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We present a communication system based on quantum degenerate four-wave mixing for achieving fully
autocompensating high-dimensional quantum cryptography. We prove that random phase shifts and couplings
(cross-talking) among 2N optical modes (spatial and polarization modes), represented by arbitrary SU(2N )
transformations and due to mechanical and thermal perturbations, imperfections, and so on, are autocompen-
sated after a single round trip between Alice and Bob. Bob uses a source of single photons or, alternatively,
attenuated coherent states and thus autocompensated 1-qudit states are received by Bob for using them with
high-dimensional quantum key distribution (QKD) protocols that provide larger secret key rates for large N .
A security study is also presented for this autocompensating quantum cryptography system, where it is found
that the secure key rate increases with respect to nonautocompensated links for decoy-state QKD in the case of
collective attacks. This plug-and-play system can be used in both optical fiber and free-space communication
systems.
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I. INTRODUCTION

Quantum cryptography is based on the properties of quan-
tum mechanics that allows to obtain, among others, secure
quantum key distribution (QKD) protocols. One of them is the
seminal so-called BB84 protocol [1] in which four quantum
single-photon states and two bases are used. These states are
excited in two simple polarization modes. On the other hand,
space division multiplexing has been proposed to further in-
crease the data bandwidth in optical fiber communications
[2,3], and accordingly, high interest has arisen in new op-
tical fibers such as few-mode fibers (FMFs) and multicore
fibers (MCFs) with a relatively high number of spatial modes.
Likewise, optical satellite communications, and in general
free-space optical communications, based on spatial modes,
such as those carrying orbital angular momentum, constitute
a promising communications technology [4]. Thus, by using
spatial optical modes a high-dimensional QKD (HD-QKD)
can be implemented, and thus the interest in the development
of quantum cryptography in both the mentioned new opti-
cal fibers and in free space has also remarkably increased
in the last few years. Note that HD-QKD provides larger
quantum bit error rates (QBERs) and secret key rates for
large N , as proved theoretically and experimentally for a high-
dimensional analog of the BB84 protocol [5,6].

Different optical systems have been proposed to implement
QKD cryptography in both optical fibers and free space; such
systems can use different kinds of modes, for instance, po-
larization modes in monomode optical fibers [7,8] and free
space [9], collinear spatial modes in FMFs [10] and free space
[11], and spatial codirectional modes in MCFs [12–14]. How-
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ever, one of the most important drawbacks is that all guided
modes in optical fibers and beam modes in free-space modes
are needed to be kept stable over long propagation distances
along the optical fibers or the atmosphere. Modes undergo
instability because light, in its propagation along optical fibers
or in free space, finds small spatial and polarization perturba-
tions and imperfections, or slow temporal perturbations due
to thermal, mechanical, and even geometrical factors such
as curvatures and torsions. This gives rise to random modal
coupling (modal cross-talking) which, together with random
intermodal phases, causes instability of both modes and quan-
tum states. The main consequence is an increase of error rates
which makes much more difficult the error correction and
eavesdropper detection. To overcome this drawback, specific
(partial) autocompensating techniques have been proposed in
quantum communication systems. Such techniques are based
on placing the optical source at Bob. Therefore, the light
travels to Alice a distance L, where a phase modulation is
introduced (choice of the quantum states), and goes back to
Bob where after the round trip a well-defined state is ob-
tained; that is, on the way back all perturbations undergone
on the way out to Alice are compensated. Accordingly, we
can consider that a perturbation is slow if it does not change
while light goes back and forth (distance 2L). For example,
if a perturbation does not change for a time τp = 10 ms,
then light, in an optical fiber, travels a round-trip distance of
about 2L = 2000 km. We must stress that thermal perturba-
tion are still much longer than 10 ms. Examples of partial
autocompensating techniques are polarization autocompen-
sating quantum cryptography with 1-qubit states excited in
polarization modes [7,15], or more recently with 1-qudit states
excited in spatial modes acquiring random relative phases and
polarization [16,17].
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However, to our knowledge, a fully autocompensating
solution has not been proposed, that is, when the men-
tioned perturbations give rise to unpredictable modal coupling
among optical modes (spatial and polarization modes) and
therefore the quantum states (1-qudits) undergo general
SU(2N ) transformations (the case of random relative phases
and random polarization are only particular cases) which must
be compensated. In this work we use a high-dimensional QKD
protocol analog of the BB84 one (HD-QKD-BB84), that is,
with two mutually unbiased bases (MUBs), and prove that
full autocompensation is achieved by using a method based
on quantum degenerate four-wave mixing (DFWM) which
for coherent states becomes an optical phase conjugation.
The method is valid for both free-space optical communi-
cation and optical fiber communications where spatial and
polarization modal couplings are not negligible. In a most
formal way, by using DFWM we compensate for unwanted
effects in 1-qudit states caused by an arbitrary number q
of unpredictable unitary transformations SU(2N ), where 2N
is the number of spatial modes with two polarizations. For
the sake of expositional convenience we present a detailed
study of MCFs which can in turn be formally applied to
both FMFs and free-space optical communications. Input
multimode single-photon states can be used or, alternatively,
coherent states which are attenuated on their way back up to
a single-photon level (weak coherent states), so that 1-qudit
states are produced. This attenuation can be made by using
a variable attenuator or the DFWM itself. In this case, decoy
states [18] have also to be generated for security purposes,
as usual. In fact, by considering decoy-state QKD and in the
case of collective attacks, a security analysis is presented by
calculating secret key rates as a function of the link length.

The paper is organized as follows. In Sec. II the physical
implementation of a quantum DFWM device intended for au-
tocompensation is presented. In Sec. III the autocompensation
theory by using DFWM is shown for a general multimode case
although sections for particular perturbations are introduced,
that is, spatial perturbations, spatial and birefringent (polariza-
tion) perturbations, and finally any perturbation represented
by a general unitary transformation SU(2N ). In Sec. IV an
optical fiber setup for physical implementation of A-HD-QKD
is presented and the different photonic devices are described,
particularly generation and detection devices of quantum
states, together with a study of security by calculating both the
QBER, due to an intercept-resend attack (a phase-remapping
one) for different dimensions N , and the secret key rate as a
function of the link length and the link perturbation error. In
Sec. V conclusions are presented.

