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Optical nanoantennas, i.e., elements transforming localized light or waveguide modes into freely propagating
fields and vice versa, are vital components for modern nanophotonics. Optical antennas have been demonstrated
to cause the Dicke superradiance effect, i.e., collective spontaneous emission of quantum sources. However,
the impact of coherent excitation on the antenna performance, such as directivity, efficiency, and Purcell effect,
remains mostly unexplored. Herein, using full-wave numerical simulations backed by a quantum model, we
unveil that coherent excitation allows controlling antenna multipoles, on-demand excitation of nonradiative
states, enhanced directivity, and improving antenna radiation efficiency. This collective excitation corresponds
to the states with nonzero dipole moment in the quantum picture, where the quantum phase is well defined.
The results of this work bring another degree of freedom—-the collective phase of an ensemble of quantum
emitters—-to control optical nanoantennas and, as such, pave the way to the use of collective excitations for
nanophotonic devices with superb performance. To make the discussion independent of the frequency range, we
consider the all-dielectric design and use dimensionless units.

DOI: 10.1103/PhysRevA.103.043714

I. INTRODUCTION

Antennas are crucial for many vital wireless technologies,
including communications and power transfer [1]. Being dic-
tated by applications, a plethora of antennas in the radio and
microwave frequency ranges have been invented, including
microstrip antennas [2], reflector antennas [1,3], dielectric an-
tennas [4,5], to mention just a few. More recently, the optical
counterpart, the so-called nanoantenna, has also been invented
for quantum optics, spectroscopy, and communications on a
chip [6–9]. Plasmonic nanoantennas made of noble metals
have been demonstrated to dramatically enhance light-matter
interactions, a phenomenon that lies in the heart of many
modern experimental techniques and applications [10–13].
Later on, all-dielectric nanoantennas have been suggested to
get around the issue of material loss in metals and, as such,
have found a number of prospective applications as individual
elements [14–17] and as building blocks (meta-atoms) for
metasurfaces [18–21].

Traditionally, nanoantennas are fed by a single quantum
optical source [e.g., molecules, quantum dots (QDs)] or by an
ensemble of incoherent sources. In this scenario, the antenna
effect consists of the emission enhancement via the so-called
Purcell effect, i.e., increasing the radiative decay rate of a
source induced by the enlarged local density of optical states
[22–30]. Even though the Purcell effect can lead to significant
enhancement of the emitted power (Prad) [31–33], it scales
with the number of quantum sources (N) as Prad ∝ N , due to
the incoherent nature of spontaneous emission. In 1954, Dicke
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theoretically demonstrated [34] that in a system of N excited
two-level atoms, the spontaneous emission can become cor-
related. As a result, the entire system radiates with a dipole
d ∼ Nd0 (d0 is the dipole moment of a single atom), and hence
scales as Prad ∝ N2. In the time-resolved scenario, it leads
to an increase in emission rate and narrowing of the emitted
pulse [35,36]. The synchronization of spontaneous emission
can arise in ensembles of atoms confined in a subwavelength
region of volume < (λ)3, where λ is the radiation wavelength.
Interestingly, resonant optical nanostructures can cause corre-
lated spontaneous emission of coupled sources [37–43]. The
Dicke radiation has been predicted and observed for N = 2
sources [44] and ensembles of many N � 1 sources [36]
in a variety of systems, including atoms [45,46], ions [44],
quantum dots [36], qubits [47], and Josephson junctions [48].

It worth noting that the superradiance effect has an analogy
in classic antenna theory and consists of the mutual matching
of coherently excited closely arranged antennas (i.e., antenna
arrays) [49] or enlarging of elastic scattering in arrays of
(nano-) particles [50] and on-chip photonic crystals [51]. This
effect plays an essential role in Josephson-junction arrays [48]
and is utilized for the emission of highly intense Cherenkov
pulses [52]. In analogy with its quantum counterpart, rapid
superlinear enhancement of the emission power with the num-
ber of antennas or scatterers occurs in this regime. A good
discussion on the classical analogy of the Dicke radiation can
be found in Refs. [40,53].

Simultaneous excitation of an antenna by several coherent
sources is expected to alter its performance (e.g., directivity,
efficiency, Purcell effect) by changing the multipole compo-
sition. For example, symmetric excitation of a dipole mode
by two dipole sources may cause destructive interference
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FIG. 1. Schematic representation of considered (a) dielectric an-
tenna and (b) notched superdirective antenna coherently driven by
two dipole sources.

resulting in the mode suppression. Relative coherent effects
have been recently applied for perfect absorption [54–57],
ultimate all-optical light manipulation [58], and enhance wire-
less power transfer [59,60].

