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Superradiance from nonideal initial states: A quantum trajectory approach
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Collective emission behavior is usually described by the decay dynamics of the completely symmetric Dicke
states. To study a more realistic scenario, we investigate alternative initial states inducing a more complex time
evolution. Superposition states of the fully inverted Dicke state and the Dicke ground state with unequal mutual
weights are studied as examples as well as superradiance stemming from atoms in clusters separated by more
than one wavelength. The Monte Carlo wave function method serves as a framework to study the dynamics of
quantum states, which is determined by quantum jumps, on the one hand, and continuous evolution dynamics,
on the other hand. We compare this method with the classical picture of a system of rate equations written for
the diagonal components of the density matrix.
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I. INTRODUCTION

Since its theoretical prediction by Dicke in 1954 [1]
many aspects of superradiance have been studied. The term
refers to the collective enhancement of spontaneous emis-
sion of an atom if it is part of a dense atomic ensemble,
whose extension is much smaller than the radiation wave-
length. This phenomenon has been observed experimentally
for the first time in an optically pumped hydrogen-fluoride gas
in 1973 [2].

The Hamiltonian describing the atom-light interaction be-
tween the dipole moment of the atomic ensemble and the
quantized field mode is known as the Dicke Hamiltonian. In
rotating-wave approximation it is called the Tavis-Cummings
Hamiltonian [3], which is an extension of the Jaynes-
Cummings Hamiltonian [4] for collective spin operators
replacing two-level Pauli spin matrices. It was found that
the Tavis-Cummings and Dicke Hamiltonians show a phase
transition in the thermodynamic limit N → ∞ [5,6]. This su-
perradiant phase is characterized by macroscopic occupations
in the electromagnetic field and macroscopic excitations in
the atoms. Later it was argued that a term quadratic in the
electromagnetic vector potential A2 is missing in the Dicke
Hamiltonian, which makes the superradiant phase unphysical
[7]. This no-go theorem initiated an ongoing debate about the
validity of the Dicke model. Recently, the Dicke Hamiltonian
in its well-known form was rederived in the minimal and
multipolar coupling pictures [8,9]. The experimental obser-
vation of the superradiant phase transition [10] reinforced the
relevance of the Dicke model also for systems very different
from Dicke’s original setting. A connection between the dy-
namical feature of superradiance [1] and the phase transition
picture [5,6] was established by studying the dynamics of a
system of several atoms and a damped cavity [11]. In this
model the superradiant burst becomes apparent as a peak of
the cavity excitation and the occupation of the steady state

mimics the superradiant phase transition depending on the
coupling strength between the atoms and the cavity mode.

In this paper we concentrate on one facet of superradiance:
the emission burst. Motivated by recent experiments with ex-
cited molecules [12,13], where not all emitters can be brought
into the excited state, the question arises whether a partially
excited ensemble of emitters still emits superradiantly. In
general there are several options for a quantum state corre-
sponding to a partially excited atomic ensemble. In Ref. [14]
superradiance from non-Dicke states is investigated, where
the proportionality of the intensity to the number of atoms
squared is considered as an indicator for superradiance. Mixed
non-Dicke states are considered as initial states. Among other
things, an initial density matrix of an atomic ensemble is
generated by the product of the single-atom density matrices.
This is contrasted to the Dicke model and a connection to the
phase operator for two-level atoms is established. Reference
[15] studies a partially inverted or excited slab of two-level
atoms. The superradiant emission is calculated in the basis
of eigenmodes of the Lienard-Wiechert Green’s function. De-
pending on the initial excitation level of the slab, three regimes
are distinguished. If the initial excitation is lower than the
number of excitations at the maximum, a superradiant burst
is not observed. A weak superradiant burst can be observed
if the initial excitation is higher than the one at the maximum
but below a certain threshold. Above this threshold the super-
radiant burst is significant.

Especially Refs. [14,15] show the importance of initial
conditions for the observation of a superradiant burst. Here
we investigate the dependence of superradiance on different
initial conditions, namely, a completely inverted ensemble of
two-level systems, the classical mixture of the completely
inverted state and the deexcited state, and the semiexcited
Dicke state with half of the atoms in the excited state. More-
over, we do not restrict ourselves to Dicke states only, but
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study coherent superpositions of excited and deexcited Dicke
states and additionally look at the radiation pattern of an
atomic ensemble split into several clusters that are sepa-
rated by distances surpassing the wavelength of the atomic
radiation.

This paper is organized as follows. Two different the-
oretical models to simulate different initial conditions are
discussed in Sec. II: emission rate equations for Dicke states
(Sec. II A) and the formalism of Monte Carlo wave function
(MCWF) for a single two-level system (Sec. II C). Section III
discusses the application of the MCWF to fully symmetric
states (Dicke states), and the dynamics is compared to the
classical rate equation approach. The dynamics using several
initial conditions, i.e., the coherent superposition of the com-
pletely inverted Dicke state and the ground state as well as
the semiinverted completely symmetric Dicke state, is studied
in Sec. IV. Moreover, superposition states of the completely
inverted Dicke state and the ground state of unequal weights
are investigated. Finally, we study superradiance with atoms
in two separated clusters (Sec. IV C).

II. THEORETICAL MODEL

The Dicke model developed in Ref. [1] is outlined in
Sec. II A, where we introduce the Dicke states and collective
emission. Using these concepts, in Sec. II B the system of rate
equations for the Dicke states is introduced, and the possibility
of superradiance is demonstrated in the simplest scenario of
two atoms. Afterwards, in Sec. II C, we outline the MCWF
method (also known as quantum-jump Monte Carlo).