II. QUANTUM FOUR-WAVE MIXING FOR
AUTOCOMPENSATING CRYPTOGRAHY

First of all, we present the physical implementation of a
particular quantum DFWM device intended for achieving au-
tocompensation, that is, for compensating unpredictable uni-
tary transformations SU(2N ), as commented above. DFWM
is a well-known nonlinear optical quantum effect [19]. It
involves the mutual interaction of four different waves of
the same frequency through a nonlinear medium [20,21]
which gives rise to interesting classical optical effects such as

FIG. 1. Quantum DFWM device with two pump waves A1y and
A2y and an input state |L〉 emerging from an optical fiber (OF) along
−z. Optical fiber modes are collimated by a lens (CL) and redirected
by mirrors (M). The PBS separates polarizations, and horizontal or
x polarization becomes vertical or y polarization by using a HWP
rotated π/4. Finally, the nonlinear medium implements a quantum
degenerate four-wave mixing process.

amplified reflection, phase conjugation, and so on. In this
work we have to adapt the DFWM device to obtain an au-
tocompensating operation. We show the sketch of our DFWM
device in Fig. 1. Let us consider an input spatial multimode
optical quantum state |L〉 propagating along the −z direction
with frequency ω. Such a state emerges from an optical fiber
(OF) and is directed by means of mirrors to the DFWM
device. First of all, a collimating lens (CL) is inserted after
the OF for collimating the optical fiber modes e j (x, y), j =
1, . . . , N . This CL is not strictly necessary but helps to under-
stand much better the physical process. After the collimating
lens, a polarizing beam-splitter (PBS) separates horizontal
and vertical polarization modes (x and y modes). The linear
x-polarization mode is rotated π/2 by means of a half-wave
plate HWPπ/4 (HWP rotated π/4). Finally, light reaches a
third-order nonlinear material of length l in which there are
two strong vertically polarized counterpropagating intense
pump modes (strong coherent states) of frequency ω and am-
plitudes A1y and A2y. A possible isotropic nonlinear material
for implementing DFWM can be CS2 [21] with linear index
n, which would contribute to vertical polarization with the
term χ (3)

yyyy of the third-order nonlinear tensor. For the moment,
let us consider that |L〉 is a single-mode state excited in the
incident mode 3 coming from an OF and with an associated
optical field operator Ê3y ∝ (e−ikoze−iωt â3y + H.c.), where
â3y is an absorption operator. When |L〉 interacts with the non-
linear material then a fourth mode (reflected mode 4) arises,
with an associated field operator Ê4y ∝ (eikoze−iωt â4y + H.c.).
We are interested in the quantum states propagating along the
z direction in modes 3 and 4 (idler and signal modes) after
nonlinear interaction, that is, in spatial propagation not in tem-
poral evolution (Hamiltonian operator) [22]. Therefore, for
spatial nonlinear coupling is convenient to use the momentum
operator describing the quantum mode interaction [21–23],

M̂I =
∫

χ (3)
yyyyE1yE2yÊ3yÊ4y dx dy dt, (1)
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where the intense pump waves 1 and 2 can be treated classi-
cally and modes 3 and 4 in a quantum way, that is,

E( 1y
2y ) = A( 1y

2y ) e∓ikonx e−iωt + c.c., (2)

Ê( 3y
4y ) =

√
h̄ω e

( 3
4 )

j (x, y) â( 3y
4y ) e∓ikonz e−iωt + H.c., (3)

where e j is a jth normalized spatial mode of the OF with x or
y polarization. As these modes are collimated by the CL then
e(3)

j ≈ e(4)
j . By inserting the above pump waves and field op-

erators into Eq. (1) and performing the temporal integrations,
the following operator is found:

M̂I = h̄χeffA1yA2yâ†
3yâ†

4y + H.c., (4)

where χeff is an effective nonlinear susceptibility which
groups together all physical constants, and â†

3y, â†
4y are emis-

sion operators. From the operator M̂I the spatial Heisenberg
equations [22] can be obtained,

−ih̄
∂ âmy

∂z
= [âmy, M̂I ], (5)

where m = 3, 4. Let us denote the input operators as â3y(l ) ≡
âo3 and â4y(0) ≡ âo4, and the output operators as â3y(0) ≡
â3, associated to the optical mode transmitted along the sys-
tem, and â4y(l ) ≡ â4, associated to the reflected optical mode
(see Fig. 1). As mentioned, there are two pump waves with
very large amplitudes A1y and A2y and initial phases equal
to zero. Then the nonlinear interaction strength is given by a
coupling coefficient κ = χeff |A1y||A2y|; therefore, the nonlin-
ear interaction is parametrically governed by |A1y||A2y|, that
is, the efficiency of the process is governed by pumping. It
is easy to check that the solutions of the spatial Heisenberg
equations obtained by inserting Eq. (4) into Eq. (5) provide
the well-known operator transformations [19,21]

â3y(l ) ≡ âo3 = sec(κl ) â3 + i tan(κl ) â†
4, (6)

â4y(0) ≡ âo4 = sec(κl ) â4 + i tan(κl ) â†
3. (7)

Quantum mechanically these results show that a degenerate
four-wave mixing produces the transformation âo3 ∝ â†

4, that
is, an Hermitian conjugation of the absorption operator âo3,
and in a certain sense we can say that a quantum optical
phase conjugation is obtained. In fact, absorption and emis-
sion operators can be written as a function of a phase operator
êi� and an amplitude operator ĝ [19], that is, â = ĝêi� and
â† = ê−i�ĝ, with ĝ ≡ (n̂ + 1)1/2, ê−i� ≡ (êi�)†, where n̂ =
â†â is the number operator. Therefore, Eq. (6) implements an
Hermitian conjugation of the phase operator of the reflected
mode, which can be rewritten as

ĝo3êi�o3 = s ĝ3êi�3 + it ê−i�4 ĝ4, (8)

where s = sec(κl ) and t = tan(κl ). It is well known that
this Hermitian conjugation of the phase operator becomes an
optical phase conjugation for a quasiclassical state. That is,
let us consider a coherent state |L〉 = |α304〉 excited in an
optical fiber mode; then by taking into account the complex
displacement operator and using Eq. (6) the output state can
be rewritten as follows:

|L〉 = eαâ†
o3−α
âo3 |00〉 → |Lc〉 = |sα〉 |-itα
〉. (9)

