞∑
n=1

exp

[
−

(
� − Dn


s

)2])
d�, (A45b)

WR = 1√
π

∫ ∞

−∞
e−�2

exp

[
−α̃0R

∞∑
n=−∞

�

(
1 − |� − n	0|


s/2

)]
d�, (A45c)

WRr = 1√
π

∫ ∞

−∞
e−�2

exp

[
−α̃0R

∞∑
n=1

�

(
1 − |� − Dn|


s/2

)]
. (A45d)
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The total, normalized transmitted field energy is equal to
unity, with a small correction of order 
s/	0 for α̃c of order
unity. To a good approximation, for 
s/	0 � 1,

WG ≈ 〈WGr〉 ≈ 1 − 2

s

	0

√
ln

( α̃0G

ln 2

)

= 1 − 2

s

	0

√
ln

(
	0α̃c


s
√

π ln 2

)
, (A46a)

WR ≈ 〈WRr〉 ≈ 1 − 
s

	0
, (A46b)

where the average is for random spikes having average sep-
aration 	0. For 
s = 0.001, 	0 = 0.06, and α̃c = 2,WG =
0.928 and WR = 0.983, much closer to unity than the value
WL = 0.650 found for Lorentzian spikes.

APPENDIX B: ASYMPTOTIC RESULTS

In this Appendix, we derive the asymptotic results for the
total transmitted energy WL in the limit that 
s/	0 � 1 and
for the average transmitted energy at time τ , 〈WrL(τ )〉 in the
limit that 	0τ � 1 and 
s/	0 ∼ 0.

1. WL in the limit that �s/�0 � 1 for an AFC

We start from Eq. (43),

WL = e−α̃c

∞∑
q=0

e−bq
[
L−1

p (α̃c)
]2

, (B1)

with b = 4π
s/	0 and define

y(x) = e−x
∞∑

q=0

[
L−1

q (x)
]2

e−bq.

Then

dy

dx
= −y + 2 e−x

∞∑
q=0

L−1
q (x)

d
[
L−1

q (x)
]

dx
e−bq

= −y − 2 e−x
∞∑

q=1

L−1
q (x)L0

q−1(x)e−bq. (B2)

We can use the identity

L−1
q (x)L0

q−1(x)

=
[
L−1

q (x) + L0
q−1(x)

]2 − [
L−1

q (x)
]2 − [

L0
q−1(x)

]2

2
(B3)

along with the recursion relation

Lk
q (x) + Lk+1

q−1(x) = Lk+1
q (x) (B4)

to arrive at

2
∞∑

q=1

L−1
q (x)L0

q−1(x)e−bq

=
∞∑

q=1

([
L0

q (x)
]2 − [

L−1
q (x)

]2 − [
L0

q−1(x)
]2)

e−bq

= −
∞∑

q=0

[
L−1

q (x)
]2

e−bq + (1 − e−b)
∞∑

q=0

[
L0

q (x)
]2

e−bq,

(B5)

where we have used the fact that L0
0 (x) = L−1

0 (x) = 1. Com-
bining Eqs. (B2) and (B5), we find

dy

dx
= −(1 − e−b)e−x

∞∑
q=0

[
L0

q (x)
]2

e−bq. (B6)

Since y(0) = 1,

y(x) = 1 − (1 − e−b)
∫ x

0
dx′ y(0)(x′), (B7)

where

y(0)(x) = e−x
∞∑

q=0

[Lq(x)]2e−qb (B8)

and Lq(x) ≡ L0
q (x). We break up the sum as

y(0)(x) = e−x
n−1∑
q=0

[Lq(x)]2e−qb + e−x
∞∑
n

[Lq(x)]2e−qb (B9)

and take n sufficiently large to allow us to replace [Lq(x)]2 by
its asymptotic expansion for large q,

e−x[Lq(x)]2 ∼ 1

2π
√

qx
[1 + sin(4

√
qx)]. (B10)