A. Emission rate equations between Dicke states

The Dicke model and the concept of superradiance were
developed in Dicke’s original paper [1]. It studies the col-
lective emission of an ensemble of two-level atoms with an
extension of the ensemble which is small compared to the
wavelength. In this scenario the atoms can be excited by a
laser field and emit into free space. As opposed to cavity
quantum electrodynamics (CQED) scenarios, excitations once
emitted cannot be reabsorbed by the atoms. There is no mutual
exchange of excitations between the atoms and the quantized
electromagnetic field described by the Dicke Hamiltonian.
Further sources of energy loss such as atomic collisions are
not considered in this model. A modern description of this
model can be found in Refs. [16,17].

In particular, the collective emission model adopted here is
explained in great detail in Secs. 1– 3 of Ref. [16]. It contains
two essential ingredients necessary for collective spontaneous
emission from an atomic ensemble:

(1) The ensemble interacts with a continuum of modes
(free space scenario as opposed to CQED), each electro-
magnetic mode of the continuum coupled to the atoms
according to the Dicke Hamiltonian. Such a continuum of
modes forms a reservoir, and makes the atomic ensemble (the
small subsystem of the large coupled system) behave in a
dissipative way.

(2) Assuming atomic transition frequencies in the opti-
cal domain, a Markov approximation can be made on the
electromagnetic reservoir. This is because the reservoir cor-

relation time scales with the optical frequency, while the
characteristic timescale of the dynamics of the atomic ensem-
ble scales with the spontaneous emission rate, and the two
are typically separated by several orders of magnitude. (For
example, for the D2 line of rubidium 87, the optical transition
frequency is ≈2π×384 THz, whereas the spontaneous emis-
sion rate is only ≈2π×6 MHz.)

These two assumptions lead from the Dicke Hamiltonian
description to the collective dissipative model for the atomic
ensemble detailed below.

The atomic ensemble consists of N identical two-level
atoms each with ground state |g〉 and an excited state |e〉 sep-
arated by the energy h̄ω. A single two-level atom is described
by Pauli-spin matrices and raising and lowering operators for
the ith atom are defined as

σ̂+
i = |e〉〈g|; σ̂−

i = |g〉〈e| (1)

with the diagonal operator (population inversion)

σ̂ z
i = 1

2 (|e〉〈e| − |g〉〈g|). (2)

These operators only act in the ith subspace and follow the
commutation relations for Pauli-spin matrices[

σ̂ z
i , σ̂±

j

] = ±δi j σ̂
±
i ; [σ̂+

i , σ̂−
j ] = 2δi j σ̂

z
i . (3)

In an idealized scenario, initially at t = 0 all N atoms are
excited in level |e〉 and the state of the ensemble reads

|ψ (t = 0)〉 = |e, e, . . . , e〉. (4)

Since the atoms are confined to a volume that is small com-
pared to the wavelength, it is not possible to distinguish one
specific atom emitting a photon of wavelength λ according
to Heisenberg’s uncertainty principle. Rather, the emission
stems from the entire collection of indistinguishable atoms.
Therefore, any quantum state of the atomic system has to be
symmetrical with respect to the exchange of any two atoms of
the ensemble during the whole time evolution. Here, we will
make use of this plausible symmetry argument, even though it
might not hold in certain situations [16].

We introduce the collective symmetrical spin operators

Ĵ± =
N∑
i

σ̂±
i ; Ĵ z =

N∑
i

σ̂ z
i (5)

and

Ĵ
2 = 1

2 (Ĵ+Ĵ− + Ĵ−Ĵ+) + (Ĵ z )2, (6)

which follow the commutation relations of angular momen-
tum operators for a spin of modulus J = N/2. The states
invariant under the permutation of any two atoms are named
Dicke states, and are eigenstates of Ĵ z. These N + 1 states can
be constructed starting from the maximally excited state (4)
as

|J, M〉 =
√

(J + M )!

N!(J − M )!

(
Ĵ−)J−M |e, e, . . . , e〉 (7)

with −J � M � J . The state |J, M〉 is fully symmetrical with
J + M atoms in the excited state |e〉 and J − M in the ground
state |g〉.
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Acting on the Dicke state (7), the ladder operators Ĵ± fulfill
the relations

Ĵ+|J, M〉 =
√

J (J + 1) − M(M + 1)|J, M + 1〉,
Ĵ−|J, M〉 =

√
J (J + 1) − M(M − 1)|J, M − 1〉. (8)

The Dicke state |J, M〉 is an eigenstate of the operators of
collective angular momentum

Ĵ z|J, M〉 = M|J, M〉; Ĵ
2|J, M〉 = J (J + 1)|J, M〉. (9)

The N + 1 collective states |J, M〉 form an equidistant ladder
in energy with level-splitting h̄ω. Starting with a completely
excited atomic ensemble in state (4), this system evolves
along the ladder of all Dicke states (7) down to the collec-
tive ground state |g, g, . . . , g〉 and thereby emit radiation with
time-dependent intensity.

