
PHYSICAL REVIEW A 103, 043718 (2021)

Quantum Borrmann effect for dissipation-immune photon-photon correlations
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We study theoretically the second-order correlation function g(2)(t ) for photons transmitted through a periodic
Bragg-spaced array of superconducting qubits, coupled to a waveguide. We demonstrate that photon bunching
and antibunching persist much longer than both radiative and nonradiative lifetimes of a single qubit. Due to the
Borrmann effect, that is a strongly non-Markovian collective feature of light-qubit coupling inherent to the Bragg
regime, the photon-photon correlations become immune to nonradiative dissipation. This persistence of quantum
correlations opens new avenues for enhancing the performance of setups of waveguide quantum electrodynamics.
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I. INTRODUCTION

Cooperative effects are widely used to manipulate light-
matter interactions [1,2]. Namely, constructive or destructive
interference between light coupled to different resonant emit-
ters can result in enhancement (superradiance) or suppression
(subradiance) of the radiative decay rate �rad as compared
with the radiative decay rate of an individual emitter �0.
Both super- and subradiant modes have been demonstrated
for a variety of experimental platforms, such as resonant
plasmonic [3] and dielectric nanostructures [4], solid-state
quantum emitters [5,6], individual molecules, etc. For exam-
ple, long-living supercavity modes with �rad � �0, inspired
by the photonic bound states in the continuum [7], have
been recently realized for resonant dielectric nanoparticles
[8]. Similar concepts to engineer subradiant modes apply in
the quantum regime [9–13] as has been recently demonstrated
for single-photon excitations of a superconducting qubit array
coupled to a waveguide [14]. It is, however, much harder to
suppress the nonradiative decay. In the usually valid Marko-
vian regime of light-matter coupling, the nonradiative decay
rate �nonrad just adds an independent contribution to the total
decay rate, �tot = �rad + �nonrad that is sensitive neither to
the interference nor to the number of emitters. As such, the
maximum lifetime 1/(2�tot ) is given by t (1)

nonrad = 1/(2�nonrad ),
which seems to limit the performance of a real-life quantum
system regardless of the sophisticated techniques used to ma-
nipulate �rad.

Here, we propose a simple scheme to achieve quantum
correlations between photons in an array of superconducting
qubits in a waveguide that have the total lifetime much larger
that both radiative and nonradiative lifetime of an individual
qubit. We consider a periodic array of N two-level qubits with
the resonant frequency ω0 and the spacing d , satisfying the
resonant Bragg condition

d = dBragg ≡ λ(ω0)
m

2
, m = 1, 2, . . . , (1)

where λ(ω0) = 2πc/ω0 and c is the speed of light, see Fig. 1.
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Our proposal is inspired by the Borrmann effect, originally
discovered for x-rays [15,16]. The effect manifests itself in
anomalous transmission of electromagnetic waves through
crystals due to the suppression of absorption in the Bragg
regime, when the wave has nodes at the atom centers. Sup-
pression of inelastic channels has also been proposed [17]
and studied experimentally for resonant scattering of γ rays
on nuclei in crystals, see the review [18]. The Borrmann
effect has been also observed in photonic crystals [19], and
similar ideas were examined in Bragg arrays of semiconductor
quantum wells [20–22], in particular in Refs. [23,24]. The
essence of the Borrmann effect can be understood from a
properties of the simplest one-dimensional photonic crystal,
an array ABABAB ...of alternating layers A and B. Namely,
the electric field has nodes centered in layers A at one edge of
the photonic band gap and in layers B at the opposite band-
gap edge [25]. When layers A (or layers B) acquire complex
permittivity, the light absorption appears to be suppressed at
the corresponding band-gap edge due to the decrease of the
overlap between the electric field and the absorbing layers.
Obviously, the effect is greatest when the absorbing layers
are subwavelength, as in the case of atoms. However, to the
best of our knowledge, the Borrmann effect has never been
considered in the quantum structure, which is highly relevant
for emerging setups of waveguide quantum electrodynamics
based on cold atoms and superconducting qubits [26–30].
While quantum optics for arrays of closely spaced atoms
is well developed, implications of Bragg diffraction on the
quantum correlations in photonic crystals made of atoms or
qubits remain a fundamental problem where much less is
understood.