We have obtained a transmitted state |sα〉 and a reflected
state |-itα
〉. Note that the reflected coherent state has been
conjugated, that is, the DFWM is an optical phase conjugator.
Let us recall, however, that we are interested in multimode
coherent states, that is, |L〉 = |α1 · · · αN 〉 excited in N optical
modes (denoted by subscript indices 1, . . . , N). Therefore, the
DFWM produces the multimode coherent state

|Lc〉 = (|sα1〉 |-itα

1〉) · · · (|sαN 〉 |-itα


N 〉). (10)

We must indicate that the N incident modes have ex-
cited N reflected modes (|-itα


1〉) · · · -itα

N 〉) and N trans-

mitted modes (|sα1〉 · · · (|sαN 〉). Note that reflected modes
acquire conjugated factors α
. It is interesting to stress
that Alice can attenuate the reflected state by changing
the pumping (parametric attenuation), that is, tan(κl ) ≈
κl ≡ γ 	 1, and sec(κl ) ≈ 1; then we can rewrite |Lc〉 ≈
(|α1〉 · · · |αN 〉) (|-iγα


1〉) · · · ( |-iγα

N 〉). Next, we recall the

single-photon approximation of a coherent state excited in a
j mode, that is, | − iγα


j 〉 ≈ |0 j〉 − iγα

j |1 j〉. Therefore. the

state given by Eq. (10) can be rewritten as follows (single-
photon approximation):

|Lc ≈ |α1〉 · · · |αN 〉{|01 · · · 0N 〉 − iγ
∑

j

α

j |0 · · · 1 j · · · 0〉},

(11)
where terms γ 2 are neglected, that is, the reflected state is a
single-photon state (actually a 1-qudit) obtained from a weak
coherent state. Obviously by changing γ Alice can produce
decoy states.

On the other hand, a source of single photons can be
also used; that is, we can generate an input 1-qudit state
|Lo〉 = ∑

j c j |13 j〉, with, j = 1, . . . , N , and subscript index
3 j indicating that the jth mode is incident on the DFWM
device. Now, the total momentum operator is given by

M̂I = h̄κ
∑

j

(â†
3 j â

†
4 j + H.c.). (12)

The state after DFWM can be calculated as |Lc〉 =
exp{(i/h̄)M̂I l}|Lo〉; therefore, for γ = κl 	 1, the above in-
cident 1-qudit becomes the following state:

|Lc〉 ≈
∑

j

c j |13 j04 j〉 − iγ
√

2c j |23 j14 j〉 + · · · . (13)

Note that in this case the DFWM does not produce conju-
gation of the probability amplitudes c j of the single-photon
state excited in each one of the reflected modes 4 j; however,
it produces a stimulated single-photon state. Obviously, we
also have spontaneous emission of single-photon states but
their efficiency is much lower due to the nature of spontaneous
emission that is distributed in a large number of modes [24].

III. DFWM AUTOCOMPENSATION THEORY

First of all and for the sake of expositional convenience,
we provisionally assume that polarization is maintained un-
der propagation (Sec. III A); in fact, we must recall that in
the atmosphere and special optical fibers polarization can be
maintained. Accordingly, spatial perturbations are considered
and therefore there will only be coupling among N spatial
modes with the same linear polarization. In Sec. III B we
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FIG. 2. Optical fiber with an arbitrary number q of mode pertur-
bations represented by unitary transformations Sk , with k = 1, . . . , q.
Inset shows an example of a MCF with four spatial modes (four
cores); that is, Sk would be 4×4 matrices.

will include polarization couplings, and finally, in Sec. III C
arbitrary SU(N ) perturbations are considered, which include,
for instance, N-dimensional rotations. We must also stress that
the general results that we are going to obtain in this section
are also valid for collinear modes of FMF and free-space
optical modes.

A. Spatial autocompensation

Let us consider, for example, codirectional modes of a
MCF with N modes (cores) whose propagation constants are
βoi, i = 1, . . . , N , and with associated absorption operators
âi. The quantum state reaching the Bob system from the Alice
system will be an unpredictable quantum state, and, as a
consequence, modal coupling prevents us from implementing
any QKD protocol. Next, we show how to overcome this
drawback by using DFWM. Let us consider a perturbation
Ps(x, y) that induces modal coupling and can be considered
as z invariant along a distance d; then the spatial Heisenberg
equation describing modal coupling among N complex optical
field operator modes Êi ∝ âi can be written as follows [23]:

−ih̄
∂ âi

∂z
= h̄{βi

N∑
j=1

δi j â j +
N∑
j 
=i

κi j â j} ≡ h̄
N∑

j=1

Ci j â j, (14)

where βi = βoi + κii are the perturbed propagation constants
due to (random) modal self-coupling (κii), and κi j are (ran-
dom) modal coupling coefficients due to cross coupling. From
a most fundamental point of view, an arbitrary coupling coef-
ficient of spatial modes i, j is given by

κi j =
∫

ei(x, y)Ps(x, y)e j (x, y) dx dy, (15)

where e(i, j)(x, y) are the mode amplitudes. Note that κi j =
κ ji and then [Ci j] ≡ C is a symmetric matrix. Therefore,
by using the algebraic properties of symmetric matrices, the
formal matrix solution [Si j] ≡ S = exp{iCz} = I + izC −
z2C2/2! + · · · of the differential equation given by Eq. (14)
is a symmetric matrix, that is, Si j = S ji. Moreover, modal
coupling is a unitary transformation; therefore, [Si j]−1 =
[S ji]
 = [Si j]
.

