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Positive operator-valued measure for two-photon detection via sum-frequency generation
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Spontaneous parametric down conversion (PDC), in the perturbative limit, can be considered as a probabilistic
splitting of one input photon into two output photons. Conversely, sum-frequency generation (SFG) implements
the reverse process of combining two input photons into one. Here we show that a single-photon projective
measurement in the temporal-mode basis of the output photon of a two-photon SFG process affects a generalized
measurement on the input two-photon state. We describe the positive operator-valued measure (POVM) asso-
ciated with such a measurement and show that its elements are proportional to the two-photon states produced
by the time-reversed PDC process. Such a detection acts as a joint measurement on two photons and is thus
an important component of many quantum information processing protocols relying on photonic entanglement.
Using the retrodictive approach, we analyze the properties of the two-photon POVM that are relevant for quantum
protocols exploiting two-photon states and measurements.
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I. INTRODUCTION

Entangled photon pairs are an extremely useful system
for studying both the fundamentals [1] and applications of
quantum mechanics, and are the workhorse of experimental
quantum optics. This is mainly due to their ease of generation
in the laboratory through spontaneous parametric down con-
version (PDC), whereby a nonlinear medium such as a crystal
is pumped with a bright laser beam and mediates the proba-
bilistic splitting of one pump photon into a pair of photons,
subject to energy and momentum conservation. Over the past
three decades, much progress has been made in the genera-
tion of PDC photon pairs with well-engineered polarization,
spectral-temporal, and spatial structure, exhibiting varying
degrees of correlation in all of these degrees of freedom. Par-
ticular attention has been given recently to encoding quantum
information in the spectral-temporal degree of freedom of
light. This is because time-frequency modes of light, generally
referred to as temporal modes, can encode a large amount
of information, are particularly well-suited to integrated op-
tics technology, and are robust to communication channel
noise [2]. In addition, time-frequency entangled photons are
useful for applications such as large-alphabet quantum key
distribution [3], quantum-enhanced spectroscopy [4–6], and
quantum-enhanced sensing [7].

Complementary to two-photon state generation is two-
photon joint detection, which is an example of the more
general concept of a joint quantum measurement on two
systems. It is known that joint quantum measurements on
separately prepared systems can inherently reveal more in-
formation than accessible through separate measurements
relying on local operations and classical communication
[8]. In addition entangled measurements, joint measurements
whose eigenstates are entangled states, are as crucial a re-
source as entangled states in quantum protocols such as
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quantum teleportation [9], remote state preparation [10],
entanglement swapping [11,12], superdense coding, and
quantum illumination [13]. In fact, the equal footing that en-
tangled states and entangled measurements have in quantum
protocols such as teleportation has only recently been given
due attention [14].

One way to implement a two-photon joint measurement
is to use the complement of PDC, sum-frequency generation
(SFG). Here two photons interact in a nonlinear medium and
are upconverted to a single photon, conserving energy and
momentum. Two-photon measurement via SFG has been ex-
plored theoretically [6] and experimentally [15]. In addition, it
has been pointed out that the theory of two-photon detection
by SFG closely parallels that of two-photon absorption in a
molecule, and a unified framework describing both of these
processes can be found in Ref. [6].

In this work we construct and analyze the positive operator
valued measure (POVM) associated with joint two-photon
measurements relying on SFG followed by mode-selective
detection of the upconverted photon in the time-frequency
domain. Our development of the two-photon POVM closely
parallels that of the POVM for a single photon detected after a
filter, as described in Ref. [16]. We then give some figures
of merit for such measurements that are relevant to some
of the aforementioned protocols, namely the projectivity, or-
thogonality, and entanglement of the measurement operators.
We illustrate the role of entanglement in measurements with
a model of the spectral quantum teleportation scenario. We
conclude by highlighting some questions and possible future
directions left open by this work.

II. FRAMEWORK

A. The three-wave mixing interaction

We begin by writing down the transformation describing
three-wave mixing, which includes both parametric down-
conversion and sum-frequency generation, in the interaction
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picture. We assume a given polarization configuration and
assume that all the interacting fields occupy a single trans-
verse spatial mode, so that only the time-frequency degrees of
freedom of the field are relevant. Under these conditions the
transformation may be expressed as

Ĥ = ĤPDC + ĤSFG,

ĤPDC = χ

∫
dωsdωi�(ωs, ωi ) âp(ωs + ωi )â

†
s (ωs)â†

i (ωi ),

ĤSFG = (ĤPDC)†, (1)

where â(†)
j (ω j ) is the annihilation (creation) operator for a

single photon at monochromatic mode j with frequency ω j ,
and j = p, s, i label the pump, signal, and idler frequencies;
χ � 1 is a parameter characterizing the efficiency of the pro-
cess, describing the second-order nonlinearity and containing
all the parameters that are constant or slowly varying over
the integration; and �(ωs, ωi ) is the phase-matching function,
which has the form

�(ωs, ωi ) ∝ sinc

(
�k · L

2

)
, (2)

where L is the vector quantifying the length of the inter-
action medium, and �k = kp(ωs + ωi ) − ks(ωs) − ki(ωi ) is
the wavevector mismatch for the three fields. � takes on
its maximum value when �k = 0, and thus corresponds to
momentum conservation in the process. Finally, we have
separated the transformation explicitly into ĤPDC, the term
responsible for PDC, and its Hermitian conjugate ĤSFG re-
sponsible for SFG.

