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Quantum Zeno effect in self-sustaining systems: Suppressing phase
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We study the effect of frequent projective measurements on the dynamics of quantum self-sustaining systems
by considering the prototypical example of the quantum van der Pol oscillator. Quantum fluctuations are respon-
sible for phase diffusion which progressively blurs the semiclassical limit-cycle dynamics and synchronization,
either to an external driving or between two coupled self-sustained oscillators. We show that by subjecting the
system to repeated measurements of heterodyne type at an appropriate repetition frequency one can significantly
suppress phase diffusion without spoiling the semiclassical dynamics. This quantum Zeno-like effect may
be effective in the case of either one or two coupled van der Pol oscillators, and we discuss its possible
implementation in the case of trapped ions.
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I. INTRODUCTION

The influence of measurement on quantum systems is a
fundamental feature of quantum mechanics with many non-
trivial manifestations [1–3]. One striking and well-known
example is the so-called quantum Zeno effect, which predicts
that frequent measurements can freeze quantum dynamics
[4]. In recent years, several in-depth explorations have been
performed both theoretically and experimentally [5–18], and
different mechanisms related to the Zeno effect have been
investigated such as the nonmonotonic dissipation process
caused by a structured reservoir, the renormalization ef-
fect due to a strong system-detector interaction [8], and its
connection with the opposite phenomenon of the anti-Zeno
effect [5,6,12,14,19–21]. In quantum information processing
it has been related to decoherence-free subspaces [22] and
to decoherence control strategies [23–27]. The relationship
between the Zeno effect and system symmetry was discussed
in Refs. [17,28], while Ref. [29] showed that the quantum
Zeno effect can be realized even using classical resources.

Quantum self-sustaining systems whose classical steady
state forms a limit cycle in phase space have recently attracted
much attention in the field of quantum science [30–33]. A
prerequisite for the occurrence of nontrivial physical phenom-
ena such as quantum synchronization [30,34] and quantum
time crystal [35] is the appearance of stable, self-sustained
oscillations, which generally requires the existence of non-
linearities in the system’s dynamics. Suitable platforms for
exploring these phenomena are nonlinear systems such as the
van der Pol (vdP) oscillator [31,36–39] and optomechanical
systems [32,33,40–47], and interesting manifestations which
have been investigated both theoretically and experimentally
in this respect are mode competition among limit cycles [48],

multistability [49], Hopf bifurcation [42,47], and chaotic be-
havior [50,51].

The exact solution of the dynamics of these quantum
nonlinear systems is hard, and in the literature various ap-
proximate treatments have been proposed: Some mean-field
treatments linearize the dynamics of the quantum fluctuations
around the solution of the mean-field classical nonlinear equa-
tions, so that the steady state of the system is a Gaussian
state centered around the classical limit cycle [42–44,52–55].
However, such a state cannot be maintained after a transient
and inevitably exhibits non-Gaussianity, as was revealed in
previous works by means of simulations [31,32,37,38,56]. Re-
cently, a new fruitful perspective was introduced in Ref. [57],
which showed that the long-time stationary dynamics of the
quantum self-sustaining systems is characterized by a phase-
diffusion process yielding a non-Gaussian steady state well
described by an appropriate mixture of Gaussians distributed
over all the phases of the limit cycle.

Stimulated by this result and by the importance of control-
ling and reducing phase diffusion in self-oscillating systems,
we study here the effect of many repeated measurements
on the self-sustaining system, an aspect which has remained
unexplored up to now. More specifically, we investigate the
effect of ideal heterodyne measurements and also of a di-
chotomic projective measurement which is implementable in
the case of trapped-ion resonators on the dynamics of single-
and bipartite quantum self-sustaining systems by extending
the approach of Navarrete-Benlloch et al. [57] to the semi-
classical regime. We consider a quantum vdP oscillator in
the semiclassical regime [31] and find that an appropriate
measurement frequency will lead to a Zeno-like effect such
that the phase diffusion of the system is suppressed. We then
consider the case of two coupled vdP quantum oscillators and
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show that repeated measurements can also optimize the quan-
tum synchronization between the two vdP oscillators. We will
also see that, in the limit of high-frequency measurements,
the system state is never fully frozen and self-trapped, but
randomly walks in phase space.

This paper is organized as follows: In. Sec. II, we investi-
gate the non-Gaussian dynamics and the effect of the repeated
ideal heterodyne measurements on a quantum vdP oscillator
in the semiclassical regime. We also describe the mea-
surement process and its interplay with the phase-diffusion
process ultimately related to the inherent time-translation
symmetry of the system. In Sec. III, we turn our attention to a
dichotomic measurement and analyze its effect on phase dif-
fusion. The study of the effect of the repeated measurements
is then extended to the case of two coupled vdP resonators in
Sec. IV, where we see how one can enhance synchronization.
We finally summarize the results in Sec. V.