In this paper, we show that coherent excitation of an an-
tenna by two localized sources makes it feasible to control the
excitation of multipoles and, as a result, the antenna’s proper-
ties. It leads to the coherent tuning of radiated power from
almost zero values (subradiance) to significantly enhanced
(superradiance). Interestingly, it makes possible excitation
of anapole state and turning it on (off) at will. Further,
we demonstrate that coherent excitation reduces dissipa-
tion losses and improves radiation efficiency via suppressing
higher-order modes. Finally, we design an antenna operating
in superdirective and superradiance regimes simultaneously.
To make the discussion independent of the frequency range,
we consider the all-dielectric design and use dimensionless
units.

II. RESULTS AND DISCUSSION

A. Sub- and superradiance

Let us consider a high-index dielectric resonator of radius
R and refractive index n = 4 excited by two coherent dipole
sources, Fig. 1(a). The chosen refractive index corresponds to
traditionally used materials in optics and microwaves [61–64].
Such a dielectric resonator supports Mie modes of a different
order [see Fig. 7(a) in Appendix A]. The first mode, magnetic
dipole (md), is excited when the radius satisfies R ≈ λ/2n (for
n = 4, it gives λ/R ≈ 8) [18,21]. Higher-order modes: electric
dipole (ed), magnetic quadrupole (mq), etc., appear at shorter
wavelengths.

First, it is illustrative to consider a scenario of excitation
by two oppositely directed plane waves. For simplicity, we
assume the resonator supports only ed and md modes. Upon
excitation, due to the linearity, the absolute values of Mie
scattering dipole electric and magnetic amplitudes can be
expressed as |a1 + a1eiϕ | and |b1 − b1eiϕ |, respectively [see
Figs. 7(b) and 7(c) in Appendix A]. The different signs stem
from the pseudovector character of the md. Thus, this scenario
illustrates an ability to coherent control of the antenna modes
by two-wave excitation with the relative phase (ϕ).

Next, we assume the resonator is excited by two dipoles
of equal amplitude (Pdy, |Pdy| = 1) but different phases (ϕ1

and ϕ2), and polarized along the y axis, as shown in Fig. 1(a).

Below we introduce the states with nonzero dipole moment
[65] as an initial state, where the phase is well defined and,
hence, provide the fully quantum description, see Appendix D
for details. The resonator supports md and ed moments with
the magnetic (αm

p ) and electric (αe
p) polarizabilities and cor-

responding magnetic (Mp) and electric (Pp) dipole moments.
This system can be rigorously described by the discrete dipole
approximation approach [66,67] (see Appendix B for details),
which yields the following nonzero components of the electric
and magnetic dipole moments:

Ppy = αe
pApd Pdy(e jϕ1 + e jϕ2 ), (1)

Mpz = αm
p

√
ε0

μ0
Dpd Pdy(e jϕ1 − e jϕ2 ), (2)

where ε0 and μ0 are the permittivity and permeability of free
space; Apd and Dpd are frequency-depending coefficients de-
fined in Appendix B. When the dipole sources radiate in-phase
(ϕ1 − ϕ2 = 0), the magnetic dipole moment of the resonator
vanishes, Mpz = 0, while the electric dipole moment is twice
larger than in the case of single-source excitation (|Ppy| =
2|αe

pApd |). In the case of |ϕ1 − ϕ2| = 180◦ the resonator pos-
sesses zero electric dipole moment and enhanced magnetic
dipole (|Mpz| = 2

√
ε0/μ0|αm

p Dpd |).
Next, to explore how this coherent excitation affects the

antenna properties, we start with calculating the Purcell effect.
Firstly, we calculate the Purcell factor (F1) for the single
dipole source for both tangential (TD) and longitudinal (LD)
orientation, Figs. 2(a) and 2(d). For numerical calculation,
we use CST MICROWAVE STUDIO and the input-impedance ap-
proach reported in Ref. [29]. Here we consider first a lossless
system, whereas the effect of loss is discussed in what follows.
For a lossless system, the Purcell factor coincides with the
ratio [29]: F1 = Prad/P0,rad, where Prad is the radiated power
for the presence of resonator and P0,rad is for free space.