The interacting fields evolve unitarily under this trans-
formation, and for our analysis, we will consider only the
weak-interaction limit, so that, for an input state |�in〉, the
output state is given by

|�out〉 = exp [−iĤ]|�in〉 ≈ (1 − iĤ )|�in〉. (3)

Note that, in a slight abuse of notation, we are using Ĥ to
reflect the fact that this transformation is derived from the
interaction Hamiltonian for three-wave mixing, although the
latter is a time-dependent quantity with a different dimension-
ality (see Appendix A).

B. PDC photon pairs and the joint spectral amplitude

It is instructive to briefly review the spectral-temporal
structure of photon pairs generated by PDC, governed by
the ĤPDC term. In most applications, PDC is pumped by
a strong coherent state occupying a spectral mode function
φp(ω), which can be treated as a classical field amplitude
Ep(ω) = E0φp(ω), where E0 quantifies the field strength, and
φp(ω) is normalized as

∫
dω |φp(ω)|2 = 1. However, since

we are working in the perturbative limit, it is equivalent to
consider a single-photon pump in the state

|�in〉 = |φp〉 =
∫

dωφp(ω)â†
p(ω)|vac〉. (4)

After this state undergoes unitary evolution according to
Eq. (3), we obtain the output state

|�out〉 = |φp〉 − i
√

w|�PDC〉, (5)

FIG. 1. Two-dimensional plot of the magnitude of a typical JSA.
The solid lines contour a Gaussian pump mode φp(ωs + ωi ), and the
dashed lines contour the phase-matching function �(ωs, ωi ). This
shows how spectral correlations arise in the JSA. Frequencies are in
arbitrary units.

where

|�PDC〉 = χ√
w

∫
dωsdωiφp(ωs + ωi )�(ωs, ωi )

× â†
s (ωs)â†

i (ωi )|vac〉 (6)

is a normalized two-photon state, and where

w =
∫

dωsdωi|χ φp(ωs + ωi )�(ωs, ωi )|2 (7)

is a normalization factor.
It is convenient here to define the joint spectral amplitude

(JSA)

f (ωs, ωi ) = χ√
w

φp(ωs + ωi )�(ωs, ωi ), (8)

so that

|�PDC〉 =
∫

dωsdωi f (ωs, ωi )â
†
s (ωs)â†

i (ωi )|vac〉. (9)

The JSA can be viewed as a two-photon wave function, and
its modulus squared, | f (ωs, ωi )|2, is the probability density
function for the photon pair in frequency space, normalized
as

∫
dωsdωi| f (ωs, ωi )|2 = 1. Considerable progress has been

made in engineering the temporal-mode structure of PDC
photon pairs, which is completely characterized by the JSA,
and this is done by shaping of the pump spectral amplitude
φp(ωs + ωi ) and engineering of the phase matching �(ωs, ωi )
in the nonlinear medium. We plot schematically in Fig. 1
a typical JSA configuration showing its dependence on the
pump amplitude and the phase-matching function. A thorough
review of the state-of-the-art in two-photon state engineering
in the time-frequency domain can be found in Ref. [17].
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C. Two-photon SFG and the two-photon POVM

We now turn our attention to the SFG term in Eq. (1),
explicitly given by

ĤSFG = χ∗
∫

dωsdωi�
∗(ωs, ωi )â

†
p(ωs + ωi )âs(ωs)âi(ωi)

(10)
and consider the upconversion of an arbitrary pure two photon
state given by

|�in〉 = |ψg〉 =
∫

dωsdωig(ωs, ωi )â
†
s (ωs)â†

i (ωi )|vac〉, (11)

where g(ωs, ωi ) is a two-photon JSA. The output state will
then be

|�out〉 = |ψg〉 − iχ∗|σ 〉, (12)

where

|σ 〉 =
∫

dνσ (ν)â†
p(ν)|vac〉, (13)

with the (unnormalized) spectral amplitude function

σ (ν) = −1

2

∫
dν ′ �̃∗(ν, ν ′)g̃(ν, ν ′). (14)

We obtain this last equation by changing variables to the
sum and difference frequencies ν = ωs + ωi and ν ′ = ωs −
ωi, and defining �̃∗(ν, ν ′) = �∗( ν+ν ′