In order to compute the state-dependent collective radiation
intensity, the system radiation rate for each state |J, M〉 with
a fixed value of J is needed, which is given by the following
quantum mechanical expectation value:

�M,M−1 = �〈Ĵ+Ĵ−〉M = �〈J, M|Ĵ+Ĵ−|J, M〉
= �(J + M )(J − M + 1), (10)

where � denotes the emission rate of a single atom. Hence it
is apparent that the collective emission rate starts with a value
of 2J� in the fully excited state (4) with M = +J , where the
atoms emit photons independently (this is product state). It
reaches its highest value J (J + 1)� at M = 0, proportional
to N2, where the collective enhancement of the emission is
strongest, and which gives the main contribution to the super-
radiant burst. Finally, radiation comes to an end at M = −J .

The intensity of the radiation I (t ) is the sum of the decay
rate �M,M−1 for all Dicke states |J, M〉 weighed by the time-
dependent probability of the system to occupy this state pM (t ),

I (t ) =
J∑

M=−J+1

pM (t )�M,M−1. (11)

The probability distribution obeys the classical master
equation

ṗM (t ) = −�M,M−1 pM (t ) + �M+1,M pM+1(t ), (12)

which can be expressed in matrix-vector representation with a
time-dependent probability vector p(t ) as

ṗ(t ) = A·p(t ), (13)

which can be solved readily:

p(t ) = exp (At )p(0). (14)

The matrix A consists of the constant decay rates (10).
The intensity shows a radiation burst, whose maximum

scales with N2 and the width of the peak exhibits a 1/N
behavior. The integrated intensity over the time of emission
is a measure for the emitted energy and thus the number
of emitted photons. It reflects the total number of photons
initially brought into the system, which is equal to the total
number of atoms in the case of maximally excited two-level
systems. Thus the integrated intensity is identical to the value
of N , if the initial state is the Dicke state (4).

B. Simple manifestation of superradiance for two atoms

To get a feeling of the physics we consider, let us take a
brief look at the simple example of two atoms. Here, three
Dicke states are involved (7):

|1, 1〉 = |e, e〉,

|1, 0〉 = 1√
2

(|e, g〉 + |g, e〉),

|1,−1〉 = |g, g〉. (15)

The system of rate equations reads⎛
⎝ ṗ1(t )

ṗ0(t )
ṗ−1(t )

⎞
⎠ =

⎛
⎝−2� 0 0

2� −2� 0
0 2� 0

⎞
⎠

⎛
⎝ p1(t )

p0(t )
p−1(t )

⎞
⎠, p(0) =

⎛
⎝1

0
0

⎞
⎠.

(16)

The decay rates �M,M−1 are obtained from Eq. (10). The
system starts from the fully excited state |1, 1〉. The dynamical
matrix has eigenvalues 0 and 2, where the latter is dou-
bly degenerate leading to the two solutions exp(−2�t ) and
�t exp(−2�t ). The first solution of the doubly degenerate
eigenvalue causes an exponential decay, whereas the second
one is responsible for a peaked decay pattern. The occupation
probabilities under the given initial condition are found ana-
lytically:⎛

⎝ p1(t )
p0(t )

p−1(t )

⎞
⎠ =

⎛
⎝ exp(−2�t )

2�t exp(−2�t )
1 − (1 + 2�t ) exp(−2�t )

⎞
⎠. (17)

Summing up probabilities and decay rates according to
Eq. (11), the total intensity gives

I (t ) = 2� exp(−2�t )(1 + 2�t ). (18)

The basic structure of eigenvalues and solutions of the
system of rate equations (12) for an atomic ensemble of more
than two atoms is similar. There are pairs of doubly degen-
erate eigenvalues causing the peaked structure of the photon
emission I (t ) (11) as opposed to a superposition of ordinary
exponential terms.

In Appendix A, we review in a formalism more accessible
to the contemporary reader the most fundamental manifesta-
tion of superradiance that occurs with two emitters, which was
presented in Dicke’s original paper [1].

Collective enhancement due to the identity of particles is
thus already observed in the case of only two contributors.

C. Monte Carlo wave-function method

The theoretical model described in Sec. II A operates on the
subspace spanned by Dicke states. Any other collective atomic
state with a high number of excitations is inaccessible by
applying the Dicke operators. In order to study superradiance
with other initial conditions, a different approach, which is not
restricted to the Hilbert space of Dicke states, is needed. The
description of the MCWF approach (cf. Ref. [18]) is mostly
based on Ref. [19], which coalesces elements of several pre-
works [20–25].

A small quantum system which is coupled to a reservoir
can be described by the standard master-equation approach
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from quantum optics (cf. Ref. [26]). Whereas the master
equation deals with density matrices with N2 components, the
MCWF unravels this evolution into an ensemble of stochastic
quantum trajectories dealing with state vectors with N com-
ponents. Along with other benefits, this scaling behavior is
highly attractive for the study of the time evolution of large
quantum systems. The gain in computing time is predom-
inantly due to the possibility of parallelization of quantum
trajectory realizations.

The master equation of a system with Hamiltonian Ĥ relies
on the Born-Markov approximation, and can be written as

˙̂ρ = i

h̄
[ρ̂, Ĥ ] + L(ρ̂ ) (19)

with the relaxation (Liouvillian) superoperator for a single
decay channel, such as the decay of photons into the reservoir
at zero temperature reading

L(ρ̂ ) = �
(− 1

2Ĉ+Ĉ−ρ̂ − 1
2 ρ̂Ĉ+Ĉ− + Ĉ−ρ̂Ĉ+)

, (20)

where Ĉ− and Ĉ+ are ladder operators.
The MCWF method evolves the state vector with a non-

Hermitian Hamiltonian

ĤnH = Ĥ − ih̄�

2
Ĉ+Ĉ− (21)

(no-jump evolution), which models the fact that an open sys-
tem is under continuous observation (weak measurement) by
its environment, hence continuously leaking information into
the environment, even without actual quantum jumps. This
no-jump evolution is interrupted by instantaneous quantum
jumps, whose probability derives from the norm loss the state
vector suffers through the nonunitary evolution. It is nontrivial
how often the possibility of a jump has to be probed in a
numerical implementation [27].