In general, we will have an arbitrary number q of pertur-
bations between Alice and Bob along the optical fiber, such
as shown in Fig. 2 which can be z invariant in distances dk ,
k = 1, . . . , q. The inset shows an example of MCF with four
cores, that is, four spatial modes. Accordingly, if we have a
quantum source in system B for QKD (single-photon states
or coherent states) the total effect along the z direction from
system B (Bob) to system A (Alice) can be represented by the

total matrix M = S1 · · · Sq. We must stress that this matrix
acts on the quantum fields. Next, according to the result given
by Eq. (9) for the reflection modes, the matrix M becomes
M
 = S


1 · · · S

q at Alice. Next, the quantum state is propa-

gated back to system B; therefore, we have to use a reflected
coordinate system which is defined, without loss of gener-
ality, by (−x)y(−z) with respect to the incident coordinate
system xyz. The coupling coefficients κi j are invariant under
the transformation x → − x and consequently the matrices
C are also invariant. Now, the total matrix for the way back
is Mb = Sq · · · S1, which can be rewritten as Mb = Mt , with
superscript index t indicating transpose. Therefore, once the
light has traveled the path back and forth, the total coupling
matrix is Sq · · · S1S


1 · · · S

q = I, or in an algebraic compact

form, Mt M
 = MM
 = I = M−1M. We must recall that we
have assumed slow temporal perturbations; that is, the time tp

during which the disturbance is considered to be unchanged
is much longer than the time tAB it takes for light to travel
back and forth between A and B. In short, the unpredictable
modal coupling has been removed, and therefore, if Bob
launches a multimode coherent state |L〉 = |αB31 · · · αB3N 〉 =
|α1 · · · αN 〉 undergoing modal coupling along an OF or in the
atmosphere, the state after the DFWM and traveling its way
back has the form given by Eq. (10), and accordingly, we
recover the initial state except for π phases and conjugations.

By taking into account the transformation of a coherent
state we have just proven that autocompensation is obtained;
nevertheless, for the sake of completeness, it is worth explic-
itly deriving the transformations between the input operators
corresponding to the optical modes at Bob, that is, âBo3 j , and
the final operators at Bob after a round trip, that is, âB4 j ,
in order to give a formal quantum proof. Moreover, such
transformations facilitate the study of any quantum state. We
start by considering the transformation of input operators up
to the DFWM device is given by⎛

⎝ âo31
...

âo3N

⎞
⎠ = S1 · · · Sq

⎛
⎝ âB31

...

âB3N

⎞
⎠ = M

⎛
⎝ âB31

...

âB3N

⎞
⎠, (16)

and by taking into account the quantum transformation imple-
mented by DFWM and given by Eq. (6) we write⎛

⎜⎝
sâ31 + it â†

41
...

sâ3N + it â†
4N

⎞
⎟⎠ = S1 · · · Sq

⎛
⎝ âB31

...

âB3N

⎞
⎠. (17)

Next, the relation between the operators â4 j at the Alice sys-
tem and âB4 j at the Bob system, after the return trip from Alice
and through the q symmetric perturbations, is given by⎛

⎝ âB41
...

âB4N

⎞
⎠ = Sq · · · S1

⎛
⎝ â41

...

â4N

⎞
⎠. (18)

Therefore, by inserting this equation into Eq. (17) the follow-
ing total transformation is obtained:

⎛
⎝ âB31

...

âB3N

⎞
⎠ = sM−1

⎛
⎝ â31

...

â3N

⎞
⎠ + it (M−1M )

⎛
⎜⎝

â†
B41
...

â†
B4N

⎞
⎟⎠, (19)
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where M−1 = S

q · · · S


1 (recall that Sk , k = 1, . . . , q, are sym-
metric matrices). Note that the factor (M−1M ) = I of the
vector formed by the operators â†

B4 j is just the one obtained
above by matrix calculation; therefore, the operators of re-
flected modes are Hermitian conjugate, as expected. Now, we
can rewrite Eq. (19) for each mode j as follows:

âB3 j = s
∑

i

mi j â3i + it â†
B4 j, (20)

where mi j are the matrix elements of M−1. By defining new
operators âA3 j = ∑

i mi j â3i, we obtain a new momentum op-
erator for the optical system,

M̂ =
∑

j

M̂ j = h̄κ
∑

j

(â†
A3 j â

†
B4 j + H.c.). (21)

Now, the quantum states given by Eqs. (10) and (13) can ex-
plicitly be calculated. First of all, let us consider a single-mode
coherent state |Lo〉 = |αk〉 excited in the kth mode. By taking
into account Eqs. (19) and (20) the state becomes

|Lc〉 = |sm1kα j〉 · · · |smNkαk〉|-itα

k 〉. (22)

That is, we have obtained a transmitted coherent state
|sm1kα j〉 · · · |smNkαk〉 and the reflected single-mode coherent
state |-itα


k〉. This kind of state will be of great interest in an
optical system for implementing this autocompensating quan-
tum cryptography, as shown later. Therefore, if we consider
the incident multimode state |α1〉 · · · |αN 〉, then the output
state will be

|Lc〉 = |α′
1〉 · · · |α′

N 〉| − itα

1〉 · · · | − itα


N 〉, (23)

where α′
j , with j = 1, . . . , N , are unpredictable values due

to the matrix M−1 representing the perturbations of the op-
tical fiber. However, we must recall that the transmitted state
|α′

1〉 · · · |α′
N 〉 is not relevant for our purposes.

On the other hand, we can consider a single-photon state
excited in the kth mode, that is, |Lo〉 = |1k〉. Now, by taking
into account the momentum operator given by Eq. (21), the
output state is approximately given by

|L〉 ≈ |13k04k〉 − iγ

( N∑
i=1

m

ik

√
2 |23i〉

)
|1B4k〉 + · · · . (24)

In this case the two-photon state |23i〉 at the Alice system can
be detected in any transmitted mode 3i, but the single-photon
state is recovered again in the kth mode (now the reflected
kth mode) and with a well-defined complex probability am-
plitude; that is, couplings and phases have been compensated
thanks to the Hermitian conjugation implemented by DFWM.
Expressions for 1-qudit states can be obtained in a straightfor-
ward way.