2 , ν−ν ′
2 ) (and likewise for

g̃(ν, ν ′)).
We are now equipped to develop the two-photon POVM

corresponding to a detection of the upconverted single-photon
state |σ 〉, which closely mirrors the one-photon, pre-filter
POVM described in Ref. [16]. Consider performing an ideal,
projective measurement of the upconverted photon onto an
orthonormal set of temporal mode single photon states {(P̂n =
|φn〉〈φn|)∞n=1} with

|φn〉 =
∫

dωφn(ω)â†
p(ω)|vac〉, (15)

satisfying

〈φn|φm〉 =
∫

dω φ∗
n (ω)φm(ω) = δnm. (16)

Such a measurement can in principle be realized using a
quantum pulse gate, recently described and demonstrated in
Refs. [18,19], whereby a strong pump field in a particular tem-
poral mode selects out that same mode from an input signal
field and upconverts it through SFG to a register mode which
can be easily detected with a spectrometer. The probability for
a successful detection for this measurement will be given by

pn = |χ∗〈φn|σ 〉|2

=
∣∣∣∣−χ∗

2

∫
dνdν ′ φ∗

n (ν)�̃∗(ν, ν ′)g̃(ν, ν ′)
∣∣∣∣
2

=
∣∣∣∣χ∗

∫
dωsdωiφ

∗
n (ωs + ωi )�

∗(ωs, ωi )g(ωs, ωi )

∣∣∣∣
2

.

(17)

However, this same probability can be obtained by applying
the Born rule to the input state ρ̂in = |�in〉〈�in| in the two-

FIG. 2. PDC uses a χ (2) interaction medium to convert a single-
photon state |1φ〉 in the mode p to a pair of photons in modes s and
i, described by the state |ψPDC〉 given in the text. In the time-reverse
picture, a projective measurement P̂n of a single photon produced by
SFG implements measurement with POVM element 
̂n on the two
input photons.

photon space:

pn = Tr(ρ̂in
̂n), (18)

if we define a POVM element


̂n = wn|�n〉〈�n|, (19)

where

|�n〉 = χ√
wn

∫
dωdω′φn(ω + ω′)�(ω,ω′)â†

s (ω)â†
i (ω′)|vac〉

(20)
and

wn =
∫

dωdω′|χ φn(ω + ω′)�(ω,ω′)|2. (21)

We immediately recognize |�n〉 as the normalized two-
photon state that would result from PDC with a pump photon
in the state |φn〉. That is, a projective measurement of an
upconverted photon with projector P̂n = |φn〉〈φn| implements
a generalized measurement of the two input photons with
POVM element 
̂n. This is schematically shown in Fig. 2.
Furthermore, the properties of 
̂n follow immediately from
the properties of the PDC state |�n〉, as we will see in the
following section. It is convenient to associate with the POVM
element 
̂n a measurement JSA

fn(ω + ω′) = χ√
wn

φn(ω + ω′)�(ω,ω′). (22)

To complete the POVM, we note that we are considering
an ideal detector in the SFG mode, such that any upconverted
photon is detected with certainty. We are thus justified in
defining an element corresponding to no detection as


̂null = 1 −
∞∑

n=1


̂n, (23)

where 1 denotes the identity operator in the relevant two-
photon subspace. Using the fact that the φn mode functions
form a complete orthonormal set, we can evaluate

∞∑
n=1


̂n = |χ |2
∫

dωdω′|�(ω,ω′)|2|ω,ω′〉〈ω,ω′|, (24)
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where |ω,ω′〉 = â†
s (ω)â†

i (ωi )|vac〉. Noting that the identity in
the two-photon subspace can be resolved as

1 =
∫

dωdω′|ω,ω′〉〈ω,ω′|, (25)

we can express 
̂null explicitly as


̂null =
∫

dωdω′(1 − |χ |2|�(ω,ω′)|2)|ω,ω′〉〈ω,ω′|. (26)

Finally we may write down the complete two-photon POVM
as {

(
̂n)∞n=1, 
̂null
}
, (27)

satisfying
∞∑

n=1


̂n + 
̂null = 1. (28)

III. PROPERTIES OF THE MEASUREMENT OPERATOR

A. Projectivity

We will now take advantage of the well-studied properties
of the two-photon PDC state |�n〉 to analyze some of the
useful properties of the POVM element 
̂n. We begin by
defining the retrodicted two-photon state [20], corresponding
to an outcome n, as

ρ̂n = 
̂n

Tr(
̂n)
= |�n〉〈�n|. (29)

We consider the measurement projective, if ρ̂n is a pure state,
satisfying Tr(ρ̂2

n ) = 1, which is indeed the case for Eq. (29).
In general, however, single-photon detectors are not per-

fectly resolving. In the case of the quantum pulse gate, a
detector click may not correspond to single pulse mode, but
rather an incoherent mixture of a few modes. In the case of a
nonideal spectrally resolving detection, one either uses a filter
of finite bandwidth, or a spectrometer with finite resolution. In
all of these cases, it is more accurate to describe a nonideally
resolving, that is, nonprojective, single-photon measurement
by

P̂q =
∑

n

qnP̂n, (30)

where 0 � qn � 1 are weighting coefficients. This leads to a
two-photon POVM element


̂q =
∑

n

qn
̂n, (31)

and a retrodicted state

ρ̂q = 
̂q

Tr(
̂q)
, (32)

which has Tr(ρ̂2
q ) � 1 and is not in general a pure state.