II. MEASUREMENT AND PHASE DYNAMICS
OF A VAN DER POL OSCILLATOR

In order to investigate the effect of measurement on the
phase dynamics of a self-sustained system, we consider a
prototypical self-sustained oscillator, i.e., a quantum vdP os-
cillator which undergoes two-excitation nonlinear loss and is
affected by a linear gain process. Its dynamics is described by
the following master equation [31,57]:

ρ̇ = −i[H, ρ] + κ1L[â†]ρ + κ2L[â2]ρ, (1)

where H = ωmâ†â (h̄ = 1) is the Hamiltonian of a free oscil-
lator and L[ô]ρ = 2ôρô† − ô†ôρ − ρô†ô is the standard form
of the Lindblad superoperator. The second and third terms on
the right side of the above master equation describe the lin-
ear gain process and the two-excitation nonlinear dissipation
process, respectively [31]. In order to conveniently calculate
and describe the dynamics of the vdP oscillator, here we adopt
the Wigner representation by introducing the standard Wigner
function [58]:

W (α, α∗, t ) = 1

π2

∫
d2zχs(z, z∗, t )e−iz∗α∗

e−izα, (2)

where χs(z, z∗, t ) = Tr[ρ(t )eiz∗a†+iza] is the symmetrically or-
dered characteristic function. The quantum master equation
(1) can be rephrased in terms of the following partial differen-
tial equation for the Wigner function [58]:

∂tW =
{

(∂αα + ∂α∗α∗)[iωm − κ1 + 2κ2(|α|2 − 1)]

+ ∂α∂α∗ [κ1 + 2κ2(2|α|2 − 1)]

+ κ2

2

(
∂2
α∂α∗α + ∂α∂2

α∗α
∗)}W, (3)

where the higher-order diffusion terms (∂2
α∂α∗ and ∂α∂2

α∗ ) pro-
vide the possibility of a negative Wigner function, which is a
manifestation of nonclassical properties of the oscillator state.
Quantum fluctuations are amplified by the nonlinear dissipa-
tion term with rate κ2, and for not too small values of the ratio
κ2/κ1 the dynamics of the system may significantly deviate
from the classical limit-cycle dynamics. However, here we
focus on the semiclassical regime characterized by κ2/κ1 � 1

[31]: In this limit derivatives of order higher than the second
one can be neglected [31,58], and if the initial Wigner function
is non-negative, it will remain non-negative at all times. In
this case, the exact quantum dynamics described by Eq. (3)
can be well described by the following stochastic Langevin
equation [58]:

α̇ = (−iωm + κ1)α − 2κ2(|α|2 − 1)α +
√

3κ1 + 2κ2α
in.

(4)

In this expression, the first term on the right-hand side of the
equation describes the oscillation frequency and gain of the
vdP oscillator. The second term corresponds to the nonlinear
dissipation, and the last term describes a stochastic fluctuation
process, where αin(t ) is the Gaussian vacuum input noise act-
ing on the oscillator [31,44,56], with the correlation function

〈αin∗(t )αin(t ′)〉 = 〈αin(t ′)αin∗(t )〉 = δ(t − t ′). (5)

The two quadratures of the vdP resonator are Q = α + α∗
and P = i(α∗ − α). Under this definition, the radius of the
classical limit cycle r is obtained from the stationary solution
of the averaged Eq. (4) and is given by

r = 2|αs| = 2
√

κ1

2κ2
+ 1, (6)

where |αs|2 = κ1/2κ2 + 1 can be regarded as the steady-state
number of phonons. In order to numerically reproduce the es-
sential aspects of the linearization theory of Ref. [57] around
a nontrivial steady state such as a limit cycle, the initial state
should be taken as a Gaussian state centered not too far from
the limit cycle in order to ensure that the quantum fluctuations
can be analyzed in terms of the Floquet theory approach of
Ref. [57] so that the system stability and phase diffusion are
determined by the corresponding Floquet eigenvalues rather
than the instantaneous ones. Therefore, we numerically solve
Eq. (4) by selecting as the initial state of the system a co-
herent state with amplitude r/2, |r/2〉. As a consequence, the
dynamics of the vdP oscillator is obtained by simulating a
large number of stochastic trajectories α j , each starting from
the complex value α j (0) = r/2 + Z , where Z is a Gaussian
random complex number satisfying the normal distribution
N (0, 0.5) [59]. The ensemble-averaged amplitude and its
quantum fluctuation are calculated as 〈a〉(t ) = ∑N

j=1 a j (t )/N

and 〈δa2〉(t ) = ∑N
j=1[a j (t ) − 〈a〉(t )]2/N , where the super-

script j denotes the jth trajectory of the simulation [44]. The
Wigner function of the system can be analyzed numerically
by discretizing the continuous phase space into a series of
square grids, and the corresponding side length h can be
regarded as the size of the pixel in phase space. According to
these simulation results, it is convenient to count NQ,P, which
is the number of results satisfying Q j ∈ (Q − h/2, Q + h/2]
and P j ∈ (P − h/2, P + h/2] at a given time. As mentioned
above, in the considered semiclassical regime, the Wigner
function is always non-negative, and it behaves as a standard
probability distribution in phase space, which is obtained as