The results of the numerical calculation of the Purcell
factor of a single dipole (F1) for tangential (TD) and longi-
tudinal (LD) orientation are presented in Figs. 2(a) and 2(d)
by dots. We also use the Green function approach to verify
our numerical results (solid red curves) [68,69]. For TD polar-
ization, we observe two resonant modes, which are magnetic
dipole (md) and magnetic quadrupole (mq) at λ/R = 8.37
and λ/R = 5.75, respectively, Fig. 2(a). The ed moment is
not excited in TD polarization due to its zero overlap with
the source, while effectively excited at λ/R = 6.58 for LD
polarization, Fig 2(d). These excited resonant modes lead to
a dramatic increase in power radiation and Purcell factor for
both TD and LD polarizations. These results coincide with the
analytical ones (red curve) and previous works [18,70].

The Purcell effect can be further increased by introducing
another emitter, Fig. 1(a). To describe this case, we introduce
the collective radiation enhancement F2 factor

F2(ϕd ) = Prad(ϕd )

P0,rad(ϕd )
, (3)

where Prad(ϕd ) [P0,rad(ϕd )] is the collective radiated power
(for the phase difference ϕd ) with (without) antenna. The
results of the calculation of this quantity versus λ/R and
phase difference (ϕd ) are presented in Figs. 2(b) and 2(e).
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FIG. 2. Purcell factor of a single dipole source (F1) with (a) tangential (TD) and (d) longitudinal (LD) orientation vs wavelength normalized
to the radius (λ/R) calculated both numerically and analytically. (b), (e) Collective radiation enhancement of two dipoles (F2) with (b) TD and
(e) LD orientation vs λ/R and phase difference of dipoles (ϕd = |ϕ1 − ϕ2|). (c), (f) Normalized collective radiation enhancement (F2/F1) for
(c) TD and (f) LD orientation vs λ/R and ϕd. The actual radius is R = 60 nm; the dipole sources of ld = 20 nm is located at a distance of 10 nm
from the surface.

We observe a strong enhancement of F2 up to 24 at mq
(λ/R = 5.75) and 20 at md (λ/R = 8.37) modes, which is an
∼85% and ∼300% increase compared to F1 for TD, Fig. 2(b).
This enhancement happens at certain relative phases. On the
other hand, F2 reaches 12 for ed for LD orientation, which is
∼20% enhancement, Fig. 2(e).

The ratio F2/F1 gives the normalized collective radiation
enhancement. If F2/F1 > 1 (F2/F1 < 1), the antenna boosts
(suppresses) the collective emission. The results presented in
Figs. 2(c) and 2(f) show that the antenna boosts collective
emission at certain phases. Remarkably, at λ/R = 5.68 where
F1 is minimal, adding the second source with ϕd = 150◦ can
increase the radiated power by 3.5 [Fig. 2(f)] associated with
a nonradiative anapole state as discussed in what follows.

Besides collective radiation enhancement, manipulating
the phase difference can also achieve the subradiance effect,
which technically “turns off” the antenna. Indeed, F2 can be
lowered down to ∼0 (at ϕd = 155◦). Also, while F2 features
a 300% boost at λ/R = 8.37 for ϕd = 180◦, zero power radi-
ation can be achieved by altering the relative phase to be the
same. A similar effect is also noticed at λ/R = 5.68 for LD.
These results suggest that one can tune the Purcell factor and
emitted power by adjusting the relative phase of emitters.

B. Comparison with a quantum system

Next, we demonstrate that the observed effects remain fair
in the quantum description. Due to the generality of the system
under consideration, it can be treated in quantum optics, and

the effects obtained can also be found in the quantum case.
Consider the quantum analog of the system: two quantum
emitters and a dipole mode of the antenna. We assume the
emitters to be two-level atoms with the same transition fre-
quency ωA, and we suppose only the electric dipole mode
of the antenna with frequency ωM . For details, please see
Appendix D.

Figure 3(a) shows the quantum analog of the radiation
enhancement F2 [see Eq. (3)], which can be introduced as
F q

2 = Irad/Irad,0 (where Irad,0 = −d〈Ĵz〉/dt is the intensity of
radiation from the system without antenna, and Irad = |〈â 〉|2
is the intensity with antenna, because, in this case, the antenna
radiation dominates), in the plane of the frequency detuning
between emitters and the resonator mode and the initial phase
difference between emitters’ dipole moments �ϕ. One can
see the behavior similar to Fig. 2(b). When the frequencies
of the emitters and the resonator mode are equal, F q

2 takes
the maximum values, and if the emitters’ dipole moments are
in phase, F q

2 reaches ∼ 20, which is in good agreement with
the classical approach. Figure 3(c) demonstrates the typical
superradiant profile of antenna radiation intensity at resonance
conditions and when the emitters’ dipole moments are nearly
in phase. In the opposite case, when the emitters are out of
phase (�ϕ = |ϕ1 − ϕ2| = π ), the antenna radiation is signifi-
cantly suppressed.