One way to treat this is to break down the MCWF evolution
into steps of δt (possibly adaptive time steps), and probe for
the possibility of quantum jumps in each time step. If the
system is in the normalized state |ψ (t )〉 at time t , then at time
t + δt , under the nonunitary evolution to first order in δt , its
state becomes

|ψ ′(t + δt )〉 =
(

1 − iĤnHδt

h̄

)
|ψ (t )〉. (22)

Its norm can be expressed with the jump probability δp as

〈ψ ′(t + δt )|ψ ′(t + δt )〉 = 1 − δp, (23)

with

δp = δt
i

h̄
〈ψ (t )|ĤnH − Ĥ†

nH|ψ (t )〉
= δt � 〈ψ (t )|Ĉ+Ĉ−|ψ (t )〉. (24)

Since this stepwise MCWF method is first order in the sense
that it allows for at most one quantum jump per time step, the
step size δt has to be small enough that the condition δp 	 1
is fulfilled, and hence the probability of two jumps occurring
in the same time step [∼(δp)2] is negligible.

At time t + δt , we switch to the state vector

|ψ (t + δt )〉jump ∝ Ĉ−|ψ ′(t + δt )〉 (25)

with probability δp, which means that a quantum jump has
occurred. The state becomes

|ψ (t + δt )〉no-jump = 1√
1 − δp

|ψ ′(t + δt )〉 (26)

with the complementer probability 1 − δp.

D. Emission from a coherent superposition

The workings of the method is exemplified with a two-
level system with the Hamiltonian Ĥ = h̄ωσ̂+σ̂−, where the
general operators in Eq. (20) are replaced by Ĉ− = σ̂− and
Ĉ+ = σ̂+. This is just the Dicke superradiance model intro-
duced in Sec. II A for N = 1. The most general pure initial
state reads

|ψ (0)〉 = α0|g〉 + β0|e〉. (27)

If we assume no quantum jump between 0 and t , the nor-
malized wave function at the general time t can be written as

|ψ (t )〉 = α(t )|g〉 + β(t )e−iωt |e〉, (28a)

where α(t ) and β(t ) can be computed as solutions of the
nonunitary evolution with Hamiltonian (21) and read [19]

α(t ) = α0√
|α0|2 + |β0|2e−�t

, (28b)

β(t ) = β0e−�t/2√
|α0|2 + |β0|2e−�t

. (28c)

With the help of these equations, one can derive the
decaying probability of having no quantum jump between
0 and t as

p{no jump before t} = |α0|2 + |β0|2e−�t . (29)

For the derivation, cf. footnote.1 Taking the limit t → ∞, it
becomes clear that with a probability |α0|2 no jump will ever
occur during the evolution; the system goes to the state |g〉
continuously. On the other hand, the probability density of a
jump occurring reads

p(t ) = � |β0|2 e−�t , (30)

which is nothing else than the exponential waiting-time distri-
bution for a process with constant occurrence rate �, except
that it is normalized to |β0|2 instead of 1. This is despite
the fact that the jump rate is not constant, but from Eq. (24)
decreases according to

r(t ) = δp

δt
= � 〈ψ (t )|σ̂+σ̂−|ψ (t )〉

= � |β0|2 e−�t

|α0|2 + |β0|2e−�t
. (31)

1Equation (29) can be derived from the formula for the probability
that an event with time-dependent occurrence rate r(τ ) does not
occur before time t :

p{occurrence later than t} = exp

(
−

∫ t

0
dτ r(τ )

)
.

This result can be derived in a very similar way as the exponential
distribution for constant occurrence rate. Equation (29) can be ob-
tained by substituting (31) into this equation.
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In summary, starting from the initial condition (27), in an
|α0|2 fraction of the cases, no jump will ever be observed,
whereas in the remaining |β0|2 fraction, a jump will be ob-
served with probability density � e−�t . In the t → ∞ limit,
the state is |g〉 in both cases. The exact same behavior is
observed if the initial state is the completely mixed state

ρ(0) = |α0|2 |g〉〈g| + |β0|2 |e〉〈e|. (32)

A mixed initial state can be translated to the MCWF
method in such a way that the trajectories of the statistical
ensemble are started not from the same state as above, but
an |α0|2 fraction of the trajectories is started from the state
|g〉 (whence no jump will ever be observed), whereas the
remaining |β0|2 fraction from the state |e〉 (whence a jump will
be observed with probability density � e−�t ). This is a central
result of the present paper, that was hereby proven for the
case of a single emitter in the language of MCWF trajectories
that with time-resolved observation of the collective emis-
sion burst, it is impossible to distinguish between coherent
superposition and mixture in this scenario. A very similar
calculation is possible for two emitters, as we demonstrate in
Appendix B.