Here we perform a rigorous calculation of the second-order
photon-photon correlation function g(2)(t ) and demonstrate
long-living correlations [g(2)(t ) �= 1] of photons transmitted
through the Bragg qubit arrays at times t � t (1)

nonrad. The cor-
relations that persist much longer than the radiative lifetime
are already known for a two-qubit system separated by large
anti-Bragg distance d = (m ± 1

2 )λ0/2 [31]. However, the ad-
vantage of the current proposal based on the multiqubit Bragg
array is that the correlations survive at even longer times,
exceeding the nonradiative lifetime of a single qubit. This
could open new possibilities for applications in quantum
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FIG. 1. Schematics of two photons propagating in an array of
superconducting qubits coupled to a waveguide and separated by the
Bragg spacing d = dBragg ≡ λ(ω0)/2. Shaded black curve shows the
electric field Re E (z) of the most subradiant mode of the nine-qubit
array. Calculation parameters are given in the text.

memory and quantum information processing. Our results
apply to different platforms of waveguide quantum electrody-
namics with superconducting qubits being probably the most
suitable one at the moment. Their main advantage is large
coupling efficiency of the qubit resonance to the waveguide
mode β = �0/(�0 + �nonrad ) > 99% [29] and the possibility
to control each qubit individually, eliminating the inhomoge-
neous broadening. In the case of a cold atom platform, the
coupling efficiency is on the order of β ≈ 1% [26,28]. For
other platforms, such as quantum defects [32] or quantum dots
[33], it is so far relatively hard to produce coherent arrays
with more than N = 2 qubits due to large inhomogeneous
broadening.

II. COMPLEX ENERGY SPECTRUM

We now analyze the energy spectrum of single-excited
states of photons coupled to the qubits in a one-dimensional
waveguide that will determine the lifetime of photon-photon
correlations. The considered structure consists of N peri-
odically spaced qubits and is characterized by the standard
quantum-optics Hamiltonian

H =
∑

k

ωka†
kak +

∑
j

ω0b†
jb j + χ

2

∑
j

b†
jb

†
jb jb j

+ g√
L

∑
j,k

(
b†

jakeikz j + b ja
†
ke−ikz j

)
. (2)

Here, ak are the annihilation operators for the waveguide
photons with the wave vectors k, frequencies ωk = c|k|, and
velocity c, g is the interaction constant, L is the normalization
length, and b j are the (bosonic) annihilation operators for
the qubit excitations with the frequency ω0 and located at
the point z j . We consider a nonchiral situation, when atoms
interact with photons propagating in both directions. The
qualitatively different many-body chiral quantum problem has
recently been solved in Ref. [34] and the results were ex-
perimentally tested in Ref. [35]. In Eq. (2), we consider the
general case of anharmonic many-level qubits, the two-level
case can be obtained in the limit of large anharmonicity (χ →
∞) where the multiple occupation is suppressed [31,36]. This
procedure is inspired by Abrikosov’s approach to spin systems
[37]: two states of two-level atom can be mapped to the two
states of spin 1/2. The photonic degrees of freedom can be
integrated out in Eq. (2), yielding an effective model for light-

coupled qubit excitations [11,38],

H̃ =
∑
m,n

Hm,n(ω0)b†
mbn + χ

2

∑
m

b†
mb†

mbmbm, (3)

where

Hmn(ω) = (ω0 − i�nonrad )δmn − i�0eiω|zm−zn|/c, (4)

where m, n = 1, . . . , N . The Hamiltonian (4) is non-
Hermitian and takes into account the radiative losses char-
acterized by the radiative decay rate for a single qubit �0 =
g2/c. The interaction between the qubits is long-ranged since
it is mediated by the photons propagating in the waveguide.
We have also added to the Hamiltonian Hmn in Eq. (3) a
phenomenological nonradiative decay rate �nonrad that in-
corporates all the decay and dephasing mechanisms of the
qubits except for emission to the waveguide. In case of atoms
coupled to the waveguide, it is mostly associated with the
emission into free space [28]. In the case of superconducting
qubits, the decoherence can be related to the defects in the
Josephson junctions [39]. We also note that, while the distinc-
tion between nonradiative decay and pure dephasing can be
important for highly excited quantum states, it is less relevant
for single-excited subradiant states where they both can be
merged in one phenomenological parameter. For example, the
non-Hermitian dephasing term ∝i(b†b)2 for single-excitation
systems where b†b = 1 is equivalent to a simpler term
∝ib†b.

The specific procedure of the derivation of the Hamiltonian
Eq. (3) starting from Eq. (2) is detailed e.g., in Ref. [38]
where the authors use the standard input-output approach of
quantum optics. Another rigorous derivation of the equation
for single-excited states in the atomic array coupled to a
waveguide is presented in Ref. [40] where it is shown that their
coupling is described by a classical electromagnetic Green’s
function. In the case where the coupling is determined only
by the guided mode, the problem becomes effectively one
dimensional and the three-dimensional (3D) Green’s func-
tion from Ref. [40] reduces to the one-dimensional (1D)
Green’s function eiω|zm−zn|/c entering Eq. (4) as shown in
Ref. [41]. An alternative but equivalent derivation is presented
in Ref. [12] where we demonstrate that the poles of the
two-photon scattering matrix calculated by using the rigorous
Green’s function technique can be equivalently found from
Eq. (3) for single- and two-photon excitations. Specifically,
the values of complex eigenfrequencies ω for single-excited
states are determined by the positions of the poles of the
Green’s function, that can be presented in the matrix form
as G(ω) = [H (ω) − ω]−1, where H (ω) is the matrix Hamil-
tonian (4).