Thus, we have shown that in the quantum optical system as
well as in a classical one, there is a good opportunity to control
the output radiation of the antenna by tuning the initial phases
of emitters. The superradiance appearing in this system leads
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FIG. 3. (a) Collective radiation enhancement of two quantum emitters with TD orientation in dependence on the detuning between the
mode and emitters (�ω = ωC − ωA) and the phase difference between emitters �ϕ. (b) Profile of F q

2 along white dashed line. (c) Profile of
antenna radiation intensity vs time at orange dot mark.

to significant collective radiation enhancement if the initial
phase difference is close to zero, and the subradiance effect
emerges when the �ϕ = π .

C. Efficiency boosting

Another essential quantity characterizing any antenna is
its radiation efficiency (η1), defined as η1 = Prad/Ptot , where
Ptot is the total delivered power to the system. Note that al-
though this definition is fair for both microwave and optics,
in quantum optics, another definition (also called quantum
efficiency) through the number of radiated photons (Nrad) is
standard: η1 = Nrad/Ntot , where Ntot is the total number of
quasiparticles (electrons, excitons). The radiation efficiency
can be increased via the Purcell effect [71] by speeding up
the radiative decay rate and reducing the nonradiative decays.
However, in reality, the emission of a dipole source located
near a resonator surface gets dissipated due to the quenching
effect, i.e., strong dissipation through excitation of nonreso-
nant higher-order modes [72–74].

Here, we show that collective excitation by two sources
can boost radiation efficiency via the weakening of other
modes. To this end, we introduce a realistic imaginary part to
the resonator refractive index, n = √

16 + 0.1i. We calculate
the radiated efficiency of one dipole (η1) for TD and LD
orientations, shown in Figs. 4(a) and 4(d) by blue curves. The
radiation efficiency at the md resonance of TD orientation is
∼0.7, and at the ed resonance of LD orientation is ∼0.85.
Consequently, the antenna dissipates a significant amount of
power before radiating, even though it has a high Purcell
factor, Figs. 4(a) and 4(d), red curves.

We define the collective radiation efficiency

η2(ϕd ) = Prad(ϕd )

Ptot (ϕd )
, (4)

where Ptot (ϕd ) is the phase-dependent total delivered power.
The results of the numerical calculation of this value are
presented in Figs. 4(b) and 4(e). To compare these results with
η1, we take their ratio, Figs. 4(c) and 4(f). We see that the
presence of the second source increases the collective radia-
tion efficiency (η2/η1 > 1) for both TD and LD orientations at
certain relative phases. We observe the most significant effect
at λ/R = 5.7 for both TD and LD. The efficiency of TD at mq
is increased by 14% at the relative phase of 110 °, as shown in
Fig. 4(c). On the other hand, at λ/R = 5.7 of LD, the antenna
that originally had a low efficiency of 55%, Fig. 4(d), has
become much more (42%) efficient in the collective excita-
tion scenario, Fig. 4(f). These results convincingly show that
the collective coherent excitation can significantly boost the
radiation efficiency of an antenna.

Let us consider the LD polarized excitation at λ/R = 5.7
in more detail. Figures 5(a) and 5(b) show the collective ra-
diation enhancement (F2) and radiation efficiency (η2) for the
relative phase of 0 ° (blue curves) and 110 ° (red curves). We
observe that both characteristics get increased at 110 °. Hence,
the antenna at this wavelength radiates more and does it in a
much more efficient way. To elucidate it, we show the electric
field distribution at λ/R = 5.7 for both phases, Fig. 5(c). The
vector E-field distribution at 0 ° corresponds to the anapole
state [75] with enhanced linear distribution corresponding
to the Cartesian dipole and two loops, corresponding to the
toroidal moment [75,76] (see Appendix A). This anapole state
is associated with increased E field in the center, accompanied
by large dissipation losses, Fig. 5(d).

Figures 5(c) and 5(d), right column, show that at the rela-
tive phase of 110 °, the coherent excitation leads to “turning
off” the anapole state with suppression of the E field in the res-
onator center with the corresponding suppression of the power
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FIG. 4. Radiation efficiency and radiative Purcell factor of the antenna consisting of dipole and resonator with radius R and refractive
index, n = √

16 + 0.1i, depending on λ/R and ϕd. (a) and (d) show both radiated efficiency (blue curve) and radiative Purcell factor (red
curve) of one dipole for TD and LD orientation, respectively, depending on λ/R. (b), (e) Radiation efficiency of two dipoles (η2) with TD and
LD orientation respectively depending on λ/R and ϕd. Normalized radiation efficiency (η2/η1) for (c) TD and (f) LD orientation depending
on λ/R and ϕd. The value of η2/η1 has the maximum at wavelength/R of 5.7 with a ∼110 ° phase difference for both TD and LD orientation.
The red dashed circle shows the region where the maximum η2/η1 is achieved. The dipole sources are located at a distance of 10 nm from the
particle surface.

loss density and gain in both collective radiation enhancement
(F2) and mutual radiation efficiency (η2) at λ/R = 5.7.