W (Q, P) = lim
h→0

NQ,P

Nh2
. (7)
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FIG. 1. Normalized Wigner function W/ max{W } of the vdP os-
cillator in the presence of repeated ideal heterodyne measurements.
The four columns from left to right correspond to ωmt = 0, ωmt =
60, ωmt = 120, and ωmt = 180, respectively. The first row represents
the case without measurements (
t = ∞), while the second and the
third rows represent the dynamics in the presence of heterodyne mea-
surement separated by a time interval ωm
t = 10 and ωm
t = 1,
respectively. Each Wigner function is obtained from 500 000 tra-
jectory solutions of the stochastic Langevin equation (4). The other
parameters are κ1/ωm = 0.1 and κ2/ωm = 0.005. The solid line in
the top right panel is the corresponding classical limit cycle.

We now subject the vdP resonator to a series of repeated
measurements: During a time interval t , n measurements are
performed so that the measurements are evenly spaced in
time by an interval 
t = t/n. We first consider the case
of ideal heterodyne measurements, corresponding to projec-
tions onto the overcomplete basis of coherent states E (α) =
π−1/2|α〉〈α|, α ∈ C [2,58,60]. In the ideal case, the state
is projected onto a generic pure coherent state |αi〉 with a
probability which is given by Pi = Tr[E (αi )ρE†(αi )], and it
corresponds to a strong measurement, in which the interaction
with the detection apparatus is able to project the system
onto a pure state. In a more realistic scenario, the oscillator
is projected onto a mixed state with phase-space variances
larger than the vacuum one due to detection inefficiencies and
added noise. The projection is far from ideal also in the case
of weak measurements, which, however, will not be consid-
ered here. In our stochastic simulation, the ideal heterodyne
measurement at time n′
t is described by randomly selecting
an element αk from the set αk (n′
t ) ∈ {α j (n′
t ),∀ j} and
choosing the initial value for the next time step after the
measurement as αk (n′
t ) + Z , where again Z is a Gaussian
random complex number with normal distribution N (0, 0.5).

A visual and effective description of the dynamics of the
system’s state is provided in Fig. 1, where the time evolution
of the Wigner function of the vdP oscillator is plotted at three
different heterodyne measurement rates. In the first row of
Fig. 1, we show the time evolution without any measurement,
in which the initial Gaussian state gradually diffuses along
the classical trajectory of the limit cycle with increasing phase
fluctuation, finally becoming a ring, as expected. In the second
row the evolution in the presence of heterodyne measurements

FIG. 2. (a) Fourier transform of the average quadrature Q(ω)
as a function of the number of repeated heterodyne measurements
n. (b) Q(ω) at three horizontal cuts of Fig. 2(a), corresponding to
no measurement, n = 0 (
t = ∞, black lower solid line); n = 16
measurements (ωm
t = 37.5, red dashed line); and n = 6 × 105

heterodyne measurements (ωm
t = 0.001, blue upper solid line).
Here the ensemble average is obtained with 5000 calculations of the
stochastic Langevin equation, and the other parameters are the same
as those in Fig. 1. The arrow in (a) marks nc ∼ 211, which is the
critical measurement rate corresponding to the threshold condition
of Eq. (9). (c) Peak value of the Fourier transform, normalized with
respect to the corresponding limit-cycle radius, Qn(ωm ) = Q(ωm )/r,
versus the rate ratio κ2/κ1 at fixed measurement rate n = 2000,
corresponding to ωm
t = 0.3 for a total evolution time t = 600.
The Fourier transform is obtained by averaging 10 times the result
obtained with a single trajectory in order to eliminate the influence
of randomness.

separated by a time interval ωm
t = 10 is considered. The
phase diffusion starts to get suppressed, and the range of
nonzero values of the Wigner function winding the classical
trajectory is compressed. In the third row, the measurement
rate is increased by a factor of 10 (ωm
t = 1), and in this
latter case, phase diffusion is completely suppressed, and the
Wigner function shows almost no deviation from a Gaussian.
Therefore, the Zeno-like effect of repeated ideal heterodyne
measurements proves to be efficient in suppressing phase dif-
fusion due to the quantum fluctuations.