B. Spatial and birefringent autocompensation

As commented, we also have to remove unpredictable
polarization modal coupling together with the above spatial
modal coupling; that is, we have to achieve autocompen-
sation with spatial and polarization modes. First of all, we
characterize the matrix transformation produced by an ar-
bitrary coupling between linearly polarized spatial modes
(e.g., LP modes). Since there are 2N modes (N spatial

modes with two polarizations), we introduce, for the sake
of expositional convenience, the new subscript indices i, j =
{1H, 1V, 2H, 2V, . . . , NH, NV }, with H ≡ x, V ≡ y. Note
that in this case we will have 2N transmitted modes and 2N
reflected modes. As in the above (scalar) case, the coupling
matrix [Ci j] ≡ C is also a complex symmetric matrix. How-
ever, when considering backward propagation, this matrix
gets modified because, as discussed, the incident coordinate
system xyz becomes (−x)y(−z) under reflection. Indeed, an
arbitrary coupling coefficient of spatial modes m, n with dif-
ferent polarization H,V is given by

κmHnV =
∫

emH (x, y)Pv (x, y)enV (x, y) dx dy, (25)

where Pv (x, y) is an arbitrary perturbation producing polar-
ization (vector) modal coupling. Obviously, under reflection
(back path) we have enH (x, y) → −enH (x, y); then κi j ≡
κmHnV → −κmHnV ≡ −κi j . Note that for the same polar-
ization the coupling coefficient is positive (or zero) under
reflection. Therefore, the coupling matrix [Bi j] ≡ B under
reflection can be written as follows:

B = (IN ⊗ σz )C (IN ⊗ σz ) ≡ DCD, (26)

with IN the N-dimensional identity matrix, ⊗ the tensor
product, and σz the third Pauli matrix. Next, by taking into
account that DD = (IN ⊗ σz )(IN ⊗ σz ) = I2N (where I2N is
the identity matrix 2N × 2N), it is easy to check that the
transformation matrix produced by the perturbation Pv (x, y),
that is, the formal matrix solution [Ri j] ≡ R = exp{iBz}, can
be written by using the Taylor expansion of an exponential
function as follows:

R = (IN ⊗ σz ) S (IN ⊗ σz ) ≡ DSD, (27)

where S = exp{iCz}. Note that matrix R (transformation of the
absorption operators â jH , â jV ) is also symmetric. On the other
hand, it is easy to check that the HWPπ/4 introduces a phase
π between the H mode and the V mode of every spatial mode
on its way back. Therefore, after the DFWM device, when
polarization modes are recombined in the PBS (see Fig. 1),
the matrix D = IN ⊗ σz is implemented. Consequently, for
the general case of q random couplings, we obtain, after the
path back to Bob, the total matrix

MT = Rq · · · R1DS

1 · · · S


q = D, (28)

where we have taken into account the following relationships:
Rk = DSkD, DD = I2N , and SkS


k = I2N , k = 1, . . . , q. In
short, symmetric spatial perturbations together with polariza-
tion perturbations have been removed. The main consequence
of this result is that a polarization-independent HD-QKD de-
vice can be used because initial polarization will be restored.
Likewise, a quantum study, similar to the one made at the end
of the previous section, can be also made; however, no new
physical results are obtained.

C. SU(2N) autocompensation

The above results have made clear the autocompensation
of symmetric unitary coupling transformations. Now, we gen-
eralize the above results for nonsymmetric unitary coupling
transformations, for example, polarization rotation due to
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optical activity, 2N × 2N abstract rotations, and so on, that
is, perturbations represented by general SU(2N ) matrices.
In order to prove this assertion we must take into account
that all unitary transformation SU(2N ) can be factorized
as an ordered product of SU(2) transformations of sub-
spaces i, j [25–27]. Thus, by proving autocompensation by
DFWM of an arbitrary SU(2) transformation the case SU(2N )
is also proven. A general SU(2) transformation S can be
represented by

S =
(

cos θ i sin θe−iφ

i sin θeiφ cos θ

)
≡ Z (φ)X (θ )Z (−φ) (29)

with Z (±φ) = diag(1, e±iφ ) the matrix of a phase retarder ±φ

generated by the Pauli matrix σz, and X (θ ) a matrix whose
generator is the Pauli matrix σx, with elements X11(θ ) =
X22(θ ) = cos θ , and X12(θ ) = X21(θ ) = i sin θ . By consider-
ing that we are in a polarization two-mode subspace, it is easy
to check that the matrix T obtained by reflection is charac-
terized by the changes φ, θ → −φ,−θ ; then T = D2St D2,
where D2 = σz. Therefore, after the DFWM device and by
taking into account the action of the HWPπ/4, shown in Fig. 1,
can be represented by the matrix D2, we obtain the following
result:

T D2S
 = D2St D2 D2 S
 = D2St S
 = D2, (30)

and consequently autocompensation is again achieved. Rigor-
ously, a general SU(2) matrix requires an additional matrix
corresponding to an α-phase retarder, that is, U = Z (α)S;
however, a retarder Z (α) is also autocompensated, as proven
above. We must also stress that similar results are found
for spatial two-mode subspace. Thus, for vertical polariza-
tion the matrix −I2 is obtained, and for the horizontal one
the identity matrix is I2. Likewise, topological phases due
to helical paths, torsions, and so on of an OF can be also
autocompensated because such phases also correspond to
unitary transformations (rotations and so on) [28]. In short,
a multimode coherent state |L〉 = |α1Hα1V · · ·αNHαNV 〉 (or
multimode single-photon state) coming from Bob becomes
a predictable reflected multimode coherent state (or single-
photon state). Thus, by using the factorization of SU(2N )
[25–27] along with the above results, the state

|Lc〉 = |L′〉| − itα1H itα1V − · · · − itαNH itαNV 〉 (31)

is obtained, where |L′〉 = |α′
1〉 · · · |α′

N 〉 is the transmitted state.
Therefore, we have proved that the DFWM device has can-
celed a number q of unpredictable perturbations represented
by SU(2N) transformations and thus A-HD-QKD can be im-
plemented.

IV. PHYSICAL IMPLEMENTATION OF A-HD-QKD

By taking into account the results obtained in the previous
sections we can implement an autocompensating optical sys-
tem for A-HD-QKD BB84 quantum cryptography in optical
fibers. Such a system is shown in the sketch of Fig. 3 where
the main photonic devices are indicated.

FIG. 3. Basic optical fiber setup for autocompensating HD-QKD
by OPC (see Sec. IV A for description).