D. Superdirectivity

The above analysis shows that the coherent excitation of
an antenna by two sources leads to the enhancement of radi-
ated power and radiation efficiency. The reason behind these
effects is the changing of excited multipoles. In this section,
we demonstrate that the same approach provides a powerful
tool for directivity engineering. To this end, we utilize the
recently reported design for an all-dielectric superdirective
notched antenna [77,78], Fig. 6(a). Superdirective antennas
are subwavelength antennas with the directivity much larger
than that of a short dipole antenna, Dmax = 1.5 [79–84]. Su-
perdirectivity regime relies on rapidly spatially oscillating
currents and high-order multipoles in a subwavelength area
[78,79]. If the multipoles are excited with certain phases and
amplitudes, their far fields interfere, forming a spatially nar-
row radiation beam. Here we demonstrate that the excitation
of a superdirective antenna by two coherent sources allows
ultimate control of excited multipoles and radiation patterns.

Following the antenna textbooks, we define the directivity
as Dmax = 4πPmax(θ, ϕ)/Prad, where (θ, ϕ) are the angular
coordinates of the spherical coordinate system, and Pmax is
the power in the direction of the main lobe [1]. This value

is normalized so that the isotropic point source has Dmax = 1
and the dipole source has Dmax = 1.5. Figure 6(b) presents the
directivity of the notched antenna for single-dipole excitation
[Fig. 6(a), red arrow]. We observe the maximum directivity
Dmax = 9 at λ/R = 4.35 (red curve), which is much higher
than that in free space (∼1.5, blue curve). The insets demon-
strate the corresponding radiation patterns.

The presence of the second dipole source allows coherent
tuning of this superdirective antenna. For the arrangement
of the sources along the x axis [Fig. 6(a), blue arrows], we
observe the preservation of the superdirectivity regime with
the maximum directivity (∼9.1), which changes with the rel-
ative phase, Fig. 6(c). To estimate the overall enhancement
of the antenna performance, we take the product of directivity
and collective radiation enhancement

∑ = DmaxF2 (see Fig. 8
in Appendix C for details). For this x-axis orientation, the
enhancement by a factor of 880 (2.9 in logarithmic scale) is
achieved, Fig. 6(e). At this point, the antenna possesses both
superdirectivity and superradiation effects with F2 = 100 and
Dmax = 8.5. When the sources are placed along the z axis
[Fig. 6(a), green arrows], a higher maximum total enhance-
ment of 2160 (3.3 in logarithmic scale) is observed for z-axis
orientation despite smaller directivity (∼2.7) in this case.
Thus, for the x-axis arranged coherent sources, the antenna
can operate in the superradiative (F2/F1 > 1) and superdirec-
tive (Dmax � 1, λ/R > 1) regimes simultaneously.
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zero phase difference (left column) and 110 ° (right column) at λ/R = 5.7. The dipole sources are located at a distance of 10 nm from the
particle surface.

III. CONCLUSIONS

In this paper, we have explored how the coherent excitation
by several sources can affect the antenna performance. We
have shown that coherent excitation of an antenna by two
sources makes it feasible to control the excitation of multi-
poles and, as a result, its electromagnetic properties. It leads
to the coherent tuning of radiated power from almost-zero val-
ues (subradiance) to significantly enhanced (superradiance).
We have explored that this approach reduces the quenching
effect and strengthens the radiation efficiency at some specific
phases via coherent cancelation of higher-order modes. The
approach allows excitation of the nonradiative field config-
uration, anapole state, and turning it on (off) at our will.
In the quantum system, we have shown that this collective
excitation corresponds to the states with nonzero dipole mo-
ment, where the quantum phase is well defined. We have also
demonstrated that utilizing this approach allows designing an
antenna operating in superdirective and superradiance regimes
simultaneously with the total enhancement factor over 2 ×
103. We believe that the findings reported in this study will
found applications in coherently driven antennas, active and
quantum nanophotonics. Due to the dipole approximation and
peculiarities of Mie resonances, the spherical antennas can be
replaced by antennas of cylindrical shape [21]. While spheri-
cal antennas are feasible for analytical investigation, particles

of cylindrical shape can be realized with well-established
lithography and chemical etching methods.