Evidently, the two-photon POVM elements are projective if
and only if the single-photon measurement operators are pro-
jective.

Projective two-photon measurements are of particular
importance in quantum teleportation and remote-state prepa-
ration, and entanglement swapping, because in these schemes

the measurement acts as a herald to a single photon state or a
two-photon entangled state, respectively. Ideally the heralded
states should be pure to be useful for quantum information
processing. And the purity of the heralded state is limited by
both the purity of the input states and the purity (projectivity)
of the heralding measurement [20].

B. Orthogonality

Orthogonal measurements are measurements which project
onto orthogonal states, and thus satisfy


̂n
̂m ∝ δnm
̂n. (33)

We note here that orthogonal measurements of the SFG
photon do not correspond to orthogonal two-photon POVM
elements in general. This is analogous to the fact that PDC
pumped with orthogonal pulse modes does not produce or-
thogonal PDC states in general. The nonorthogonality of the
two-photon states can be seen by taking

〈�n|�m〉 = |χ |2√
wnwm

∫
dωdω′φ∗

n (ω + ω′)φm(ω + ω′)

× |�(ω,ω′)|2 �= δnm. (34)

This is due to the filtering induced by the phase-matching
function. This is indeed analogous to what happens when
two orthogonal modes are subjected to linear filtering (see
Ref. [16] on this point): in general, the transmitted modes
considered alone are not orthogonal, even though filtering is
a unitary process. The orthogonality is preserved only when
considering all of the modes involved in the transformation,
whereas here we are only considering the signal and idler
modes and not the pump.

An obvious question that arises then is, in what cases do the
POVM elements, in fact, correspond to orthogonal measure-
ments? The answer to this question becomes obvious when we
rewrite Eq. (34) in terms of the sum and difference frequencies
ν and ν ′,

〈�n|�m〉 = |χ |2
4
√

wnwm

∫
dνdν ′φ∗

n (ν)φm(ν)|�̃(ν, ν ′)|2.
(35)

Clearly, only when the phase-matching function does not de-
pend on the sum-frequency ν, that is, � = �(ν ′), then do we
obtain

〈�n|�m〉 = δnm, (36)

and the 
̂n then satisfy


̂n
̂m = δnmwn
̂n. (37)

Orthogonality of the two-photon POVM elements is of
interest, for example, in the quantum illumination scheme as
originally described by Lloyd [13]. Here an entangled two-
photon state |�n〉 is prepared and one of the photons sent to
reflect off a possibly present target, while the other photon is
kept in the laboratory. The two photons are then to be jointly
measured, whereupon a successful projection onto the initial
state |�n〉 indicates the presence of the target. If one is to
implement this scheme using SFG as the two-photon mea-
surement, nonorthogonal measurements would suffer from the

043711-4



POSITIVE OPERATOR-VALUED MEASURE FOR … PHYSICAL REVIEW A 103, 043711 (2021)

FIG. 3. JSA’s for the configuration described in the text where
the phase-matching function is engineered through group-velocity
matching makes an angle θ = 45o with respect to the ωs axis. Then it
becomes independent of the sum frequency ν = ωs + ωi, and thus or-
thogonal measurements of the SFG photon correspond to orthogonal
two-photon POVM elements. Blue (red) indicates positive (negative)
amplitudes. In the case of PDC, the amount of correlations in the
JSA can be controlled by shaping of the pump pulse, as described in
Ref. [17]. Here we plot the JSA’s obtained by shaping the pump into
the (a) zeroth-, (b) first-, and (c) second-order Hermite-Gauss modes,
resulting into mutually orthogonal two-photon states. Frequencies
are in arbitrary units.

possibility that the desired state |�n〉 could give a positive out-
come corresponding to the “wrong” measurement associated
with a nonorthogonal state |�m〉.

In general, the orthogonality condition (36) can be approx-
imately satisfied as long as the phase-matching function varies
slowly enough in the ν direction, in comparison to the support
of the detection mode function. This happens, for example,
in a sufficiently short interaction medium. However, there are
two limiting cases that are of note. The first is the spectrally
resolved detection limit, which corresponds to simply mea-
suring the output with an ideal spectrometer. In this limit, the
detection mode can be approximated by a delta function,

φn(ω) → δ(ω − ωn) (38)

and

fn(ω,ω′) ∝ δ(ω + ω′ − ωn), (39)

where ωn is the measured frequency at the spectrometer. This
is the analog of pumping a PDC source with monochromatic,
or continuous-wave (cw), light. In both of these cases, orthog-
onal pump (or measurement modes) with frequencies ωn and
ωm correspond to orthogonal two-photon states (or measure-
ments) with sum frequencies ωn and ωm.