A. Optical fiber setup for A-HD-QKD

We follow the optical configuration shown in Fig. 3. The
first device is a coherent states generator (CSG) located in
the Bob system, which generates multimode coherent states
|L〉 = |α1Hα1V · · ·αNHαNV 〉 excited in 2N optical modes
which can be coupled to 2N single-mode fibers (SMFs) by
an integrated device described in Sec. IV B. SMFs are drawn
with red arrows in the Bob system. In particular we choose
α1H = · · · = αNV = α, and thus we can obtain, from the
single-photon components of the weak coherent states (single-
photon level), quantum states belonging to MUBs. Next, a first
set of optical fiber delayers OFD1 [29] produces modal delays
τ j ( j = 1, . . . , 2N); that is, we use a time demultiplexing
mechanism, or in other words, we have a multimode coherent
state formed by the tensor product of delayed single-mode co-
herent states, |L〉 = |ατ1ατ2 · · ·ατ2N−1ατ2N 〉. These delays will
allow Alice to introduce phases in each mode. Afterwards, a
set of optical circulators (SOC) for optical fibers [30] launches
the state towards the Alice system through a MCF. The cou-
pling between 2N SMFs and the MCF can be achieved by
means of a photonic lantern [31]. We must indicate that a spa-
tial multiplexing-demultiplexing (mux-demux) device is also
needed if collinear propagation is required as in the case of a
FMF or free space. Different spatial multiplexing devices can
be implemented according to the kind of collinear modes used
[32,33], although photonic lanterns between SMFs and FMFs
can be also used for multiplexing purposes [31]. Note that for
a MCF the mux-demux device is not required (codirectional
modes).

After propagation along the OF each jth delayed single-
mode coherent state (excited in each core of a MCF) becomes
an unpredictable multimode coherent state due to modal cou-
pling. Such a state reaches the DFWM device described in
detail in Fig. 1 and explained above. Note in Fig. 3 that
now we have placed a standard bulk electro-optic phase
shifter (EPS) such as a Pockels cell crystal, and a bulk
variable electro-optic attenuator (EOA) [16] in the off posi-
tion between the DFWM device and the CL-OF. To a good
approximation, the CL converts the optical modes in nonuni-
form plane modes; therefore, bulk optics can be used in the
Alice system. At this point, we must stress that after the
DFWM device the reflected state has to be coupled again
to the OF; however, the DFWM device implements by itself
this transverse modal coupling to the OF (analogous to the
well-known image restoration by optical phase conjugation
[19–21]), although different systems can be used to optimize
this coupling, for example, as in our case, by means of a CL.
Next, the reflected state in the DFWM device goes through
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the EPS which introduces global phases ϕ j on the mentioned
multimode coherent states, and the EOA attenuates the state
up to the single-photon level. Note that at the Bob system each
of these multimode single-photon states will become again a
jth delayed one-mode single photon due to DFWM, that is,
due to autocompensation. The purpose of the EOA is not only
to attenuate but also to increase the security of the system, i.e.,
the attenuation of the EOA can be electronically controlled,
enabling the production of different attenuated pulses: signal
and decoy states against different attacks of an eavesdropper
Eve, as in the photon-number-splitting attack, although we
must indicate that modal coupling is also a defense against
attacks along the line. Moreover, it is interesting to underline
that different attenuated states can be also obtained by modu-
lating the pump intensity, that is, by a parametric attenuation.
Therefore, the Alice system generates 1-qudit states which
propagate along the OF up to the Bob system and thus the
modal coupling and relative phases are fully removed. Next,
the SOC sends the 1-qudit state to the second set of delayers
OFD2 which cancels the delays τ j between states |1 j〉 of the
1-qudit. In short, by taking into account the state given by
Eq. (31) with αH1 = · · · = αV N = α and phases ϕ jH , ϕ jV in-
troduced by Alice, the (attenuated) normalized quantum state
reaching the Bob system is given by

|Lc〉 ≈ −iγ ′α
{ N∑

j=1

eiϕ jH |1B4 jH 〉 − eiϕ jV |1B4 jV 〉
}
, (32)

with γ ′ = ηκl , where η is the attenuation factor introduced by
the EOA or parametric attenuation. These states are chosen
with values of ϕ jH and ϕ jV for defining two 2N-dimensional
MUBs [6] for QKD.

B. Generation and detection of quantum states

As commented, the initial state generated in the CSG is
converted to a quantum state belonging to a MUB at the Alice
system, and finally reaches a quantum projective measurer
(QPM) at the Bob system. Since both CSG and QPM are
relevant devices it is worth showing here a possible physical
implementation of them. One of the advantages of optical
fibers in general and MCFs in particular is their high compati-
bility with integrated optical components. Each core of a MCF
can be connected to a channel guide of an integrated circuit,
for instance, by a lantern coupler; therefore, the generation
and measurement of quantum states can be made on chip.

A CSG can be easily made with integrated devices by
using concatenated 2×2 directional couplers; that is, each
output of a coupler is connected to another coupler and so
on [6,16]. Such couplers can be represented by matrices X (θ )
such as the one presented in Eq. (29) where θ = κdc with κ

a linear coupling coefficient and dc the coupling distance. We
start from a coherent state excited in H and V polarization
modes, that is, |L〉 = |βHβV 〉, with βH = βV = β. This state
can be obtained by using a PBS, and each mode is coupled
to an input channel guide of an integrated device. Each chan-
nel guide is in turn connected to a first directional coupler
X (π/4) formed by two channel guides. Next, each channel
guide of each coupler is in turn coupled to a new directional
coupler X (π/4) and so on. In short, each coherent state is

FIG. 4. Illustration of an integrated QPM device for N = 4 (for
MCF with four cores) formed by Xπ/4 and Xπ/2 couplers and phase
shifters (circles) that implement the random choice of a measure ba-
sis. It consists of a 4D passive splitter (4D-PS) and two 4D projectors
(4D-P). Detectors Dab measure the bits ab.

coupled to concatenated directional couplers X (π/4) and then
a multimode state |L′〉 = |L′

H 〉|L′
V 〉 is obtained, where |L′

H 〉 =
|α〉|iα〉| − α〉 · · · | − iα〉| − α〉|iα〉 for modes 1, . . . , N , and
|L′

V = |α〉|iα〉| − α〉 · · · | − iα〉| − α〉|iα〉V , for modes N +
1, . . . , 2N , where α = 2−m/2β, with 2m = N . The relative
phases {±π/2, π} can be easily canceled by using the EPS
of the Alice system when the proper phases ϕ1H , . . . , ϕNV

are introduced at the Alice system, then |L′〉 = |α〉1 · · · |α〉2N .
We must stress that the same procedure can be followed for
single-photon states.