Crucially, we do not limit ourselves to the Markovian ap-
proximation. In the Markovian approximation it is assumed
that the photon-mediated coupling between the qubits is in-
stantaneous, i.e., the flight time of photons through the array
is much shorter than all the lifetimes of the collective modes in
the system. Technically, it means that Hmn(ω) can be replaced
by Hmn(ω0). When the array is long enough, we need to take
into account the retardation effects, described by the depen-
dence of the matrix Hmn on the frequency ω via the phase
ω|m − n|d/c gained by light when traveling from the qubit
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FIG. 2. (a) Numerically calculated lifetime of longest-living
eigenmode depending on the number of qubits for a Bragg-spaced
array with ω0d/c = π (filled black circles) and a short-period meta-
material with ω0d/c = 0.15π (small red dots). Solid curve shows the
analytical dependence Eq. (5). Open blue circles show the numer-
ically calculated lifetime of the photon-photon correlations g(2)(t ).
(b) Lifetime dependence on the array period. Black filled and red
open circles correspond to N = 6 and N = 10 qubits. Horizontal blue
dotted and dashed lines show the nonradiative and radiative lifetimes
for a single qubit, respectively. Calculation has been performed for
�nonrad = 0.2�0 and �0/ω0 = 10−2.

m to the qubit n. The eigenfrequencies are found by solving
numerically the equation det G−1(ω) = 0 for complex ω.

We start by analyzing the lifetime of the longest-
living eigenmode t = 1/(2 min | Im ω|). Numerically calcu-
lated lifetime dependence on the number of qubits N for
the Bragg-spaced array is shown by the large black circles
in Fig. 2(a). The lifetime greatly exceeds the nonradiative
lifetime of a single qubit (blue dotted line). The lifetime
dependence is well described by the analytical equation [see
Appendix A for derivation details]

t (N )

t (1)
nonrad

= 1 + 2�0

ω0π
N2, (5)

shown by the solid black curve in Fig. 2(a). This quadratic
t (N ) dependence is very different from the case of short-
period array with the spacing defined by ω0d/c = 0.15π ,
where the Markovian approximation works well and the life-
time is limited from above by 1/�nonrad, small red circles
in Fig. 2(a). The increase of the lifetime in the Bragg case
is also seen in Fig. 2(b) where we plot its dependence on
the array period for two given numbers of qubits N = 6 and
N = 10. For N = 6 the Markovian approximation still works
and the lifetime depends weakly on period. However, already
for N = 10 qubits the lifetime in Bragg structure increases,
evincing strongly non-Markovian physics.

Details of the evolution of the complex energy spectrum of
the Bragg array with the number of qubits N are examined in
Fig. 3. In the Markovian approximation the energy spectrum
includes a superradiant mode with ωSR = ω0 − i(N�0 + �)
and N − 1 degenerate dark modes, ωdark = ω0 − i�. Fig-
ure 3 shows the evolution of decay rates − Im ω of the
eigenmodes with increasing N . As a result of the Marko-
vian approximation breaking, the eigenfrequency equation
det G−1(ω) = 0 for the N-qubit system acquires an infinite
number of solutions. In addition to the N eigenvalues obtained

11 0 20 30
10-2

10-1

100

101

FIG. 3. Decay rates of the complex eigenmodes of the Bragg
qubit array depending on the number of qubits N . The calculation
parameters are the same as in Fig. 2.

in the Markovian approximation H (ω) = H (ω0), there exists
also an infinite number of generalized Fabry-Pérot eigen-
modes whose decay rate decreases with the increase of N .
Specifically, at N = 6 ∼ √

ω0/�0 the superradiant mode (red
diamonds) collides with the other mode with Re ω = ω0 and
the two modes turn into a pair of generalized Fabry-Pérot
modes with the same decay. For large N , the spectrum in-
cludes multiple Fabry-Pérot modes (magenta open circles in
Fig. 3) and N − 1 subradiant modes (small blue dots). More
information on the behavior of complex eigenfrequencies of
the generalized Fabry-Pérot modes can be found in the fol-
lowing Sec. III A.