We then replace the second sum in Eq. (B9) by an integral and
calculate

g(n, b), x =
∫ ∞

n

e−qb

2π
√

qx
[1 + sin(4

√
qx)]dq, (B11)

an integral that can be evaluated in terms of error functions. In
the limit that b � 1,

g(n, b, x) ≈ 1

2π
√

x

(√
π

b
+ cos(4

√
nx)√

x
− 2

√
n

)
. (B12)

If
√

bn � 1 and x � 1, g(n, b, x) ≈ √
1/(4πxb) and

y(0)(x) ≈ e−x
n∑

q=0

[Lq(x)]2e−qb + 1√
4πxb

. (B13)

Moreover, for
√

bn � 1 and x � 1, the summation term is
much less than the second term and

y(0)(x) ≈ 1√
4πxb

. (B14)

Substituting this into Eq. (B7), we arrive at

y(x) ≈ 1 − (1 − e−b)

√
x

πb
≈ 1 −

√
bx

π
(B15)

or

WL = y(α̃c) ≈ 1 − 2
√

α̃c
s/	0. (B16)
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2. 〈WrL(τ )〉 for �0τ � 1 in the limit that �s/�0 ∼ 0 for RSM

We start from Eq. (73),

〈WrL(τ )〉 = 1

2π

∫ τ

−∞
dτ ′

∫ ∞

−∞
d� e−�2/4ei�τ ′

× e−α̃ceiβ(�){I0[iβ(�)]−I1[iβ(�)]}

= 〈WrL〉 − 1

2π

∫ ∞

τ

dτ ′
∫ ∞

−∞
d� e−�2/4ei�τ ′

× e−α̃ceiβ(�){I0[iβ(�)]−I1[iβ(�)]}, (B17)

where 〈WrL〉 = 〈WrL(∞)〉 is the average total transmitted en-
ergy and

β(�) = α̃c	0

π (� − 2i
s)
. (B18)

For 	0τ � 1, the oscillating factor ei�τ ′
in the third line of

Eq. (B17) insures that only values

� � 	0 � 1 (B19)

contribute to the integral. As a consequence, |β(�)| � 1 and
the Bessel functions can be replaced by their asymptotic val-
ues

eiβ(�){I0[iβ(�)] − I1[iβ(�)]}

∼
√

2i

πβ(�)
=

√
2

α̃c	0

√
2
s + i�. (B20)

Substituting this result into Eq. (B17), we obtain

〈WrL(τ )〉 ≈ 〈WrL〉 − 1

2π

∫ ∞

τ

dτ ′
∫ ∞

−∞
d�

× exp

(
i�τ ′ −

√
2α̃c

	0

√
2
s + i�

)
, (B21)

where we have dropped the e−�2/4 factor in Eq. (B17) since
� � 1.

To make further progress, we now take the asymptotic limit

s/	0 ∼ 0 for which 〈WrL〉 ∼ 1 and

〈WrL(τ )〉∼1− 1

2π

∫ ∞

τ

dτ ′
∫ ∞

−∞
d� exp

(
i�τ ′ −

√
2iα̃c�

	0

)
.

(B22)

The integral over � is tabulated,∫ ∞

−∞
d� exp

(
i�τ ′ −

√
2iα̃c�

	0

)

= 1

(τ ′)3/2

√
2πα̃c

	0
e−α̃c/(2	0τ

′ ). (B23)

Since it has been assumed that 	0τ � 1, it follows from
Eqs. (B21) and (B23) that, for α̃c of order unity,

〈WrL(τ )〉 ∼ 1 −
√

α̃c

2π	0

∫ ∞

τ

dτ ′ 1

(τ ′)3/2 = 1 −
√

2α̃c

π	0τ
.

(B24)

As we have proved already, in the asymptotic limit 
s/	0 ∼
0, all results are independent of spike shape, implying that
Eq. (B24) is valid for arbitrary spike profiles.
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