As to the QPM, passive integrated quantum projective me-
ters, based on X (π/4) and X (π/2) couplers and phase shifters
Z (φ), which randomly select bases of dimension N = 2m in
MCFs, can be implemented [16]. For example, in Fig. 4 we
show a passive on-chip device performing projective measure-
ments in random bases for N = 4 and with two MUBs, that
is, with eight 1-ququart states. Its generalization to N modes
is straightforward. Recall that each core (for instance, the four
cores of MCF shown in the inset of Fig. 2) is connected to
one input channel waveguide. The QPM is formed by two
devices, a passive splitter (4D-PS) and two projectors (4D-
P) which implement measurements in two different bases. It
is easy to check that passive splitters can be implemented
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by couplers X (π/4) and X (π/2), where the matrix X (θ ) is
defined in Eq. (29). Therefore, if we have the single-photon
state |L〉 = ∑

j c j |1 j〉, with j = 1, . . . , 4 indicating the four
input channel waveguides, then the passive splitter provides
the state

|Lo〉 = 1√
2

{ 4∑
j=1

c j |1 j〉 +
8∑

j=5

c j−4|1 j〉
}
. (33)

That is, we have the same probability to measure the state |L〉
at the upper projector and at the lower one, or in other words,
we implement a random choice of basis. The above state
belongs to some MUB basis, and each basis has a projector
defined by particular values of the phases ε j as indicated in
Fig. 4, that is, two projectors characterized by initial phases
ε1

1ε
1
2ε

1
3ε

1
4 and ε2

1ε
2
2ε

2
3ε

2
4 , respectively. As an example, let us

consider the following basis for 1-ququart states written in
matrix form, that is,

B1 = 1

2

⎛
⎜⎝

1 i i −1
i −1 1 i

−1 i i 1
−i −1 1 −i

⎞
⎟⎠, (34)

where each row is a basis vector, that is, a 1-ququart state∑4
j=1 c j |1 j〉. Now, it is easy to check that the device with ε1

1 =
ε1

2 = ε1
3 = ε1

4 = 1, indicated in Fig. 4, performs the trans-
formation given by the above matrix, that is, implements a
projector and therefore can make projective measurements.
Note that the projector is factorized as a product of SU(2)
transformations [26,27]. Therefore, if a 1-ququart reaches this
projector we obtain a photon at the output of a channel guide j
where it is detected. For example, the 1-ququart (1/2)(|11〉 +
i|12〉 + i|13〉 − |14〉) becomes the state |11〉 which makes a
click in detector D(1)

00 (bit 00), the 1-ququart (1/2)(i|11〉 −
|12〉 + |13〉 + i|14〉) becomes the state |12〉 which makes a
click in detector D(1)

01 (bit 01), and so on. However, we also
have the 1-ququart

∑8
j=5 c j−4|1 j〉. If it belongs to a second

MUB, for example,

B2 = 1

2

⎛
⎜⎝

1 1 1 1
i i −i −i

−1 1 1 −1
−i i −i i

⎞
⎟⎠, (35)

the 1-ququart can be also detected by projective mea-
surements. In this case we obtain a second projector by
introducing new initial phases in the above projector, that is,
ε2

1 = 0, ε2
2 = ε2

3 = −π/2, ε2
4 = π , shown in Fig. 4; therefore,

the above matrix is implemented on channels j = 5, . . . , 8.
For example, if we have the 1-ququart (1/2)(|15〉 + |16〉 +
|17〉 + |18〉) the second projector gives the state |15〉, which
makes a click in detector D(2)

00 (bit 00), and so on.
On the other hand, as commented, FMFs and free-space

optical communications can be considered problems of 2N
collinear modes. Therefore, generation and measurement of
quantum states have to be made by a spatial MUX-DEMUX

process, although as commented above photonic lanterns can
also multiplex from SMFs to FMFs and vice versa. More-
over, in free space a detailed study should incorporate mode
diffraction; however, in most cases it can be reduced thanks to
the high directionality of lasers, or it can simply be ignored

since DFWM also compensates for diffraction (note that a
diverging wave incident on a DFWM undergoes an optical
phase conjugation and becomes a converging wave). In short,
in both cases, once the spatial demultiplexing is done we can
use most of the results obtained for MCFs. Finally, we must
stress that this autocompensating method can also be applied
to other protocols based on 1-qudits and also to the remark-
able measurement-device-independent (MDI) QKD protocol
[34–36], which uses biphoton states, such as will be shown in
a next work, although preliminary results have already been
obtained [37].

C. Security analysis

First of all, we study the phase-remapping (PR) attack
[38], which is a specific attack for this loop configuration
of a QKD system. We show that the efficiency of the attack
is reduced with the dimension N . Afterwards, a secret key
rate R is calculated for the case where bit information is
carried by a train of weak coherent pulses propagating in
links (optical fibers) with perturbations, and in particular, we
consider the decoy-state approach [18,39], which overcomes
the photon-number-splitting attack [40,41]. By introducing a
proper modification in the key rate formula for ideal links
(that is, without any perturbation), we show that perturbations
along the link reduce in a significant way the key rate R, which
in turn justifies the need for autocompensating methods.