Here, we are more interested in the evolution of the sub-
radiant modes. The real parts of their eigenfrequencies are
equal to ω0 and the evolution of the imaginary parts with N is
shown in Fig. 3 by small blue dots. When the number of qubits
increases the real parts of the complex eigenfrequencies of the
subradiant modes stay degenerate and equal to ω0 but their
decay rates, − Im ω, become different and nonzero. Moreover,
imaginary parts of eigenfrequencies are less than �nonrad by
the absolute value which means that the effective lifetime
of the subradiant eigenstates t = 1/(2| Im ω|) is longer than
both nonradiative and radiative lifetimes of a single qubit.
In the limit N → ∞, the complex frequency of the most
subradiant mode tends to ω = ω0, i.e., the lifetime becomes
infinitely long. To understand qualitatively the origin of the
long lifetime we plot in Fig. 1 by the shaded black curve the
distribution of the electric field, corresponding to the emission
from the longest-living eigenmode for N = 9 qubits: E (z) ∝∑N

m=1 eiω|z−md|/cψm, where ψm is the eigenvector satisfying
H (ω)ψ = ωψ . The calculated distribution has nodes at the
qubit sites, which explains the suppression of the nonradiative
decay, similar to the Borrmann effect in the x-ray physics
[16]. In another words, the mixed light-qubit polariton wave
is almost decoupled from the qubits and absorption is strongly
suppressed. Detailed analysis of the energy flow is presented
in Sec. III B.
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FIG. 4. (a) Energy spectrum of the 30-qubit array showing com-
plex eigenfrequencies of Fabry-Pérot and subradiant modes ω on the
complex plane. (b)–(d) Spatial distribution of three lowest Fabry-
Pérot modes I–III indicated in panel (a). The calculation has been
performed for �nonrad = 0.2�0 and �0/ω0 = 10−2.

III. SUBRADIANT AND FABRY-PÉROT MODES

In this section we provide more details on the identification
and behavior of generalized Fabry-Pérot modes (Sec. III A)
and subradiant modes (Sec. III B).

A. Generalized Fabry-Pérot modes

Here we examine in more detail the generalized Fabry-
Pérot modes of the qubit array.

The complex energy spectrum for N = 30 qubits is shown
in Fig. 4(a). Figures 4(b)–4(d) show the spatial distribution
of the three eigenvectors ψ for the three modes I–III, found
from the numerical solution of the generalized eigenprob-
lem Hmn(ω)ψn = ωψm. The spatial profile of the eigenmodes
resembles a discrete approximation of the standing waves
with zero nodes (I), one node (II), and two nodes (III).
This confirms our interpretation of these modes as a result
of Fabry-Pérot interference. Further confirmation is obtained
from Fig. 5(b), where we compare the real parts of the eigen-
frequencies for the modes I–III (blue horizontal lines) with the
positions of the Fabry-Pérot oscillations of the reflection and
transmission coefficients |rN |2 and |tN |2. Finally, comparison
of the spectral positions of these eigenmodes with the polari-
ton dispersion Kd (ω) plotted in Fig. 5(a) shows that their real
parts satisfy the interference condition

N Re [K (ω)d − π ] = π, 2π, 3π, . . . . (6)

We note that, contrary to the modes of a conventional Fabry-
Pérot resonator, the polariton dispersion law K (ω) in the
atomic array considered is a nonlinear function of ω. Hence,
our generalized Fabry-Pérot modes given by Eq. (A13) are not
equidistant, similarly to Fabry-Pérot modes of bulk exciton-
polaritons in finite slabs [42].

Details of the evolution of the complex energy spectrum
of the Bragg array with the number of qubits N are exam-
ined in Fig. 6. In the Markovian approximation the energy
spectrum includes a superradiant mode with ωSR = ω0 −
i(N�0 + �nonrad ) and N − 1 degenerate dark modes, ωdark =
ω0 − i�nonrad and Fig. 6 shows the evolution of spectrum
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FIG. 5. (a) Dispersion law of exciton-polaritonic modes (A10)
for the Bragg 30-qubit array. Dotted and solid curves have been cal-
culated neglecting and including the nonradiative decay, respectively.
(b) Reflection and transmission coefficients |rN (ω)|2 and |tN (ω)|2
calculated from Eqs. (A9). Ellipse indicates the frequency range an-
alyzed in Fig. 9. Calculation has been performed for �nonrad = 0.2�0

and �0/ω0 = 10−2. The thin horizontal blue lines I–III show the
values of the real parts of the eigenfrequencies of the Fabry-Pérot
modes.

with increasing N . The trajectory of the superradiant mode
in the complex plane is shown by the vertical black line in
Fig. 6. At N = 6 ∼ √

ω0/�0, the structure exhibits a transition
from the superradiant regime to the photonic crystal regime
[23,24]. Namely, at N ≈ 6 the superradiant mode collides
with the another mode with Re ω = ω0 (vertical blue line in
Fig. 6). After the collision these two modes split into a pair of
Fabry-Pérot modes, that are mirror-symmetric with respect to
ω0. Their trajectories are shown by curved colored lines with
arrows in Fig. 6. This transition from superradiant regime to
the photonic crystal regime takes place when the flight time of
photons through the system tflight = Nd/c = Nπ/ω0 becomes
shorter than the lifetime of the superradiant mode 1/N�0. For
structures with N �

√
ω0/�0 the Markovian approximation is

entirely broken.