There are several systems which allow good control of
the initial states. First, one can use the cold atoms or ions
in optical traps [85–87]. The fine control of the initial state
can be obtained by changing both the potential wells’ config-
uration and the external fields. Second, the superconducting
qubits platform provides a great opportunity to tune the initial
states of qubits very precisely [88]. Also, among the adiabatic
techniques to control the quantum states [89], which rely on
the fact that the system remains in its state despite the slow
changes to the system, there is a superadiabatic transition-
less driving technique [90]. This method allows a fast and
robust coherent quantum control, which was experimentally
demonstrated in the nitrogen-vacancy (NV) centers and can
be implemented in other solid-state systems.

The states with a certain phase difference are formed in a
wide class of quantum emitters, including QDs, NV centers,
atoms, and molecules due to interaction with the same mode
of a cavity or antenna. Even though this phase difference is
barely predictable, our work suggests a variety of effects that
this phase would cause.

Lastly, we present our results in dimensionless units, so
they are applicable to antennas in microwaves, where the
control of the relative phase of the elementary emitters is a
rather established technique.
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FIG. 6. (a) Schematic representation of the notched antenna comprising two coherent dipoles of different configurations. (b) Directivity
of the single dipole [red arrow in (a)] with and without resonator depending on λ/R. Insets show the corresponding radiation patterns. (c),
(d) Directivity of two dipoles placing along the (c) x axis [blue arrows in (a)] and (d) z axis [green arrows in (a)] in the notch. (e), (f) Total
enhancement,

∑ = Dmax · F2, in logarithmic scale for two dipoles placing along the (e) x axis and (f) z axis in the notch of the resonator.
The red crosses show the points of maximum total enhancement that result in superradiative and superdirective regimes simultaneously. The
radius of the antenna and notch are R = 90 nm and Rn = 40 nm. The notch’s center is exactly on the surface of the resonator, and the midpoint
between the dipoles is 20 nm0 away from the surface.

ACKNOWLEDGMENTS

The authors thank the CUNY Summer Undergraduate
Research Program and Alfred P. Sloan Foundation for the
support.

The authors declare no conflict of interest.

APPENDIX A: MULTIPOLES AND COHERENT TUNING
OF A DIELECTRIC NANOPARTICLE SCATTERING

Figure 7(a) demonstrates the multipole decomposition of
a dielectric spherical resonator with radius R and refrac-
tive index n = 4. The first mode, magnetic dipole (md), is
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FIG. 7. Optical properties of the particle with refractive index n = 4. (a) Absolute electric and magnetic Mie scattering amplitudes on
wavelength normalized to the radius (λ/R). (b) and (c) Absolute electric (|a1 + a1eiϕ |) and magnetic (|b1 − b1eiϕ |) Mie scattering amplitudes
upon excitation by two plane waves, depending on λ/R and phase difference of dipoles (ϕd = |ϕ1 − ϕ2|).
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FIG. 8. (a) Purcell factor of a single dipole source in notched antenna, depending on λ/R. (b), (d) Collective radiation enhancement for two
dipoles placing along the (b) x axis and (d) z axis in the notch. (c), (e) Normalized collective radiation enhancement for two dipoles placing
along the (c) x axis and (e) z axis. The red crosses show the points of maximum total enhancement.

excited when the radius satisfies R ≈ λ/2n (for n = 4, it
gives λ/R ≈ 8). Higher-order modes: electric dipole (ed),
magnetic quadrupole (mq), etc., appear at shorter wave-
lengths. The anapole state corresponds to vanishing scattering
in the electric dipole mode. Figures 7(b) and 7(c) illus-
trate the scenario of excitation by two oppositely directed

plane waves in the dipole (ed and md) approximation.
Due to the linearity, the absolute values of Mie scattering
dipole electric and magnetic amplitudes can be expressed as
|a1 + a1eiϕ | and |b1 − b1eiϕ |, respectively, where the differ-
ent signs stem from the pseudovector character of the md.
This scenario illustrates an ability to coherent control of
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the antenna modes by two-wave excitation with the relative
phase (ϕ).