The phase diffusion causes the expectation value of the
oscillator’s observables to average time-dependent oscilla-
tions to become constant. This phenomenon suggests to us
to characterize the Zeno-like process by means of the spec-
tral analysis of the mean value of the oscillator’s coordinate,
namely,

Q(ω) =
∣∣∣∣ 1√

2π

∫
dt〈Q〉(t )e−iωt

∣∣∣∣, (8)

and the Fourier transform Q(ω) is shown in Fig. 2(a)
versus the number of performed heterodyne measurements
n = t/
t , with a fixed total evolution time ωmt = 600. In
Fig. 2(b), we show three horizontal cuts of the spectra in
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Fig. 2(a), corresponding to no measurement, n = 0 (
t = ∞,
black lower solid line); n = 16 measurements (ωm
t = 37.5,
red dashed line); and n = 6 × 105 heterodyne measurements
(ωm
t = 0.001, blue upper solid line). We see that if the
measurement rate is not large enough, the oscillatory behavior
remains, together with a broadening due to phase diffusion.
When the heterodyne measurements become frequent enough,
they destroy the oscillations, and a wide chaoticlike Fourier
transform appears [see, e.g., the blue upper solid line in
Fig. 2(b)]. In this limit of large enough measurement rate,
randomness accumulates, and the motion of the oscillator
explores a much wider phase-space region compared to the
limit-cycle trajectory: In the numerical case of Fig. 2 the size
of the phase-space explored area is about 5 times the classical
limit-cycle radius.

The transition from the oscillatory behavior to the chaotic
motion caused by frequent enough heterodyne measurements
is abrupt, and one can define an effective measurement rate
threshold nc. Below this threshold, Q(ω) shows a single peak
which even increases with increasing measurement rate [com-
pare red dashed and black solid lines in Fig. 2(b)] due to
inhibition of phase diffusion caused by the measurements.
Above the threshold, the Fourier transform becomes much
wider and noisy. Therefore, below the threshold the average
phase shift between two successive measurements ωm
t is
still distinguishable and larger than the accumulated phase
dispersion caused by phase diffusion that can be estimated as
2π/r. Therefore, the threshold between the two regimes can
be identified as when the limit-cycle phase shift is larger than
3 times the phase standard deviation, i.e., 3/r > ωm
t/2π ,
yielding the threshold condition


tc = 3π

ωm

√
2κ2

κ1 + 2κ2
, (9)

corresponding to the critical measurement rate nc = t/
tc,
which for the parameters used in Fig. 2 is nc  211.

The presence of a phase-transition-like behavior is con-
firmed by Fig. 2(c), where we consider a fixed measurement
time interval ωm
t = 0.3 (n = 2000) and plot the peak value
of the Fourier transform, normalized with respect to the cor-
responding limit-cycle radius, Qn(ωm) = Q(ωm)/r, versus the
rate ratio κ2/κ1. The data show two very distinct behaviors: At
small κ2/κ1 the normalized peak is constant, while it shows
a power-law decay as soon as κ2/κ1 becomes larger than a
value which exactly corresponds to the threshold condition of
Eq. (9): In this regime, phase diffusion due to the quantum
fluctuations becomes dominant, and the oscillatory behavior
is progressively lost.

General features of the quantum Zeno effect
in self-sustained systems

The inhibition of phase diffusion in a quantum vdP oscil-
lator by means of repeated heterodyne measurements shown
in the previous section when the measurement rate is properly
chosen can be seen as a manifestation of a quantum Zeno-like
process. We now discuss in more detail if and when this
phenomenon is generalizable to any self-sustained system and
also the connection with the Zeno effect in general.

FIG. 3. Schematic representation of the interplay between the
phase diffusion and repeated measurements in a quantum self-
sustained system. (a) The dynamical process when no measurement
is performed. (b) The case when measurements are performed with a
not too large rate so that the limit-cycle phase shift between two mea-
surement is distinguishable and not overwhelmed by phase diffusion.
(c) The case when measurements are performed with a large rate so
that the limit-cycle phase shift is too small. Here U (P) represents the
evolution (measurement) process.

In a generic self-sustained system, time-translation sym-
metry is broken, and a limit cycle is formed in phase
space. At the same time, as shown in Ref. [57], quantum
fluctuations are responsible for a phase-diffusion process
which spoils the classical limit cycle, and the quantum
steady state of the system can be expressed as a mixture of
Gaussians [57],

W =
∫ 2π

0
f (θ )WG(θ ), (10)

where WG are localized Wigner functions corresponding to the
Gaussian state obtained by a linearized theory with the coef-
ficient matrix depending upon the classical trajectory. These
Gaussian states will gradually diffuse and lose their definite
phase, as described by Eq. (10): The distribution f (θ ) will
become broader and broader until it becomes a uniform dis-
tribution, as shown in Fig. 3(a), restoring the time-translation
symmetry in this way at the end [35,61].

If we now insert repeated ideal projective measurements
within the time evolution of the system, as in the quantum
Zeno effect, these measurements will tend to freeze the system
dynamics, and one can have two different scenarios, depend-
ing upon the value of the measurement frequency compared
to the typical timescales of the nonlinear dynamics of the
self-oscillating system.