E. Implementation

For the MCWF simulations in this work we use C++QED,
a framework for simulating open quantum systems, where
simple quantum-mechanical operators can be pieced together
to form complex systems. This software leverages C++ to
yield high-performance executables meant for large-scale data
collection, often in supercomputing environments. There are
different options to simulate time evolutions of these sys-
tems, namely, single MCWF trajectories, ensembles of many
trajectories, and master equations. The basic idea and ways
of implementation are discussed in Ref. [28]. An updated
version, C++QEDv2 [29,30] is currently maintained and
available as an open-source package.

Based on the general concept of the MCWF method, there
are several tools implemented in C++QED to improve the
quality of the simulation. Most importantly, it is possible
to allow for an adaptive time step, which is essential for
production-scale numerics. The time step is varied by an
adaptive ordinary differential equation solver in order to guar-
antee a preset precision level for the continuous nonunitary
evolution defined by the Hamiltonian (21). Meanwhile, a su-
perimposed mechanism monitors that the jump probability per
time step (24) remains very small, by limiting the step size δt
from above. Namely, a parameter p 	 1 is introduced, and
it is made sure that

δp < p at all times. (33)

This makes sure that the probability of two jumps occurring
in the same time step (which possibility is not included in
the first-order MCWF method that we use here) is negligible,
namely, less than (p)2.

III. COMPARISON OF METHODS

Whereas the rate-equation model (12) operates on the di-
agonal of the density matrix (N + 1 entries for N atoms),

so that it cannot describe quantum coherence, the MCWF
method works with statistical ensembles of full state vectors
with N + 1 entries, so that the latter method is much more
demanding numerically.

We use these two methods to study the intensity I (t ) with
various initial conditions and test them for the conditions of
superradiance. Besides the photon emission from an initially
completely excited Dicke state (4), we look at the radiation
from a statistical mixture of half of the atoms initially excited
and the other atoms deexcited (system of rate equations). This
is contrasted to a symmetrical superposition of an entirely
excited state and a deexcited state (MCWF method) and used
to check the accuracy of the two methods.

To see how the MCWF method works in this case, let us
consider an initial state of equal weight between the maxi-
mally excited Dicke state (4) |J, J〉 = |e, e, e, . . . , e〉 and the
completely deexcited state |J,−J〉 = |g, g, g, . . . , g〉,

|ψ (0)〉 = 1√
2

(|J, J〉 + |J,−J〉). (34)

We make the substitutions Ĉ− = Ĵ− and Ĉ+ = Ĵ+.
The evolution of an initial state |ψ (0)〉 is governed by both

continuous decay due to the non-Hermitian Hamiltonian (21)
and the jump part Ĵ−ρ̂Ĵ+, which is responsible for the emis-
sion of photons, as explained in Sec. II C. The Dicke states
|J, M〉 (7) are eigenstates of the non-Hermitian Hamiltonian
(21). Since the state |ψ (t )〉 is continuously renormalized dur-
ing the time evolution [27], the non-Hermitian Hamiltonian
does not affect Dicke states at all in the course of the dynam-
ics. As a consequence, Dicke states do not undergo continuous
decay, but can decay through jumps only.

Since the coherent superposition of Dicke states (34) is not
an eigenstate of the non-Hermitian Hamiltonian (21), it decays
both in a continuous decay and by jumps. Until the first jump
occurs, the coherent superposition state (34) evolves accord-
ing to the non-Hermitian Hamiltonian (21) as (normalization
included)

|ψ (t )〉 = 1√
1 + e−N�t

(|J,−J〉 + e−N�t/2|J, J〉). (35)

This behavior is equivalent to Eq. (28) except for the increased
damping rate. One can see that the excited component is
damped gradually due to the non-Hermitian evolution. The
jump rate reads

r(t ) = N �
e−N�t

1 + e−N�t
, (36)

which corresponds to Eq. (24). Just like in the single-emitter
case above, the occurrence of a jump becomes the less likely,
the longer one waits for the jump to happen. Its probability
even converges to 0 for t → ∞.

The first jump, given by the application of the operator Ĵ−,
annihilates the deexcited component of the initial state (34)
|J,−J〉 and reduces the number of excitations in |J, J〉 by one,
bringing the system to the Dicke state |J, J − 1〉 [cf. Eq. (25)],

|ψ (t )〉jump ∝ Ĵ−|ψ (t )〉 ∝ |J, J − 1〉. (37)

From this point on, the system behaves as if the initial state
was a Dicke state and can lose its excitations only in a series
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of jumps. Thus it becomes clear that there are two types of
trajectories, each occurring with probability 1/2: trajectories
of continuous decay and trajectories of (a series of) jumps. It is
also apparent that the occurrence of the first jump determines
whether the trajectory is of the continuous-decay or the series-
of-jumps type.

Therefore the question arises whether there is a fundamen-
tal difference between the time evolution of a quantum state
starting with the coherent superposition (34) and the statistical
mixture starting from the completely mixed state

ρ̂(t ) = 1
2 (|J, J〉〈J, J| + |J,−J〉〈J,−J|). (38)

The emission dynamics of such a state can be treated with the
classical rate equations (12), and the total number of emitted
photons is N/2, which is identical to the expectation value for
the number of jumps on a quantum trajectory started from the
superposition (34).