APPENDIX B: METHOD OF COUPLED
DIPOLE EQUATION

For a system of N subwavelength interacting particles, the
electric (Pi ) and magnetic (Mi ) moments of each particle can
be found solving the following system of equations:

Pi = αe
i

[
Eid +

N∑
j=1

(
Ci j −

√
μ0

ε0
Gi jMi

)]
, (B1)

Mi = αm
i

[
Hid +

N∑
j=1

(
Ci jMj +

√
ε0

μ0
Gi jPj

)]
, (B2)

where αe
i and αm

i are the electric and magnetic polarizabilities
of ith particle, respectively. In a case of a subwavelength
dielectric particle (R < λ, R is the particle’s radius), the scat-
tering pattern in the far field at the magnetic or electric
resonances resembles that of magnetic or electric pointlike
dipoles. It is possible to introduce magnetic αm

i and electric
αe

i polarizabilities of such a particle [67,91,92] with the Mie
scattering coefficients b1 and a1 as follows:

αe = 3iεh

2k3
h

a1, αm = 3i

2k3
h

b1, (B3)

where kh and εh are the wave number and permittivity of the
host medium; a1 and b1 are Mie scattering amplitudes. The

quantities Eid = Cid Pd and Hid =
√

ε0
μ0

Gid Pd are the electric

and magnetic fields of the elementary dipole source (Pd ), re-
spectively, in the point where the ith particle is located. Ci j and
Gi j are the electric and magnetic fields of the point-particle
electric dipole of the ith particle at the jth particle with the
following expressions:

Ci j = Ai jI + Bi j (ni j ⊗ ni j ), Gi j = Di jni j×, i �= j (B4)

where ni j ⊗ ni j is the dyadic product of the unit vector of ri j ,
which is the radius vector from ith particle to jth particle; Ai j ,
Bi j and Di j are given by

Ai j = exp(ikhri j )

ri j

(
k2

h − 1

r2
i j

+ ikh

ri j

)
, (B5)

Bi j = exp(ikhri j )

ri j

(
−k2

h + 3

r2
i j

− 3ikh

ri j

)
, (B6)

Di j = exp(ikhri j )

ri j

(
k2

h + ikh

ri j

)
. (B7)

Since only one particle (resonator) is used and an extra
dipole is introduced in our paper, Eqs. (B1) and (B2) have
the form of

Pi = αe
i

(
Epd1 e jϕ1 + Epd2 e jϕ2

)
, (B8)

Mi = αm
i

(
Hpd1 e jϕ1 + Hpd2 e jϕ2

)
, (B9)

where subscript p indicates the particle, d1 and d2 are
first and second dipole with corresponding phase φ1 and
φ2, respectively. After solving Eqs. (B8) and (B9), nonzero

components of electric and magnetic dipole moments are
obtained:

Ppy = αe
pApd Pdy(e jϕ1 + e jϕ2 ), (B10a)

Mpz = αm
p

√
ε0

μ0
Dpd Pdy(e jϕ1 − e jϕ2 ). (B10b)

APPENDIX C: PURCELL EFFECT
IN SUPERDIRECTIVE ANTENNA

In the main text, we calculate the overall enhancement of
the antenna performance as a product of directivity (Dmax)
and collective radiation enhancement (F2),

∑ = Dmax · F2.
Figure 8(a) presents the Purcell factor of a single-dipole
source in notched antenna as a function of the dimensionless
wavelength (λ/R). In its turn, the collective radiation enhance-
ment for two dipoles placing along the (b) x axis and (d) z axis
in the notch are presented in Figs. 8(b) and 8(d). Normalizing
these to the single-dipole Purcell factor, we get the normalized
collective radiation enhancement for two dipoles, Figs. 8(c)
and 8(e). The red crosses show the points of maximum total
enhancement.

APPENDIX D: QUANTUM APPROACH

The lowering, σ̂1 = σ̂ ⊗ Î and σ̂2 = Î ⊗ σ̂ , and raising,
σ̂+

1 = σ̂+ ⊗ Î and σ̂+
2 = Î ⊗ σ̂+, operators describe the re-

laxation and excitation of the 1 or 2 atom, where Î is the
identity matrix of size 2 × 2, and σ̂ = |g〉〈e|, σ̂+ = |e〉〈g| are
transition operators from the excited |e〉 state to the ground
|g〉 state and vice versa. Operators â and â+ are annihilation
and creation operators of a quantum in the antenna mode.
The interaction Hamiltonian of the emitters with the resonator
mode has the Jaynes-Cummings type in the rotating wave
approximation. The system also interacts with the electromag-
netic modes of free space. The resulting Hamiltonian of the
entire system has the form:

Ĥ = ĤS + ĤR + ĤSR

ĤS =
2∑

i=1
h̄
ωA

2
σ̂ i

z + h̄ωMâ+â + 
2∑

i=1
(â+σ̂i + σ̂+

i â)