The second case of interest is achieved by extended phase-
matching techniques, as described in Ref. [17]. For certain
nonlinear materials and field configurations, it is possible,
using group-velocity matching, to make the phase-matching
function approximately constant in the ν direction over some
range of interest. More precisely, the phase-matching function
can be engineered to make an angle θ = 45o in the ωs-ωi

plane, perpendicular to the angle that the pump function
makes. This configuration has been used by Ansari et al to
generate PDC states with a controllable temporal-mode struc-
ture and degree of entanglement through pump pulse-shaping
[18]. This concept is illustrated schematically in Fig. 3. More
recently, similarly exotic two-photon states have been ob-
tained through phase matching shaped by the periodic poling
of the nonlinear crystal, rather than pulse-shaping of the
pump [21].

An interesting result that follows from the limit where �

is independent of ν is the possibility of downconverting an
arbitrary pulse shape in a nonlinear medium into an entangled
photon pair, and recovering the pump pulse shape by upcon-
verting the photon pair in an identical medium. This can be
seen by taking g̃(ν, ν ′) = φ(ν)�̃(ν ′) in Eq. (14), and obtaining

σ (ν) = φ(ν)
∫

dν ′|�̃(ν ′)|2, (40)

which is evidently proportional to the input φ(ν). The spatial
analog of this result, whereby a pump beam shaped in a
specific transverse spatial mode is downconverted, and the
photon resulting from the upconversion of the PDC pair is
shown to recover the transverse spatial mode, has recently
been experimentally demonstrated by Jimenez et al. [22].

C. Entanglement

We now turn to perhaps a more interesting question re-
garding the two-photon measurement operator: when is the
POVM element 
̂n a projector onto an entangled two-photon
state, and thus can be said to enact an entangled measurement
on the input photons [23,24]? We can answer this question
readily: 
̂n is an entangled measurement, if the retrodicted
state ρn is an entangled state. Entangled measurements play
a central role in quantum teleportation, superdense coding,
and quantum illumination, among many other protocols, and
recently the role of entanglement in joint measurements has
been recognized to be equally important to the role of entan-
glement of states as a shared resource [14].

To illustrate the role of entangled measurements in a quan-
tum protocol, we will investigate briefly the spectral quantum
teleportation scenario, described by Molotkov [25] and by
Humble [26] (and whose spatial analog was described by
Walborn et al. [27]). In this protocol, Alice and Bob share
a two-photon entangled state described by a JSA fs(ωa, ωb),
and Alice is to teleport a single photon state with spectral
amplitude ψc(ωc) by performing an SFG measurement on this
photon and her half of the entangled state, and communicating
the measurement result to Bob.

Reference [25] considers only the case of a maximally
correlated pair of entangled photons shared between Alice and
Bob, while Ref. [26] generalizes this result to the case of a
Gaussian JSA, which is a good approximation to what can be
produced using pulsed lasers as a pump. In both references
however, Alice’s joint measurement is a spectrally resolved
measurement of the SFG photon. Here we use our formalism
to generalize further to a pulse-mode resolved measurement of
the SFG photon, as can be realized with a quantum pulse gate,
by considering a generalized measurement JSA fm(ωa, ωc).
It was first pointed out in the original proposal of quantum
teleportation [9] that in addition to the maximally entangled
state (generalized Bell-state) shared by Alice and Bob, quan-
tum teleportation with unit fidelity is achieved when Alice’s
joint measurement projects onto a maximally entangled state.
Here we show behavior that is consistent with this result
by quantifying the teleportation fidelity as a function of the
entanglement of both the shared state and the joint measure-
ment. It is worth clarifying that our current goal is not to
demonstrate that the POVM element is entangled, but rather,
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a

b

c Alice

Bob

FIG. 4. Spectral teleportation scenario considered in the text.
Alice and Bob share entangled photons a and b in the state |�s〉.
Alice performs a two-photon SFG measurement 
̂m on her photon a
and photon c, in the state |ψc〉, and communicates the result of her
measurement to Bob, whereupon Bob reconstructs the state |ψb|m〉.

it is to show that our POVM formalism is sufficient to describe
quantum teleportation in the time-frequency domain, provided
we stipulate entanglement as a property of the measurement.
This is in keeping with the more familiar case of the Bell-state
measurement’s role in qubit teleportation.