FP

FP

SR

FIG. 6. Evolution of the complex energy spectrum of the Bragg
qubit array with the number of qubits, N . Lines with arrows show the
trajectories of Fabry-Pérot (FP) and superradiant (SR) modes with
the increase of N . The calculation has been performed for �nonrad =
0.2�0 and �0/ω0 = 10−2.
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FIG. 7. (a) Electric field (9) calculated for the most subradiant
mode of the 30-qubit array (ω − ω0 ≈ −0.015�0). (b) Poynting vec-
tor (13) calculated for the structure excited from the left by the plane
wave at the frequency ω0. The Poynting vector has been normalized
to the flux of the incident wave. The calculation has been performed
for �nonrad = 0.2�0 and �0/ω0 = 10−2.

The reflection coefficient for the infinite array can be ob-
tained from Eq. (A9) taking the limit N → ∞ and reads [23]

r∞(ω) = 1

(
√

ww̃ − √
ww̃ − 1)2

, (7)

where w = (ω − ω0)/�, w̃ = w + i�nonrad/�, � =√
2�0ω0/π is the half-width of the polariton band gap.

The reflection coefficient (7) has four branching points,
namely ω = ω0 ± � − i�/2, ω = ω0 and ω = ω0 − i�. In
the limit N → ∞, the Fabry-Pérot modes accumulate near the
band-gap edges in the points where K (ω)d = π , as follows
from Eq. (6). These points coincide with the two branching
points of r∞(ω),

ω± = ω0 ±
√

�2 − �2
nonrad

4
− i�nonrad

2
. (8)

The decay rates of the Fabry-Pérot modes remain finite and
tend to − Im ω± ≡ �nonrad/2, half of the nonradiative decay
rate of the qubits, reflecting the half-light half-qubit excitation
nature of the polariton. The subradiant modes accumulate near
the two other branching points ω = ω0 and ω = ω0 − i�nonrad.

B. Subradiant modes

To understand qualitatively the origin of the long lifetime
of the most subradiant mode we plot in Fig. 7(a) the dis-
tribution of the electric field corresponding to the emission
from the longest-living eigenmode for the array with N = 30
qubits. The electric field has been found as

E (z) = −i
N∑

m=1

eiω|z−md|/cψm, (9)

where ψm is the eigenvector satisfying H (ω)ψ = ωψ .

We have also calculated the Poynting vector for the 30-
qubit array excited resonantly at the frequency ω = ω0. To this
end we have used the input-output theory in the formulation
of Ref. [43], see also Ref. [44]. We first find the distribution
of the qubit polarizations ψn induced by incident wave from∑

n

Hmn(ω0)ψn = eimω0d/c, (10)

with Hmn(ω) = −iδmn�nonrad − i�0eiωd|m−n|/c and then calcu-
late the distribution of electric and magnetic fields according
to

Ex(z) = eiωz/c − i�0

N∑
m=1

eiω|z−md|/cψm, (11)

Hy(z) = c

iω

d

dz
Ex. (12)

The time-averaged Poynting vector is given by

Sz = c

2π
Re(ExH∗

y ), (13)

where we assume that E (t ) = Ee−iωt + c.c.
The calculated Poynting vector is shown in Fig. 7(b). The

value of the Poynting vector has been normalized to that of the
incident wave. It is constant between the qubits and exhibits
small jumps at the qubit positions that reflect absorption of
photons at the qubits. The total value of absorption for light
incident at ω = ω0 is given by [45]

AN = 2N�nonrad�0

(�nonrad + N�0)2 . (14)

The absorption jump of the Poynting vector at each qubit is N
times smaller, and approximately equal to 2�nonrad/(N2�0) ≈
5 × 10−4. This suppression of absorption at the qubit res-
onance can be seen as one of the manifestations of the
Borrmann effect. In another words, since the reflection coef-
ficient is almost unity, the electric field is almost a standing
wave with nodes at the qubit positions.

IV. PERSISTENT QUANTUM CORRELATIONS

The uncovered long-lived modes pave the way for the
long-lived quantum correlations in the Bragg qubit array, with
the decay times longer than the nonradiative decay rate. To
demonstrate this, we calculate the photon-photon correlation
function g(2)(τ ) = 〈a†(0)a†(τ )a(τ )a(0)〉/〈a†(0)a(0)〉, where
a(t ) is the photon destruction operator, for the light trans-
mitted through the Bragg array under low-intensity coherent
excitation at frequency ε. The correlations can be calculated
by using the known solution for the wave function, describing
a scattering of a photon pair on array of qubits that has the
form [46,47]:

ψ2 = t†,2a†
ε/ca†

ε/c|0〉

+ i

2

∫ ∞

−∞

dω

2π
M(ε + ω, ε − ω)a†

ε−ωa†
ε+ω|0〉. (15)