As we saw in the previous section, if during the time inter-
val between two successive measurements 
t the phase shift
due to the oscillation 
θ is still distinguishable and larger
than the increase of the standard deviation of the phase due
to phase diffusion, σ (
t ) < 
θ , the repeated measurements
will inhibit phase dispersion and will keep the distribution
f (θ ) close to a δ function, as shown in Fig. 3(b). As a con-
sequence, the system’s state will remain Gaussian and will
rotate around the classical limit cycle. In this case the Zeno
effect is effective in suppressing the unwanted phase diffusion.
If the measurement rate is large and 
t → 0, the phase shift
induced by the oscillation will become too small, and the state
will tend to be frozen, as in the ideal projective Zeno effect and
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as shown in Fig. 3(c). These arguments can be applied to a
generic self-oscillating system; however, in the model studied
here and discussed in the previous section, we do not have
perfect freezing as in the case of the standard Zeno effect, but
rather a random walk in phase space because we considered
heterodyne measurements which are still projective but in the
overcomplete basis of the coherent states. Due to the nonzero
overlap between different basis states, the quantum state may
change even in the limit 
t → 0, and this is responsible for
the residual random walk in phase space [e.g., the blue upper
solid line in Fig. 2(b)].

Concerning time-translation symmetry and its eventual
breaking, we notice that, in general, adding repeated measure-
ments as in the Zeno effect makes the situation more involved.
The numerical analysis carried out here does not allow us to
draw definitive conclusions. However, in the regime below the
threshold found in the previous section where phase diffusion
is suppressed and the limit cycle is restored, the periodicity is
still the classical one, longer than the measurement frequency,
and we have an effective amplification of the period as it
occurs in Floquet time crystals [61]. On the other hand, when
the measurement rate is above the threshold, the random walk
in the phase space of the state seems to suggest that the
system is not able to reach its steady state, as also suggested in
Ref. [62].

III. DICHOTOMIC MEASUREMENTS

As shown in Ref. [31], the quantum vdP oscillator
can be experimentally implemented with a trapped ion by
means of appropriate drivings resonant with the ion motional
sidebands. However, even though trapped ions are an excep-
tional platform for quantum state and process engineering
[63], implementing ideal projective heterodyne measurements
on them is highly nontrivial. What is instead quite eas-
ily achievable using the electron shelving technique [63] is
the dichotomic measurement corresponding to the positive
operator-valued measurement (POVM) with measurement
operators {M1 = |α〉〈α|, M2 = I − |α〉〈α|}, that is, the projec-
tors corresponding to the results of the yes-no question of
whether the oscillator is in the desired coherent state |α〉. It
is therefore interesting to see whether repeating measurements
of this kind on the system is still effective in suppressing phase
diffusion. Compared with the ideal projective heterodyne
measurement, such a dichotomic measurement determines
only whether a quantum state is on a selected coherent
state |α〉. This POVM is obtained by applying a properly
chosen phase-space displacement operation to the POVM
corresponding to establishing whether the ion motional state
is in its ground state |0〉, which is realized in trapped ions
with the electron-shelving technique [63]. Also this technique
corresponds to a strong measurement, capable of projecting
(in the case of success) onto a pure state. In our model,
the selected target state is a periodic rotating coherent state
ρ = |α〉 = |

√
Tr(ρsâ†â)e−iωmt 〉 centered at the trajectory of

the limit cycle. After applying the displacement transforma-
tion ρ ′ = D†(α)ρD(α), the dichotomic measurement can be
described as a POVM measurement on ρ ′ with POVM opera-
tors {M1 = |0〉〈0|, M2 = I − |0〉〈0|}. The quantum state after

FIG. 4. Normalized Wigner function W/ max{W } of the vdP
oscillator influenced by the dichotomic measurement. Evolution
(a)→(b): The phase of the system’s state further diffuses dur-
ing a standard time evolution of duration ωm
t = 10. Evolution
(a)→(c)→(d): The POVM operator M1 maps the phase-diffused
state to a coherent state ρm1 which further evolves to a state whose
phase diffusion is suppressed. Evolution (a)→(e)→(f): The POVM
operator M2 maps the system’s state to a “complementary” state of
the coherent state ρm2 with a negative Wigner function, and phase
diffusion is even wider after the evolution. The numerical calculation
is performed in a 50 × 50 Hilbert subspace with the Fock state basis,
and the other parameters are the same as those of Fig. 1.

a measurement Mi can be expressed as

ρmi = D(α)

[
Miρ

′M†
i

Tr(Miρ ′M†
i )