Since a coherent superposition exhibits nonvanishing off-
diagonal density-matrix elements in contrast to the completely
mixed state, it is a priori not clear whether the dynamics may
be different for the two cases. However, given our derivation
above, such differences can only stem from the first quantum
jump. In the following, we answer this question by looking at
the waiting-time distribution of the first jump. Based on the
jump rate for the first jump r(t ) (36), the probability density
is obtained in the same way as Eq. (30) to read

p(t ) = N

2
� exp (−N�t ). (39)

Its norm being 1/2 means that there is no emitted photon in
half of the trajectories, which is the same as if the system
was started from the pure state |J,−J〉, that is, the second
term in the mixture (38). The other half of the trajectories
yield the first emitted photon with (conditional) waiting-time
density (39), which is the same as if the system was started
from the pure state |J, J〉, that is, the first term in the mixture
(38). As discussed above, after the first photon is emitted, the
trajectory behaves the same as if it was started from the pure
state |J, J − 1〉. Hence, the conclusion here is the same as in
Sec. II D for the single-emitter case: by time-resolved photon
counting, it is not possible to distinguish between the initial
conditions (34) and (38).

Let us see how the radiation intensity can be calculated
from the MCWF method. Since each quantum jump is equiv-
alent to a photon leaving the atomic ensemble, the intensity
during a time interval δt at time t can be defined as

IMCWF(t ) = number of quantum jumps between t and t + δt

δt
.

(40)

Hence, the time-resolved intensity from the MCWF method
is nothing else than a temporal histogram of quantum jumps,
and the better the time resolution, the more trajectories we
need for acceptable accuracy of the histogram.

Figure 1 exhibits numerical results of the rate-equation and
MCWF models. The intensity is computed from Eq. (11) for
the rate-equation model, and Eq. (40) for the MCWF method.
As was proven theoretically, the emitted intensity follows the
same temporal behavior for the initial conditions of equal
superposition of the highest and lowest Dicke state (MCWF

FIG. 1. Comparison between the classical emission rate-
equations method with an initial density matrix of ρ̂(0) = |J, J〉〈J, J|
and the MCWF approach with the initial state |ψ (0)〉 = |J, J〉
(4) for N = 120 atoms. Additionally, we compare the rate-
equation method from the initial density matrix of ρ̂(0) =
1
2 (|J, J〉〈J, J| + |J, −J〉〈J,−J|) with the MCWF method from the
initial state |ψ (0)〉 = 1√

2
(|J, J〉 + |J, −J〉) (34). For the MCWF

method p = 10−3, and the intensity is calculated for 100 tempo-
ral bins over 104 trajectories. Here, as in all the following figures,
γ = �/2 is the scaling factor for both time and intensity. The table
shows the value of the maximum of the intensity and its position
in time in the case of the superposition/mixture initial state. The
total number of jumps in the MCWF approach corresponds to the
integrated photon emission and deviates slightly from the value of
60 due to numerical inaccuracy.

method) and equal mixture thereof (rate equations). Due to the
error stemming from the finite p in the MCWF method, the
peak is slightly shifted and is smaller than in the rate-equation
method.

IV. SUPERRADIANCE FOR VARIOUS INITIAL STATES

In a next step we compare different initial conditions,
namely, the semi-inverted Dicke state and the superposition of
a completely inverted state and the ground state (Sec. IV A).
In addition, we investigate the dynamics starting from a super-
position of the completely inverted state and the ground state
with unequal weights (Sec. IV B). Finally, we split the atomic
ensemble of N atoms into two chunks. The collective atomic
states in each chunk are Dicke states and follow the laws of
superradiance. Since there is no coupling between the chunks,
the entire system has a much bigger Hilbert space. We want
to check in Sec. IV C how the superradiant emission burst
behaves in this case and how it depends on the partitioning.

A. Comparison between semi-inverted Dicke
state and Dicke state mix

The initial state |ψ (0)〉 = 1√
2
(|J, J〉 + |J,−J〉) and the

semi-inverted Dicke state |ψ (0)〉 = |J, M = 0〉 possess the
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FIG. 2. Collective emission for two different initial states: super-
position of the completely inverted state and the ground state, and the
semi-inverted Dicke state. The temporal intensity curve for emission
from the completely inverted state is plotted for reference.

same number of excitations, but initiate a completely different
dynamical behavior. Figure 2 shows a comparison of dynam-
ics. Whereas the first scenario leads to a peak of reduced
height, the peak height of the semi-inverted Dicke state ex-
ceeds even the one of the completely inverted Dicke state
|ψ (0)〉 = |J, J〉. In the case of a total number of 120 atoms
with 60 excitations, the integrated intensity reproduces this
latter number in either case. We conclude that the emission is
faster for the semi-inverted Dicke state, which feature can be
attributed to the higher symmetry of the state.

B. Superposition state with unequal weight

Let us continue by considering the superposition with arbi-
trary (real) weight c:

|ψ (0)〉 = 1√
1 + c2

(|J, J〉 + c|J,−J〉). (41)

We want to check if the collective emission starting from this
initial state still fulfills the characteristics of superradiance.
To this end, we choose various values of c and plot the values
of the peak height and the peak width as a function of the
number of atoms N . As mentioned in Sec. II A, the peak height
is supposed to scale with N2 and the peak width with 1/N .

Figure 3 shows the peak height and the peak width
(FWHM) as a function of the number of atoms N for the
values of c in Eq. (41) with c = 0.01, 0.5, 1, 2, and 5.
The insets show logarithmic plots, and the exponents obtained
from linear fits are displayed in Table I.

The results of the fit parameters in Table I are perfectly
compatible with the conditions of superradiance. We conclude
that collective emission processes from all initial states (41)
lead to superradiant emission features.