Here, the first term describes an independent transmission
of the photon pair with the transmission coefficient t = 1 +
i�0

∑N
m,n=1 Gmn(ε)eiε(zm+zn )/c. The second term describes an
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(a) (b)

(c) (d)

(e)

FIG. 8. (a)–(d) Time dependence of photon-photon correlations
g(2)(t ) scanned vs the energy of incoming photons ε calculated for
the Bragg array with N = 4, 10, 14, 20 qubits. Panel (e) shows the
time dynamics for at ε − ω0 = 4�0 [dotted line in panels (a)–(d)].
The other parameters are the same as in Fig. 2.

incoherent-scattering process with transmission of two pho-
tons with the energies ε − ω and ε + ω. The scattering matrix
M(ε + ω, ε − ω) is found following Zheng and Baranger
[31], see also Ref. [48]:

M(ω′
1, ω

′
2) = −2i�2

0

N∑
m,n=1

s−
n (ω′

1)s−
n (ω′

2)Qnms+
m (ε)s+

m (ε),

(16)
with s±

m (ω) = ∑
m Gmne±i(ω/c)zn and Qnm = [�−1]nm, �nm =∫

dωGnm(ω)Gnm(2ε − ω)/(2π ). Here the kernel Q describes
the so-called two-photon bound-state resonance [46]. Calcu-
lating the photon-photon correlations using the wave function
ψ2 as 〈ψ2|a†(0)a†(τ )a(τ )a(0)|ψ2〉 we obtain [36]

g(2)(τ, ε) =
∣∣∣∣1 + i

2t2(ε)

∫ ∞

−∞

dω

2π
e−iωτ M(ε + ω, ε − ω)

∣∣∣∣2

.

(17)
The details of the evaluation of the integral over ω are pre-
sented in Appendix B.

Figure 8 shows the time dependence g(2)(τ ) obtained nu-
merically for different incident light frequencies ε and array
lengths N = 4, 10, 14, 20. At relatively short times the func-
tion g(2)(τ ) demonstrates strong photon bunching when the
excitation frequency ε is close to ω0. The single-photon trans-
mittance |t (ω0)|2 is suppressed in the vicinity of resonance
due to the strong reflection, so that photons can pass through
the structure only in pairs. The calculation demonstrates that
photon-photon correlations strongly depend on the number
of qubits N . The changes are most prominent for small N ,
reflecting the breakdown of the Markovian approximation and

the superradiant regime. For a short structure with N = 4
[Fig. 8(a)], in the wide spectral range �0 � |ε − ω0| � N�0,
the function g(2)(τ ) rapidly decays to 1 at the timescale of the
superradiant mode, ≈1/(N�0). In long structures, Figs. 8(c)
and 8(d), the decay is nonmonotonic and the correlations
oscillate with time. At large times the correlation function
oscillates with frequency and can be both larger than unity
(red areas, photon bunching) and smaller than unity (blue
areas, photon antibunching). Strong photon bunching is ob-
served when the excitation energy is close to the edges of the
polariton band gap ω0 ± � ≈ ω0 ± 8�0. Crucially, the decay
of the correlations becomes significantly slower for larger
N . This is also seen from Fig. 8(e), showing the dynamics
of the correlations for the particular excitation energy ε =
ω0 + 4�0 ≈ ω0 + �/2 when the amplitude of the correlations
at large times is at a maximum. This energy corresponds to the
regime of photon-photon interaction when one of the two scat-
tered photons is at the resonance with the Fabry-Pérot mode
near the polariton band-gap edge ω0 + � and at the same time
the other photon is at the resonance with the subradiant states
with Re ω = ω0. The lifetime of the correlations is longer
than both radiative and nonradiative lifetimes of a single qubit
trad = 1/(2�0) and tnonrad = 5trad for the parameters of Fig. 8.
We have calculated the lifetime of correlations and plotted it
by blue open circles in Fig. 2(a). The calculation agrees with
Eq. (5) (black line): the lifetime grows for longer arrays as N2.
Since min(Im ω) → 0 for N → ∞, we expect slow nonexpo-
nential power-law decay in the limit of infinite structure.

V. SUMMARY

To summarize, we predict that photon-photon correlations
become partially immune from nonradiative dissipation due
to the Borrmann effect, when the light wave has nodes at the
qubit positions. Our results demonstrate that the properties of
the Bragg-spaced array of qubits, when ω0d/c = π, 2π, . . .

are strongly different from those in the conventional meta-
material regime when ω0d/c � π [14]. Thus, Bragg-spaced
arrays offer new possibilities to manipulate the quantum light.
While the studied time dynamics probes only the lifetimes
of single-excited states, novel physics can be expected for
the double-excited states. The interaction-induced localization
and topological transitions have been recently predicted for
two-polariton states [49,50], but the non-Markovian regime
of polariton-polariton interactions remains fully unexplored.
For instance, one can imagine a situation when a pass-band
of bound two-polariton states [51,52] forms within a single-
polariton Bragg stop-band, leading to the highly selective
two-photon transmission. Novel opportunities are also opened
by the two-dimensional arrays of atoms [53–55], which have
recently become available [30].
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APPENDIX A: OPTICAL SPECTRA AND LIFETIME
OF MOST SUBRADIANT MODE