]
D†(α), (11)

and the corresponding probability is Pi = Tr(Miρ
′M†

i ).
When a series of such dichotomic measurements is in-

serted into the evolution process of a vdP oscillator, the
physical process corresponding to the POVM operator M1

reproduces the desired action of the ideal projective mea-
surement onto the overcomplete coherent-state basis; that is,
the measurement correctly projects the state onto a coher-
ent state. In this case, as shown in Figs. 4(a), 4(c), and
4(d), the phase of this coherent state will diffuse again un-
til the next successful measurement process M1 eliminates
the accumulated phase diffusion and so on. However, in
contrast to the complete heterodyne measurement of the
previous section, as shown in Fig. 4(e), the other POVM
operator M2 maps the system’s state to a state with a dis-
tinct quantum nature, corresponding to a Wigner function
with possibly negative values. It can be seen by comparing
Figs. 4(b), 4(d), and 4(e) that phase diffusion may even be
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FIG. 5. (a) The probability P1 of obtaining a coherent state in
a dichotomic measurement as a function of the measurement time
interval 
t . The blue upper line corresponds to the evolution of the
system from a coherent state, i.e., the last measurement result is ρm1,
while the red lower line refers to the case where the last measurement
gave ρm2. (b) The probability Pt1 = (P1)n that the vdP oscillator stays
in the desired coherent state in a given time interval ωmt = 2 as
a function of the time interval between two measurements 
t . In
(a) and (b), the solid lines refer to κ1/ωm = 0.1 and κ2/ωm = 0.005
(the “classical” limit of a vdP oscillator), while dashed lines refer to
κ1 = 0.005/ωm and κ2/ωm = 0.01.

magnified after the oscillator is projected onto ρm2 instead
of ρm1.

Despite the negative effect of the complementary unsuc-
cessful measurement M2, one can investigate whether it is
possible to find a regime where the probability to project
onto the desired coherent state approaches 1 to circumvent the
unwanted effect of M2. This analysis is carried out in Fig. 5.
In Fig. 5(a) we plot the probability P1 corresponding to the de-
sired result in the k + 1th dichotomic measurement versus the
measurement interval 
t under the condition that a coherent
state is obtained at the generic kth measurement (blue solid
and dashed upper lines, referring to two different parameter
regimes). It can be seen that the probability of obtaining the
coherent state again will monotonically decrease with increas-
ing 
t due to the constant influence of phase diffusion by
quantum noise, and therefore, one needs small measurement
intervals 
t in order to try to suppress phase diffusion. For
small 
t , P1 linearly decreases, that is, P1(
t ) = 1 − c
t
[see the inset in Fig. 5(a)]. As a consequence, if one considers
a given total time t = n
t , the probability that the dichotomic
measurements always give the same desired coherent-state
projection within this time interval is Pt1 = [P1(
t )]n,

Pt1 = [P1(
t )]n 
(

1 − c
t

n

)n

 e−ct . (12)

In this case, the factor n is eliminated from the formula,
which means that neither the Zeno effect nor the anti-Zeno
effect occurs during the whole process, and therefore, this
dichotomic measurement is not able to suppress phase
diffusion efficiently. We verify this assertion by examining
the variation of Pt1 with the measurement frequency n and
plotting the results in Fig. 5(b). It can be seen that Pt1

will not get any significant improvement by increasing the
measurement rate n and therefore decreasing 
t to low values.

We have also investigated whether, instead, the oscillator
can be frozen into some state, complementary to the coherent

state, i.e., the state corresponding to the result of the POVM
operator M2. In this case, however, the measurement projects
onto a high-dimensional subspace, and the resulting state after
one M2 measurement is generally different from the result-
ing state after the subsequent M2 measurement. Therefore,
there is no simple formula like Eq. (12). However, through
simulations we find that there is still no sign of the occur-
rence of the Zeno effect. This means that even though we
repeat the evolution-measurement process, the state will not
be frozen, but jumps between the coherent state and its corre-
sponding “complementary state” take place. Nonetheless, in
comparison with the steady-state ρs with a fully undetermined
phase obtained without any measurement, we see that some
inhibition of phase diffusion occurs also for the dichotomic
measurement, although it is less efficient than the ideal pro-
jective heterodyne measurement.

IV. MEASUREMENT-ENHANCED QUANTUM
SYNCHRONIZATION OF TWO vdP OSCILLATORS

In the previous sections, we showed how frequent ideal
heterodyne measurements can suppress the phase diffusion
on a self-oscillating system. It is interesting to see whether,
in the case of a multipartite self-sustained system, these
measurements can affect and eventually increase the phase
correlations between the subsystems. It has been shown that
two coupled quantum vdP oscillators can be spontaneously
phase correlated or synchronized [31,64]. In this work, the
interaction between two oscillators is chosen to obey U(1)
symmetry, so that the dynamics of the system can be described
by the following master equation:

ρ̇ = −i[H, ρ] +
∑
j=1,2

κ1(L[â†
j ]ρ) + κ2L

[
â2

j

]
ρ, (13)

with Hamiltonian H = ∑
j=1,2 ωm jâ

†
j â j − μ(â†

1a2 + â†
2a1)

with coupling strength μ. The corresponding stochastic
Langevin equations, in the same semiclassical limit consid-
ered earlier, are given by

α̇ j = (−iωm j + κ1)α j − 2κ2(|α j |2 − 1)α j

+ iμα3− j +
√

3κ1 + 2κ2α
in
j , j = 1, 2, (14)

where the two input noises are uncorrelated Gaussian vacuum
input noises identical to those introduced in Eq. (4), satisfying
the correlation functions of Eq. (5).