C. Collective emission from two chunks

In this section we study two alternative ways of increas-
ing the number of emitting atoms. We introduce chunks of
atoms separated by more than a radiation wavelength so that
photons coming from different chunks are distinguishable,
whereas within a single chunk, it cannot be distinguished

(a)

(b)

FIG. 3. (a) Peak height and (b) peak width (FWHM) of the inten-
sity as a function of the number of atoms N for several initial states
parametrized by the value c in Eq. (41). The MCWF approach is used
with a total number of 100 bins over 104 trajectories, and p is set
to 10−2. The parameters controlling the MCWF method remain the
same in all the subsequent figures.

which particle an emitted photon originates from. This means
that the atoms within a single chunk form Dicke states, but
there is no symmetrization between the states of two chunks.
The result will be that only atoms within a single chunk will
emit cooperatively. The total number of atoms is given by
the product of the number of chunks NCh and the number of
particles per chunk NPPCh: N = NChNPPCh.

Firstly, the particle number can be changed by increasing
the number of chunks while keeping the number of particles

TABLE I. Fit parameters for the exponents of the peak height
and peak width (FWHM) for several initial states given by the value
c in Eq. (41) as a function of the number of atoms N . We use atom
numbers of N = 30, 60, 90, 120, and 150. The number of bins is
set to 100 and p is 10−2.

c in Eq. (41) Exponents of peak height Exponents of FWHM

0.01 1.990 −1.009
0.5 1.985 −1.034
1 1.989 −0.947
2 1.974 −1.012
5 1.983 −1.096
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FIG. 4. There are two different ways of increasing the number of
emitting atoms. The number of chunks NCh can be increased and the
number of atoms per chunk NPPCh can be kept fixed. This situation
is shown in the upper half. The other way is to keep the number of
chunks NCh constant while increasing the number of atoms per chunk
NPPCh, which is depicted in the lower half of the figure.

per chunk constant, corresponding to constant particle density.
This situation is depicted in the upper half of Fig. 4. The
peak intensity Ip is proportional to the number of chunks NCh,
but proportional to the number of particles per chunk squared
N2

PPCh. Thus, intensity scales linearly with the total number of
atoms N :

Ip ∝ NChN2
PPCh = N

NPPCh
N2

PPCh ∝ N, (42)

meaning that in this situation we have no superradiance.
Alternatively, the number of chunks NCh is kept constant

(cf. the lower half of Fig. 4), corresponding to a constant
volume for the particles. In this scenario the emitted photon
cannot be assigned to any single atom within a single chunk.
The peak intensity Ip behaves as

Ip ∝ NChN2
PPCh = NCh

N2

N2
Ch

∝ N2 (43)

showing the expected superradiant behavior.
Our initial state is a product state of coherent superposi-

tions of two Dicke states in each chunk

|ψ (0)〉 = 1

2
NCh

2

⊗
i

(|J, J〉i + |J,−J〉i ), (44)

where i indexes the chunks.
We concentrate on the second case in our analysis and keep

the number of chunks NCh constant. Figure 5(a) compares the
peak height of the collective emission burst for the case of one
and two chunks as a function of the total number of atoms N .
The logarithmic plot in the inset of Fig. 5(a) shows a linear
curve confirming Eq. (43). Figure 5(b) shows the peak width
(FWHM) of the intensity I (t ) (11) for the case of one and two
chunks as a function of the total number of atoms N in the
two chunks. The logarithmic plot in the inset again reveals the
superradiant behavior.

(a)

(b)

FIG. 5. (a) Peak height and (b) peak width of the intensity I (t )
from the MCWF approach as a function of the total number of atoms
in the two chunks N for an initial state given in Eq. (44) for one and
two chunks.

V. SUMMARY

We have shown that the MCWF approach is appropriate to
investigate the superradiant decay of Dicke states. It has been
proven analytically that the decay of an initial coherent super-
position state of the maximally excited Dicke state |J, J〉 and
the ground state |J,−J〉, |ψ (0)〉 = 1√

2
(|J, J〉 + |J,−J〉), us-

ing the MCWF approach is in accord with the time evolution
of a system of coupled classical rate equations starting from
ρ̂(0) = 1

2 (|J, J〉〈J, J| + |J,−J〉〈J,−J|). This agreement was
confirmed numerically, where the precision of the MCWF
approach plays a central role. This agreement leads to the
conclusion that with the time-resolved observation of the
superradiant burst, it is not possible to distinguish between
coherent superposition and mixture in this scenario. This re-
sult required the analysis of the time-dependent probabilities
and conditional states in the quantum trajectory approach.
Trajectories with less observed photons than the maximum
number of atomic excitations in the superposition—no-photon
trajectories in the single-atom case, and zero- and one-photon
trajectories in the two-atom case—play a central role here.

A comparison with the dynamics of the rate-equation
model starting from the semi-inverted Dicke state |J, 0〉 gives
an insight into the complexity of superradiance. Here, the total
number of excitations is the same as in the former scenario;
however, the decay of the atoms is cooperative from the onset,
which results in a very different temporal intensity curve.
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In a next step, we studied the decay from initial states
|ψ (0)〉 = 1√

1+c2 (|J, J〉 + c|J,−J〉) parametrized by the real
parameter c, using the MCWF approach. We have found that
the temporal emission intensity curve exhibits the features
of superradiance given by the characteristic peak height and
width for any value c.