In this Appendix we derive Eq. (5) from the main text for
the lifetime of the longest-living mode in the qubit array. It
can be obtained from the complex resonance frequency of
the amplitude reflection coefficient of light from the array of
qubits. The corresponding expressions for reflection coeffi-
cient have been known at least since 1994 when a theory of
light reflection from periodic array of semiconductor quantum
wells [20,45,56] was developed. Quite a similar problem of
light interacting with resonance scatterers was also considered
much earlier in the context of resonant γ -ray diffraction on
the nuclei in crystals. Such crystals have been experimentally
studied since the 1960s, see reviews [18,57] for more details.
Some other examples of resonant scatterers where the same
equations are valid include ring resonators [58], metallic grat-
ings with plasmonic resonances [3], and dielectric cylinders
with Mie resonances [59]. A detailed comparison between
cold atom systems, semiconductor lattices, and Mössbauer
isotopes can be found in the review [24]. Very recently, it
was also theoretically proposed to consider Bragg lattices of
superconducting qubits coupled to the waveguide [60] where
the expressions equivalent to those in Ref. [20] have been
obtained.

To derive reflection and transmission coefficients one can
use the transfer-matrix technique. The electric field to the left
and right of the qubit, located at the point z = 0, is presented
as

E (z) =
{

E→
L eiωz/c + E←

L e−iωz/c (z < 0)

E→
R eiωz/c + E←

R e−iωz/c (z > 0)
(A1)

(we assume the e−iωt time dependence). The fields to the left
and right of the atom are linked as [20,26](

E→
R

E←
R

)
= M0

(
E→

L
E←

L

)
(A2)

by the transfer matrix

M0 = 1

t

(
t2 − r2 r

−r 1

)
, (A3)

where the reflection and transmission for a single qubit are
[61]

r = i�0

ω0 − ω − i(�nonrad + �0)
, (A4)

t = 1 + r = ω0 − ω

ω0 − ω − i(�nonrad + �0)
. (A5)

The total transfer matrix through an array of N qubits with
the period d is given by

MN = (Md M0)N , (A6)

where the transfer matrix through the free part of the waveg-
uide with the length d is

Md =
(

eiωd/c 0
0 e−iωd/c

)
. (A7)

The array reflection and transmission coefficients are given by

rN = − [MN ]2,1

[MN ]2,2
, tN = − det MN

[MN ]2,2
. (A8)

It is also possible to obtain an analytical expression for
Eqs. (A8) that reads [24,62]

rN = r̃ sin NKd

sin NKd − t̃ sin(N − 1)Kd
,

tN = t̃ sin Kd

sin NKd − t̃ sin(N − 1)Kd
, (A9)

where t̃ = teiωd/c, r̃ = reiωd/c are the transmission and re-
flection coefficients through one period of the array and the
Bloch wave vector K (ω) is determined by the dispersion of
polaritonic excitations, propagating in the array

cos Kd = 1

2
Tr(MatomMperiod )

= cos
ωd

c
− �0

ω0 − ω − i�nonrad
sin

ωd

c
. (A10)

In the considered Bragg structure, where ω0d/c = π , we have
|Kd − π | � 1 in the vicinity of exciton resonance and the
polariton dispersion can be simplified to [24]

Kd

π
− 1 = ±

√(
ω − ω0

ω0

)2

−
(

�

ω0

)2
ω − ω0

ω − ω0 + i�nonrad
,

(A11)
where � = √

2�0ω0/π is the half-width of the Bragg band
gap [45,56]. The dispersion law (A10) and the reflection and
transmission coefficients are plotted in Fig. 5. The calcula-
tion demonstrates a polariton Bragg band gap in the range
(ω0 − �, ω0 + �) where � ≈ 8�0 for the parameters of the
system. The specific feature of the Bragg array is that the band
gap width 2� exceeds the radiative linewidth of a single qubit
�0 by a large factor ∼√

ω0/�0. The explicit solution for the
Green’s function for arbitrary number of qubits is given in
Ref. [63].