The teleportation scenario we consider is shown schemati-
cally in Fig. 4. Alice and Bob share entangled photons a and b,
respectively, described by a Gaussian JSA similar to the one
in Ref. [26]:

|�s〉 =
∫

dωa dωb fs(ωa, ωb)â†
a(ωa)â†

b(ωb)|vac〉,

fs(ωa, ωb) = NsExp

[
− 1

γ 2
s (1 − α2)

(
ω2

a

2
+ ω2

b

2
+ αωaωb

)]
,

(41)

where α ∈ [−1, 1] is the correlation between the photon fre-
quencies, with α = 1 corresponding to maximal frequency
anticorrelation, such as would be obtained from a cw pump;
γs is the characteristic bandwidth of the PDC photons, and Ns

is the normalization constant. Alice provides a single photon
c to be teleported, described by the state

|ψc〉 =
∫

dωcψc(ωc)â†
c (ωc)|vac〉, (42)

where ψc(ωc) is an arbitrary spectral amplitude function.
Alice initiates the teleportation by performing an SFG mea-
surement on photons a and c, represented by an operator

̂m = wm|�m〉〈�m|, with

|�m〉 =
∫

dωa dωc fm(ωa, ωc)â†
a(ωa)â†

c (ωc)|vac〉,

fm(ωa, ωc) = NmExp

[
− 1

γ 2
m(1 − β2)

(
ω2

a

2
+ ω2

c

2
+ βωaωc

)]

(43)

with parameters defined similarly to |�s〉.
We point out here that we have centered both fs and fm at 0

in frequency space, without loss of generality. This is because,
in the protocol described in Ref. [26], Alice communicates her
obtained frequency ωa + ωc to Bob, whereupon he performs
the appropriate frequency translation to his photon b to re-
cover the state that would have resulted, had Alice obtained
ωa + ωb in her measurement. Further note that we are using
the parameters α and β to quantify the entanglement of the
shared state and the joint measurement, respectively, rather
than a more familiar measure of entanglement for pure states,

such as the Schmidt number [28]. We have made this choice
because, although the Schmidt number K bears a simple rela-
tionship with our parameter α (or β), satisfying K = 1√

1−α2

(see Appendix B), the latter has the convenient feature of
being bounded by the interval [−1, 1], whereas the Schmidt
number diverges for maximal entanglement.

With all of this in consideration, Alice’s joint measurement
on photons a and c heralds Bob’s photon b in the teleported
state

|ψb|m〉 =
∫

dωbψb|m(ωb)â†
b(ωb)|vac〉,

ψb|m(ωb) = Nb|m
∫

dωadωc f ∗
m(ωa, ωc) fs(ωa, ωb)ψc(ωc),

(44)

where Nb|m is the appropriate normalization constant. The
teleportation fidelity is then given by the modulus squared of
the overlap,

F = |〈ψc|ψb|m〉|2 =
∣∣∣∣
∫

dωψ∗
c (ω)ψb|m(ω)

∣∣∣∣
2

. (45)

For this analysis, we let ψc be a Gaussian function with
characteristic width γc,

ψc(ω) = 1√
γc

√
π

e−ω2/2γ 2
c . (46)

Using this form for the states and measurements, we obtain
an algebraic expression for the fidelity which depends on five
parameters, F = F (α, β, γs, γm, γc). The full expression is
unwieldy and not very instructive to display here. We shall
verify that our formalism reproduces the result of Ref. [26] in
the appropriate limits. That reference studies the behavior of
the fidelity as a function of α and σ = γc/γs for a uniformly
phase-matched SFG process followed by an ideally resolved
frequency detection. This corresponds to taking the limit
γm → ∞ and β = 1. In these limits, our formalism exactly
recovers the fidelity

Fγm→∞ =
√

4σ 2(σ 2 + 1)(σ 2 + 1 − α2)

((σ 2 + 1)2 − α2)2
, (47)

which is displayed in Fig. 5(a). In that reference, an interesting
feature of this behavior of the fidelity was noted. That is,
although the fidelity increases monotonically with the source
entanglement α for σ � 1, this is no longer true for when
γc is comparable to γs. In particular, the fidelity is equal to
one along the curve α2 = 1 − σ 4, and is equal to

√
8/9 at the

upper-right hand corner of the plot, where α = 1 and σ = 1.
In the language of our formalism, given the ideal entangled
measurement, with infinite SFG bandwidth and ideal spectral
resolution, there is a trade-off between spectral bandwidth and
spectral entanglement of the sources.