Let us first review the properties of the coupled vdP os-
cillator model for what concerns phase correlations in the
presence of quantum noise, which is usually quantified in
terms of the probability distribution of the phase difference
θ− = θ1 − θ2, where we have defined α j = I jeiθ j . For this
model, U(1) symmetry leads to a bistable distribution with
equally probable in-phase and antiphase synchronization [31].
This can be understood also analytically by first rewriting
the stochastic equations in terms of the amplitude and phase
variables,

İ1 = (κ1 − 2κ2)I1 − 2κ2I3
1 + μI2 sin θ− + NI1 ,

İ2 = (κ1 − 2κ2)I2 − 2κ2I3
2 − μI1 sin θ− + NI2 , (15)

θ̇− = −
ω + μ

(
I2

I1
− I1

I2

)
cos θ− + Nθ− ,
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FIG. 6. (a) Phase error distribution of the steady state for
two coupled oscillators with ωm1 = 1, 
ω = 0.01, and μ = 0.02.
(b) Time evolution of phase error distributions corresponding to
in-phase synchronization (blue upper line) and antiphase syn-
chronization (red lower line). The results are obtained with 106

calculations of the stochastic Langevin equations, and other parame-
ters are the same as those in Fig. 1.

where 
ω = ωm1 − ωm2 is the frequency differ-
ence between the two oscillators. The terms NI1,2 =√

3κ1 + 2κ2(αin
1,2e−iθ1,2 + αin,∗

1,2 eiθ1,2 ) are the amplitude

noises, and Nθ− = √
3κ1 + 2κ2[(αin

1 e−iθ1 − αin,∗
1 eiθ1 )/I1 −

(αin
2 e−iθ2 − αin,∗

2 eiθ2 )/I2] corresponds to the phase noise term
responsible for phase diffusion. Then, in the weak-coupling
limit μ/ωm j � 1, one can approximate the dynamics of two
amplitudes I1,2 as perturbations around their equilibrium
positions at zero coupling, that is, I j = I0 + δI j , where
I0 = r/2 = √

κ1/2κ2 + 1. We get

δİ1 = (κ1 − 2κ2)δI1 − 6κ2I2
0 δI1 + μI0 sin θ− + NI1,

δİ2 = (κ1 − 2κ2)δI2 − 6κ2I2
0 δI2 − μI0 sin θ− + NI2,

θ̇− = −
ω + 2μ

(
δI2 − δI1

I0

)
cos θ− + Nθ− . (16)

Finally, one gets an effective equation for only the phase
difference θ− by determining the stationary values of the
amplitude fluctuations, obtained by setting the left-hand side
of the first two equations in Eqs. (16) equal to zero. One
obtains δI3− j = (−1) jμI0 sin θ−/(2κ1 + 8κ2), and using this
expression in the third equation for θ−, one arrives at

θ̇− = −
ω −
(

μ2

2κ1 + 8κ2

)
sin 2θ− + Nθ−

≡ −
ω − 2c sin 2θ− + Nθ− , (17)

which is a Kuramoto-type equation with a washboard po-
tential U = − ∫

θ̇dθ = 
ωθ1 − c cos 2θ− [49,56,65]. The
sin 2θ− term is responsible for the presence of two local
potential minima located at θ− = 0 and π , clearly showing
the bistability of the synchronized states, and the equiprobable
in-phase and antiphase correlated states.

We have numerically solved the stochastic Langevin equa-
tions (14) with the initial phase difference θ− = θ1 − θ2 =
π/2, and we show the results in Fig. 6. Figure 6(a) shows
the stationary probability distribution of the phase difference
which can be obtained from the joint Wigner function ex-
pressed in polar coordinates (I1, I2, θ+, θ−) and integrating

over the variables I1, I2, and θ+. We clearly see the two equal
maxima at θ− = 0, π . In Fig. 6(b) we plot the time evolution
of the probability density at the two maxima, Wθ− (0) and
Wθ− (π ). The two oscillators tend first to in-phase synchro-
nization, and then the degree of antiphase synchronization
gradually increases, resulting in a decrease in Wθ− (0) until
they reach the same steady-state value. This identical station-
ary value of the two maxima provides a quantification of the
phase correlation (or anticorrelation) of the two oscillators,
and it is now interesting to study what the effect of repeated
ideal heterodyne measurements is on this correlation.