To find the eigenfrequencies of the subradiant modes we
solve the equation

sin NKd − t̃ sin (N − 1)Kd = 0 (A12)

for a zero of the denominator of the reflection coefficient (A9)
using approximate (A11) for the polariton dispersion. We
take into account that, for the considered subradiant, eigen-
modes Re ω = ω0 and | Im ω| ∼ �0 � �. Comparison with
numerical calculation shows that the darkest subradiant mode
approximately satisfies the interference condition,

NK (ω)d = π, (A13)

which is a usual condition for a standing wave in a finite struc-
ture. Indeed, given Eq. (A13) both sine factors in Eq. (A12)
turn to zero. To solve Eq. (A13) for ω we notice that for |ω −
ω0| � ω0 the first term under the square root in Eq. (A11)
can be neglected. As a result, we obtain a simple algebraic
equation for ω. Solving it and calculating the imaginary part
of ω, 1/t = −2 Im ω, we get Eq. (5) from the main text.

We also note the presence of a resonant feature in the po-
lariton dispersion and in the reflection spectrum in the center
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FIG. 9. Reflection spectra in the vicinity of the qubit resonance
frequency ω0 depending on the nonradiative decay rate �nonrad in-
dicated near each curve. The calculation has been performed for
N = 20 qubits and �0/ω0 = 10−2.

of the band gap at ω = ω0. This feature is related to excitation
of subradiant modes in the system. We show in Fig. 9 the evo-
lution of the reflection spectra |rN |2 in the vicinity of the qubit
resonance frequency ω = ω0 depending on the nonradiative
decay rate of a single qubit �nonrad. For �nonrad = 0.02�0

(red curve), the reflection coefficient is close to unity over
the entire plotted range. This is because of the presence of
the Bragg band gap in the polariton spectrum in the range
ω0 − � . . . ω0 + � where � = √

2�0ω0/π ≈ 8�0. When the
nonradiative decay rate increases, the reflection coefficient
in the entire band gap is suppressed except for the narrow
feature with a linewidth ≈� at the qubit resonance. This
narrow resonant feature, surviving the nonradiative decay, is a
manifestation of the Borrmann effect discussed in the main
text. It results from a resonant excitation of the subradiant
modes.

APPENDIX B: CALCULATION OF PHOTON-PHOTON
CORRELATION FUNCTION

In this Appendix we provide more information on the eval-
uation of the integral∫ ∞

−∞

dω

2π
e−iωτ M(ε + ω, ε − ω) (B1)

entering the photon-photon correlation function (9) in the
main text. Recall the definitions of the relevant quantities
below. The scattering matrix is

M(ω′
1, ω

′
2) = −2i�2

0

N∑
m,n=1

s−
n (ω′

1)s−
n (ω′

2)Qnms+
m (ε)s+

m (ε),

(B2)

with

s±
m (ω) =

∑
m

Gmne±i(ω/c)zn , (B3)

Qnm = [�−1]nm, �nm = ∫
dωGnm(ω)Gnm(2ε − ω)/(2π ), and

the Green’s function is defined by the equation

G(ω) = [H (ω) − ω]−1, (B4)

with

Hmn(ω) = (ω0 − i�nonrad )δmn − i�0eiω|zm−zn|/c. (B5)

The integration over ω in Eq. (B1) in the non-Markovian
regime requires some care due to the presence of factors
e±i(ω/c)zn in Eqs. (B3) for s±. In the Markovian approxima-
tion one could replace e±i(ω/c)zn in Eqs. (B3) by e±i(ω0/c)zn

and H (ω) in Eq. (B4) by H (ω0) and then use the Cauchy
integration formula directly. In the non-Markovian regime we
first get rid of the ω dependence in the factors e±i(ω/c)zn in
s±

m (ω) by using

s±
m (ω) = −ei(ω/c)zn±

i�0
[δm,n± + (ω − ω0 + i�)Gm,n± ], (B6)

where n+ = 1, n− = N that follows from the Green’s func-
tion definition Eq. (B4). The advantage of the representation
Eq. (B6) is that the factor ei(ω/c)zn± is the same for all s±

m .
As such, it can be eliminated by a suitable choice of the
coordinate.

Next, we expand the Green’s function as

Gmn =
∑

ν

gν
mn

ων − ω
, (B7)

where ων are the eigenfrequencies of the Hamiltonian (4).
We find these eigenfrequencies numerically within some large
finite region in the complex around the frequency ω0 with
the size on the order of 100�0. and the residue matrices gν

mn
are determined following Ref. [64]. Finally, using the sum
rule

∑
ν gν

mn = δmn, we find

s±
m =

∑
ν

sν,±
m

ων − ω
, sν,±

m = iei(ω/c)zn± gν
m,n±

ων − ω0 + i�

�0
.

After this expansion is substituted into Eq. (B2) the only de-
pendence on ω would be in the resonance terms ∝1/(ων − ω).
Next, we use the Cauchy integration formula to obtain the
two-photon correlations in the form

g(2)(τ )

=
∣∣∣∣∣1− i

∑
νμ

N∑
m,n=1

sν,+
n sμ,+

n e−iωντ+iετ Mnm(ε)s+
m (ε)s+

m (ε)

t (ε)2(2ε − ων − ωμ)

∣∣∣∣∣
2

.

(B8)
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