Moreover, the emission dynamics in two separate
chunks with initial state |ψ (0)〉 = 1

2 (|J, J〉1 + |J,−J〉1) ⊗
(|J, J〉2 + |J,−J〉2) was investigated. There is no cooperation
in the decay between the atoms from the different chunks,
since these are separated by more than a wavelength. As
a result, the characteristics of superradiance stemming from
individual chunks is simply added up to the total emission.
Thus the superradiant scaling behavior is governed not by the
total number of atoms, but only by the number of atoms in
each subwavelength chunk.

One can think of several reasons in an experiment studying
the collective decay of emitters why superradiance might be
diminished. If the laser used to initially excite the emitters
manages to excite only a certain ratio of the atoms to the
excited state, superradiance is still likely to be observed as
we have proven. In contrast, in the case of a large distance
between emitters, when there are no collective ties between
the contributors, only the sum of the emitted radiation can
be measured. However, we have shown that the cooperative
emission of only two atoms is theoretically sufficient for su-
perradiance to occur.
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APPENDIX A: THE MOST FUNDAMENTAL
MANIFESTATION OF SUPERRADIANCE

This is a modern reformulation of the argument given for
neutrons in the introduction of Dicke’s original paper [1].

1. Single emitter

Let us consider a single emitter with two states |g〉 and |e〉
governed by the Hamiltonian Ĥ = Ĥ (0) + V̂ with the term
V̂ causing transition from |e〉 to |g〉 (in the Dicke model,
this is the interaction with all the electromagnetic modes
surrounding the emitter). The respective transition probability
can be given as

pone ∝ |〈g|V̂ |e〉|2. (A1)

2. Two emitters in triplet state

This is contrasted to the situation where two emitters a and
b, one in state |e〉 and the other in state |g〉, are in close vicinity,

so that their state must be symmetrized. Note that the total
number of excitations remains one, as in the previous para-
graph. The total Hamiltonian is here given by Ĥ tot = Ĥ (0)

a +
Ĥ (0)

b + V̂ a + V̂ b. The state of the emitters reads |1, 0〉 =
1√
2
(|e, g〉 + |g, e〉) [cf. Eq. (7)]; the total transition probability

of the entire system to the lowest state |g, g〉 is found

ptriplet ∝ |〈g, g|V̂ a + V̂ b|1, 0〉|2

=
∣∣∣∣ 1√

2
(〈g, g|V̂ a|e, g〉 + 〈g, g|V̂ b|g, e〉)

∣∣∣∣
2

= 1

2
|2〈g, g|V̂ a|e, g〉|2 = 2pone, (A2)

where the second equality holds due to symmetry between
the two identical emitters. It is apparent that the presence of a
second identical but deexcited emitter doubles the transition
rate simply as a result of symmetrization (which introduces
quantum coherence, and hence interference which is con-
structive in this case), even without any interaction between
the two.

3. Singlet state

An equivalent calculation for the singlet state |0, 0〉 =
1√
2
(|e, g〉 − |g, e〉) leads to the transition probability of

psinglet = 0 (A3)

due to interference, which is destructive in this case.

4. The case of independent emitters

If, on the contrary, the particles are considered indepen-
dent, which situation can be described by the state |e, g〉 =

1√
2
(|1, 0〉 + |0, 0〉), we recover the transition probability

pindependent = pone. (A4)

APPENDIX B: EMISSION FROM A COHERENT
SUPERPOSITION STATE FOR TWO EMITTERS

The calculation presented in Sec. II D can be done for the
case of two emitters as well, leading to similar conclusions.
Here, the most general pure-state initial condition can be
written as

|ψ (0)〉 = α0|1,−1〉 + β0|1, 0〉 + γ0|1, 1〉. (B1)

Then, assuming no jump between time 0 and t , the state at
time t can be written as

|ψ (t )〉 = α0|1,−1〉 + e−�t (β0|1, 0〉 + γ0|1, 1〉)√
|α0|2 + e−2�t (|β0|2 + |γ0|2)

. (B2)

From this, the decay rate conditioned on that no jump has yet
occurred can be calculated in a very similar way to Eq. (31),
to obtain

r(t ) = � 〈ψ (t )|Ĵ+Ĵ−|ψ (t )〉

= 2� e−2�t (|β0|2 + |γ0|2)

|α0|2 + e−2�t (|β0|2 + |γ0|2)
. (B3)
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Then, the probability of no jump occurring before time t reads

p{no jump before t} = exp

(
−

∫ t

0
dτ r(τ )

)

= |α0|2 + e−2�t (|β0|2 + |γ0|2). (B4)

From this, we can immediately read off that with a probability
|α0|2, no jump will ever occur. On the other hand, if the first
jump occurs, then the state becomes

|ψ〉after first jump = β0|1,−1〉 + γ0|1, 0〉√
|β0|2 + |γ0|2

, (B5)

independently of when the jump occurs. From this point on,
the dynamics is the same as with a single emitter, only with a
doubled decay rate 2�. That is, no more jump will occur with
a probability |β0|2.

In summary, 0 jump will occur with a probability |α0|2,
1 with a probability |β0|2, and 2 with |γ0|2. In every other
respect as well, the behavior will be the same as if the system
were started from the mixture

ρ̂(0) = |α0|2|1,−1〉〈1,−1|
+ |β0|2|1, 0〉〈1, 0| + |γ0|2|1, 1〉〈1, 1| (B6)

instead of the superposition (B1).
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