Our result allows us to generalize further, however, and
also consider the case of the Gaussian SFG measurement with
finite bandwidth. First we consider the reverse scenario to
the one above, where the source is perfectly entangled, with
γs → ∞ and α = 1, and look at the dependence of the fidelity
on β and σ . In this case, we find that the fidelity exhibits the
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FIG. 5. Behavior of the teleportation fidelity for the different cases described in the text. Plot (a) shows the behavior with α, the state
entanglement, and σ = γc/γs, for the ideal SFG measurement, with β = 1 and γm → ∞, as considered in Ref [26]. The same plot describes
the fidelity as a function of β and σ = γc/γm for the case of a maximally entangled state with α = 1 and γs → ∞. Plots (b) and (c) illustrate
the behavior of the fidelity when the entangled state and the entangled measurement have comparable bandwidths (here γs = γm = 1). Here the
fidelity behaves differently with α and with β, because fs and fm are not in general interchangeable in the expression for ψb|m. All quantities
are dimensionless.

same dependence, that is,

Fγs→∞ =
√

4σ 2(σ 2 + 1)(σ 2 + 1 − β2)

((σ 2 + 1)2 − β2)2
, (48)

and we can conclude that, given an ideal entangled state be-
tween Alice and Bob, there is a trade off between spectral
bandwidth and spectral entanglement of the measurement.

Finally, we arrive at the most realistic case, where both the
entangled source and the measurement have finite bandwidths,
corresponding to finite phase matching in the PDC and SHG
processes. Here we set them equal, taking γs = γm = 1, and
obtain

Fγm=γs =
√

4σ 2(β2 − 2(1 + σ 2))(β2 − (2 − α2)(1 + σ 2))

(1 + σ 2)2(α2 + β2 − 2(1 + σ 2))2
.

(49)
In this case, we find the interesting and counterintuitive result
that the behaviors of the fidelity with the source entangle-
ment α and with the measurement entanglement β are no
longer equivalent. We show this by plotting the behavior of
the limiting cases of Fγ (α, 1, σ ) (spectral resolution of the
SFG) and Fγ (1, β, σ ) (monochromatic pumping of the PDC)
in Figs. 5(b) and 5(c), respectively. In the case of β = 1,
the fidelity is maximized along the curve α2 = 1+σ 2−2σ 4

1+σ 2 and
has similar limiting behaviors to the ideal case considered in
Ref. [26]. The case of α = 1 exhibits a starker contrast, taking
its maximum value along the curve β2 = −1+σ 2+2σ 4

−1+σ 2 . Unlike
any of the previous cases, the fidelity is no longer equal to
unity in the bottom right-hand corner, for σ = 1, β = 0, but
instead it is equal to

√
8/9.

We emphasize that β < 1 does not represent a nonideal
spectral resolution of the upconverted photon, since we are
only considering projective measurements, but instead corre-
sponds to a coherent broadband measurement, as could be
obtained using a quantum pulse gate. What this last result
suggests is that, for finite bandwidths of the entangled source
and the entangled measurement, it is not generally the case

that spectral resolution maximizes the teleportation fidelity.
Further, the asymmetry between the behaviors of entangled
state and the entangled measurement can be understood from
the fact that the state JSA fs and the measurement JSA fm

are not interchangeable in the expression for ψb|m, with fm

having both of its arguments integrated over. Most notably, we
have shown that, by treating two-photon measurements more
generally and on equal footing with the two-photon states, it
is possible not only to recover previously obtained results in
the limit of ideal measurements, but also to uncover which
states and measurements are optimal for a given task (in this
case spectral teleportation), under more realistic constraints
(in this case, finite PDC and SFG bandwidths).

This brief analysis leaves open the question of how to
generalize to a more realistic, nonideally resolved SFG mea-
surement. For a mixed bipartite state ρ̂, a convenient measure
of entanglement is the negativity [29]. The negativity essen-
tially counts the negative eigenvalues of ρ̂ partially transposed
with respect to one of its subsystems, and it sets an upper
bound on the teleportation capacity of the state. This suggests
that we may define a negativity associated with a nonpro-
jective POVM element 
̂q as the negativity of its mixed
retrodicted state ρ̂q. The role of finite spectral resolution in
SFG detection has been investigated numerically for entangle-
ment swapping in Ref. [30]. However, it could be more elegant
to frame this relationship in terms of the negativities both of
the input states and the measurements in scenarios such as
quantum teleportation and entanglement swapping, and this
remains to be explored in future work.

IV. CONCLUSION

We have demonstrated how to construct the POVM as-
sociated with two-photon detection by SFG followed by
temporal-mode-selective single-photon detection. We have
shown that this POVM is proportional to the two-photon state
created in the time-reverse PDC process pumped with a field
in the detected mode. This allowed us to characterize several
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aspects of the POVM relevant to its adequacy for quantum
information protocols. In particular, we have shown that a
projective measurement of the SFG photon corresponds to
a projective two-photon POVM element. We have pointed
out the special case where orthogonal SFG single-photon
measurements correspond to orthogonal two-photon mea-
surements. And finally, we have shown the correspondence
between the two-photon entanglement retrodicted by the SFG
measurement and the two-photon entanglement produced by
the time-reversed PDC process. These results could have im-
plications for quantum information experiments relying on
PDC and SFG in terms of exploring the interplay between
entangled states and entangled measurements. Additionally, it
remains an open question how best to certify the entanglement
of the SFG measurement [31], or even to perform quantum
tomography of the process. Finally, given recent interest in
using quantum light for two-photon absorption [5,32], our
results open the question of whether it’s possible to have a
combined framework of two-photon processes in terms of
quantum measurement theory.
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APPENDIX A: DERIVING THE THREE-WAVE MIXING
TRANSFORMATION