We quantify the effect of the repeated measurements on the
phase correlations of the two coupled oscillators by consider-
ing the time evolution of the probability density of the phase
difference θ−, evaluated at the perfect correlation condition,
Wθ (0)t , and at the anticorrelated condition, Wθ (π )t . We define
the phase correlation at moment t as the largest between the
two values, and from this we define the degree of synchro-
nization of the two coupled oscillators as the following time
average, providing a robust signature of the phase correlation
between the two coupled oscillators:

S i = 1

T

∫ T

0
dt max

[
W i

θ− (0)t ,W i
θ− (π )t

]
. (18)

The repeated measurements bring extra randomness, and
a steady state is not reached anymore in general because
of the measurements, which is why we average over time.
Then we average also over M = 20 repetitions and consider
S = ∑

S i/M. We plot the numerical results for this quan-
tifier in Fig. 7, where we have normalized S with respect
to the steady-state value Sl = W (0) = W (π ) of the unmea-
sured, symmetric case shown of Fig. 6(b). The associated
standard deviation of this quantifier over the M repetitions is
σ (S/Sl ) ∼ 0.3.

Figure 7 shows S/Sl versus the measurement time interval

t for two different choices of the frequency difference 
ω

and coupling rate μ (red triangles and blue circles), and we
see that quantum synchronization between the two vdP os-
cillators is enhanced over a wide range of the measurement
time interval 
t . In particular, the largest improvement of
phase correlation is obtained at short 
t , and this is somehow
consistent with the time evolution of the phase-difference dis-
tribution maxima in Fig. 6(b), where one has larger values for
W (0) at shorter times. This is also visible in the inset, where
we compare the stationary phase-difference probability distri-
bution without measurements (dashed lines in the inset) with
the one corresponding to the time-averaged nonstationary
function obtained with repeated ideal heterodyne measure-
ments with ωm1
t = 10 (the optimal case shown in the main
plot), corresponding to the circles. In fact, now only one kind
of phase correlation is enhanced by the measurement, and
one has only one very distinct peak in the phase-difference
distribution, characterized by a smaller variance and therefore
an appreciably reduced phase diffusion.

V. CONCLUSION

In summary, we have investigated the influence of repeated
measurements on the dynamics of quantum self-sustained sys-
tems. We have shown that the phase diffusion of the systems
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FIG. 7. Synchronization measure of Eq. (18) normalized by the
value corresponding to the stationary values of Fig. 6(b) versus
the measurement time interval 
t . Here blue circles refer to the
parameter choice 
ω/ωm1 = 0.01 and μ/ωm1 = 0.02, while the red
triangles refer to the choice 
ω/ωm1 = 0.1 and μ/ωm1 = 0.1. Each
S i is obtained from 50 000 calculations of the stochastic Langevin
equation, and we average over M = 20 values of S i in order to get S.
The inset shows the phase-difference distribution corresponding to
the steady state without measurements for the two parameter choices
(dashed lines) and to the case in the presence of repeated heterodyne
measurements with a time interval ωm1
t = 10 (circles). The other
parameters are the same as those in Fig. 1.

under study can be suppressed similarly to what occurs in the
Zeno effect. By appropriately choosing the measurement rate,
in the case of ideal heterodyne projective measurements, the
dynamics is stabilized around the classical limit cycle with a
rotating Gaussian-like state with suppressed phase diffusion.
Different from the standard Zeno effect, if the measurement
rate exceeds a critical value, the final system’s state does not
freeze at its initial state but is characterized by a random walk
in phase space due to the overcompleteness of the coherent-
state basis.

We have also studied the effect of repeated heterodyne
measurements on the phase correlations between two coupled

vdP oscillators. We found that these measurements improve
the phase correlations and enhance quantum synchronization
with respect to the stationary value which is achieved in the
model in the absence of any measurement.

We expect that the Zeno effect and the suppression of
phase diffusion discussed in this paper are not restricted to
vdP oscillator systems but occur in any repeatedly measured
self-sustaining system, provided that the kind of measure-
ment and its rate are conveniently chosen. Nonetheless, in
limit cycles time-translation symmetry is broken, and repeated
measurements are an additional ingredient of the dynamics
whose general effects on such a spontaneous symmetry-
breaking process are not yet fully clear and could be worth
investigating.

A further interesting study not carried out in the present
paper is to replace strong ideal projective measurements with
weak measurements due to the interaction with a probe sys-
tem. One expects that weak measurements are not effective in
inducing a Zeno-like effect because the change (or “collapse”)
in the system’s quantum state occurs only gradually. However,
in this case, diverse probe systems can be coupled to the target
system, and different probe measurements can be chosen,
yielding different postselection effects on the target system.
The possibility that also well-designed weak measurements
could be able to prevent phase diffusion is an interesting
option which will be investigated in the future.

We finally note that it has been proved that the standard
quantum Zeno effect occurs also if measurements are replaced
by strong coupling [5,6,12]. Whether these similar phenom-
ena can be extended to self-sustaining systems would be an
interesting subject for future investigations.
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