ĤR = ∑
k

â+
k âk

ĤSR = ∑
k,i

κk (σ̂i + σ̂+
i )(â+

k + âk ) + ∑
k

χk (â+ + â)(â+
k + âk )

,

(D1)
where i = −d̂iÊM/h̄ is the coupling constant of the emitters
and the mode. âk and â+

k are, respectively, annihilation and
creation operators of a photon in a mode with the frequency
ωk . Constants κk and χk are the interaction constants between
the emitters and free-space modes and the antenna mode
and free-space modes. The dynamics of the system can be
described by the master equation in the Lindblad form [93].
Using the Hamiltonian (D1), we apply the Born-Markov ap-
proximation [94] and obtain the final master equation:

∂

∂t
ρ = − i

h̄
[ĤS, ρ] + γ

2
(2Ĵ−ρĴ+ − Ĵ+Ĵ−ρ − ρĴ+Ĵ−)

+ γa

2
(2âρâ+ − â+âρ − ρâ+â), (D2)
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where we introduce the collective operators of dipole moment
Ĵ− = ∑

i σ̂i and Ĵ+ = ∑
i σ̂

+
i , and the collective inversion

Ĵz = ∑
i σ̂z; γ is the spontaneous emission rate of atoms into

free-space modes, γa is the antenna mode’s decay rate. Note
that we consider weak interaction between subsystems.

The emitters are initially excited by the pulse pumping
into some states. The phase of the emitter, in this case,
can be found with the use of the phase operator. Following
Refs. [71,95] we introduce the Hermitian phase operator ϕ̂ for
M-level system

ϕ̂ =
(

ϕ + π
M − 1

M

)
ÎM

+ 2π

M

M−1∑
m �=m′

exp [i(m − m′)ϕ0]

exp [2π i(m − m′)/M] − 1
|m〉〈m′|, (D3)

where ÎM = ∑M−1
m=0 |m〉〈m| and ϕ0 is a reference phase (we put

it as ϕ0 = 0). The eigenvalues of this operator lie in the range
[ϕ0, ϕ0 + 2π ). The detailed description of the phase operator
properties can be found in Refs. [96,97].

For the two-level atom, the phase operator takes a simple
form:

ϕ̂ =
(

π/2 −π/2
−π/2 π/2

)
. (D4)

As an illustration, one can easily obtain that the
phase difference for the collective Dicke state [34] of N
emitters |N, n〉 = 1/

√
Cn

N

∑
permutations | e, · · · , e︸ ︷︷ ︸

n

, g, · · · , g︸ ︷︷ ︸
N−n

〉

(if we define ϕ̂i
N = Î ⊗ · · ·⊗︸ ︷︷ ︸

i−1

ϕ̂ ⊗ · · · ⊗ Î︸ ︷︷ ︸
N−i

) is always

〈N, n|ϕ̂N
i −ϕ̂N

j |N, n〉 = 0, i.e., for the system in this state,
emitters are indistinguishable, and each of them has the same

phase. Moreover, the collective dipole moment for this kind
of collective state is always zero [95]. Therefore, we should
introduce the states with nonzero dipole moment [65] as an
initial state, for which we can define the initial phase. The
density matrix, in this case, is a direct product of density
matrices of atom 1 and atom 2 ρ = ρ1 ⊗ ρ2, where

ρi =
(

βi αi exp(iϕi)
αi exp(−iϕi ) 1 − βi

)
. (D5)

βi, αi are real numbers, which are connected by a relation
α2

i < βi(1 − βi ) in order to satisfy the positive definiteness of
the density matrix, and ϕi is a “classical” phase. Using this
initial density matrix, we see that the average value of the
dipole moment 〈σ̂i〉 = Tr(σ̂iρ) = αi exp(iϕi) is nonzero.

Let us find the connection between the phase of the average
value of the dipole moment ϕi and the average value of the
phase operator (7), 〈ϕ̂i〉, for the states with nonzero dipole
moment (8). We apply the phase operator to the state (D5):

〈ϕ̂i〉 = Tr

((
βi αi exp(iϕi)

αi exp(−iϕi ) 1 − βi

)(
π/2 −π/2

−π/2 π/2

))
= π

2
− παi cos ϕi. (D6)

After this, one can obtain the average value of the differ-
ence of phase operators of two emitters

〈ϕ̂i − ϕ̂ j〉 = −π (αi cos ϕi − α j cos ϕ j ). (D7)

Note that in the analysis above, we also could use the
exponential of the phase operator.

Thus, we have the relationship between the average val-
ues of the phase operator and the phase of emitter’s dipole
moment and can consider the dependence of radiation en-
hancement on the phase difference between two quantum
emitters’ dipole moments.
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