Strictly speaking, the Hamiltonian describing the nonlinear
interactions we consider is a time-dependent quantity, Ĥ (t ),
whereby a state |�out〉 evolves from an initial state |�in〉
according to

|�out〉 = exp

[
− i

h̄

∫ t

0
dt ′Ĥ (t ′)

]
|�in〉

≈
(

1 − i

h̄

∫ t

0
dt ′Ĥ (t ′)

)
|�in〉. (A1)

The relevant Hamiltonian for three-wave mixing has the form

Ĥ (t ) = χ

∫
V

dV Ê+
p (r, t )Ê−

s (r, t )Ê−
i (r, t ) + H.c., (A2)

where Ê+(−)
j denotes the positive (negative) frequency com-

ponent of the j field operator, with j = p, s, i. V denotes
the interaction volume, which we take to be infinite in the
transverse direction (by assuming the field modes are well-
confined within the crystal area), and of length L in the
longitudinal direction. Finally, r and t denote the space and
time coordinates, and χ̃ describes the interaction strength. We
expand the field operators into their plane-wave components,

Ê+
j (r, t ) =

∫
dω jA j (ω j ) exp [i(k j (ω j ) · r − ω jt )]â j (ω j ),

Ê−
j = (Ê+

j )†, (A3)

where Aj (ω j ) is a slowly varying function of ω. Substitut-
ing these into the Hamiltonian and absorbing all the slowly

varying functions into χ , we obtain

Ĥ (t ) =χ

∫
V

dV
∫

dωpdωsdωiâp(ωp)â†
s (ωs)â†

i (ωi)

× exp[i(kp(ωp) − ks(ωs) − ki(ωi )) · r]

× exp[−i(ωp − ωs − ωi )t] + H.c. (A4)

Now we use this form of the Hamiltonian to compute
output state (A1) to first order in the expansion, whereupon we
carry the integration over the transverse spatial directions to
infinity. Additionally, we carry out the time integral from neg-
ative to positive infinity because the input and output states are
observed long before and after the interaction time t , resulting
in a delta function in (ωp − ωs − ωi ) (energy conservation).
All of this obtains

|�out〉 ≈
[

1 − iχ
∫ L

0
dz

∫
dωsdωi exp[i(�k)zz]

× âp(ωs + ωi )â
†
s (ωs)â†

i (ωi ) + H.c.

]
|�in〉, (A5)

where we have also absorbed the h̄ into χ . Carrying out
the integration over z provides the phase-matching function
�(ωs, ωi ), and we define the transformation

Ĥ = χ

∫
dωsdωi�(ωs, ωi )âp(ωs + ωi )â

†
s (ωs)â†

i (ωi ) + H.c,

(A6)
such that

|�out〉 ≈ (1 − iĤ )|�in〉. (A7)

APPENDIX B: RELATING THE ENTANGLEMENT
PARAMETER α TO THE SCHMIDT NUMBER K

In Sec. III C, we used the scenario of spectral teleportation
to illustrate the role of entanglement in the measurement, on
par with entanglement in the state, in a quantum protocol. To
that end, we quantified the teleportation fidelity in terms of the
correlation parameters α (β) of the bivariate Gaussian state
fs(ω,ω′) (measurement fm(ω,ω′)). This parameter has the
advantage of being bounded by the interval [−1, 1], with max-
imal entanglement at the boundaries, whereas more common
measures of entanglement for pure states, such as the entropy
and the Schmidt number, diverge for maximal entanglement.
Here we show for completeness how the Schmidt number
K depends functionally on α, while the same analysis holds
for β.

The Gaussian JSA fs(ω,ω′) from (41) has a Schmidt de-
composition of the form

fs(ω,ω′) =
∞∑
j=0

√
λ j u j (ω)v j (ω

′), (B1)

where {uj (ω)} is the orthonormal set of Hermite-Gauss func-
tions spanning the spectral Hilbert space over ω, and the same
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is true of {v j (ω′)} [26]. The Schmidt coefficients λ j are given
by

λ j = sech2 ζ tanh2 j ζ , (B2)

satisfying
∑∞

j=0 λ j = 1, and where ζ is given by

α = tanh 2ζ . (B3)

The Schmidt number K is then given by

K = 1∑∞
j=0 λ2

j

= cosh 2ζ . (B4)

Combining Eqs. (B3) and (B4), we arrive at the simple rela-
tionship

K = 1√
1 − α2

, (B5)

where, as expected, K is equal to unity for the case of no corre-
lation, α = 0, and diverges for maximal correlation, α = ±1.
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