In the PR attack, Eve takes advantage of the first trip of the
light states from Bob to Alice in order to modify them before
Alice encodes the information in them. The attack consists of
Eve delaying (or advancing) the states sent by Bob with the
purpose of making them arrive at the Alice EPS when it is not
operating at its maximum output, but during its response time
between the activation and the mentioned maximum output.
In this way, if for example Alice tries to apply a phase shift
π/2, as light is reaching the EPS before this one applies such
a phase, Alice will be applying a phase δ (0 < δ < π/2)
instead. Therefore, Eve can modify the phases ϕ j of the state
given by Eq. (32) from {0, π/2, π, 3π/2} to {0, δ, 2δ, 3δ}.
Thus, Alice is unknowingly sending Bob the altered state

|L〉 = 1√
N

{eip1δ|11〉 + · · · + eipN δ|1N 〉}, (36)

where p j = 0, 1, 2, 3. Next, Eve intercepts these altered
states and measures them with a general positive operator-
valued measurement, gaining more additional information
than in the case when she measured the unaltered states.
According with her measure, she sends Bob the corresponding
unaltered state (32) to being measured in Bob’s QPM. Thus,
like in a regular intercept-and-resend attack in one-way QKD
systems, Eve’s presence can only be manifested by the errors
she introduces when she makes a wrong measure and sends
Bob a wrong state. However, the PR attack has the advantage
that, by altering states and measuring them, she can reduce the
QBER induced in the system. In a recent work [16], a security
analysis was made for MCFs considering such an attack for a
few modes due to the limitations of the cryptographical sys-
tem. However, the present DFWM autocompensation allows
us to use a large number of modes and therefore it is worth
analyzing the corresponding QBER.
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FIG. 5. QBERs obtained under the PR attack as a function of δ

for dimensions N = 2m, m = 1, . . . , 5, employing two bases only.

In Fig. 5 we show the results of QBERs obtained as a
function of the applied phase δ for dimensions N = 2m, with
m an integer, and making use of two bases. The figure is
made by generalizing the method given in Ref. [38] using the
MUB construction of Ref. [42]. We can see how the QBER is
reduced with δ from its standard value of QBERδ=π/2 = N−1

2N ,
going from 25% to around 15% for the case N = 2 (two
spatial modes or one spatial modes and two polarizations).
However, we can also observe how the relative reduction
between the minimum and maximum QBERs decreases at
higher dimensions, going from around 47% to 45% for di-
mension N = 32 (32 spatial modes, or 16 spatial modes and
two polarizations), for example. Just like with QBERδ=π/2,
QBERmin also appears to tend to 50% when the dimension
grows. Thus, the higher the dimension, the less useful the
PR attack is. Moreover, in Ref. [16] we have shown, as well,
that the PR attack cannot reduce the QBER enough in order
to enter the range of values that generates a secret key rate
under a cloning attack in a normal one-way system. Con-
sequently, protocols based on autocompensating round trips
between Alice and Bob do not actually make the system more
vulnerable.

Next, we present the impact on the secret key rate R when
perturbations in the link (optical fibers or free space) are
considered and a comparison with the compensated case is
shown. In order to calculate R we follow the procedure intro-
duced in Ref. [43] and followed in Refs. [6,12,13], that is, a
high-dimensional decoy-state method with two weak decoy
states with average photon flux ν < μ < 1 and a vacuum
state. However, we have to perform a modification in the error
rates for dealing with the perturbations introduced by the link,
which has not been taken into account in previous works. As
commented above, the use of weak coherent states requires the
use of decoy states to overcome the photon-number-splitting
attack [18,39], which can be generated with the present system
by using the EOA or the DFWM itself as analyzed previously.
In other words, only the distance L between Alice and Bob
affects the key rate R; the previous propagation distance L
between Bob and Alice only prepares the state in order to be
compensated.

By using decoy-state QKD and in the case of collective
attacks, it is possible to obtain the secret key rate for an
N-dimensional problem as a function of the link length and
without perturbations, that is, the following asymptotic key
rate formula [6,12,13]

R � 1

M
{Q0 log2(N ) + Q1[log2(N ) − H (e1, N )]

− QμH (Eμ, N ) f (Eμ)}, (37)

with M the number of bases used, in this case M =
2, and N the dimension of the bases. The function
H (x, N ) = −x log2(x/(N − 1)) − (1 − x) log2(1 − x) is the
N-dimensional Shannon entropy. The overall gain is given by
Qμ = ∑

n Qn = ∑
n YnPn, where a summation over all possi-

ble states is made, with Qn the n-photon gain, Pn = e−μμn/n!
the photon Poisson distribution, and Yn = Y0 + ηn the yield
of the state |n〉, with Y0 the yield of the vacuum state (dark
counts). Therefore, Qμ provides the probability of obtaining
a detection when the signal state is sent. The parameter ηn =
1 − (1 − η)n of the yield Yn is related to the overall efficiency
given by η = ηdηBηAB, with ηd the detector efficiency, ηB the
internal transmittance of Bob’s system, and ηAB = 10−αattL/10

the link transmittance due to the optical fiber losses, where
αatt is the attenuation coefficient measured in dB/km and L
the length of the optical fiber. On the other hand, we have the
value Eμ = ∑

n enYnPn/Qμ, that is, the overall error rate, with
en = (e0Y0 + eoptηn)/Yn the error associated to the states |n〉,
where eopt is the error due to the optical misalignment of the
detection system. Importantly, it is the error to be modified
when perturbations are considered along the optical fiber.
Finally, e0 = (N − 1)/N is the detection error (random dark
count in a detector which is not expected to fire).

On the other hand, we must indicate that f (Eμ) is the effi-
ciency of the error correction code with a value f (Eμ) = 1.05;
Q1 has a lower bound, and e1 has an upper bound given by
[6,12]

Q1 � eμ

μν − ν2
{μ2Qνeν − ν2Qμeμ − (μ2 − ν2)Y0}, (38)

e1 � 1

νQ1eμ
(EνQνμeν − μe0Y0). (39)

With all these definitions we can calculate the system parame-
ters; thus, Q0 can be directly estimated as Q0 = e−μY0, where
Y0 is the vacuum yield and, therefore, related to the dark count
probability Pdark of a single detector. For N-dimensional QKD
the yield of the vacuum is approximately given by Y0 ≈ NPdark

[12]. Moreover, it is easy to check that the following exact
expressions are obtained for Qμ, Eμ:

Qμ = Y0 + 1 − e−μη, Eμ = e0Y0 + eopt (1 − e−μη )

Qμ

. (40)

Likewise, the upper bound of e1 can be exactly calculated,

e1 = e0Y0 + eoptη

Y0 + η
, (41)

and finally we have estimated the lower bound for Q1 by
assuming Pn 	 1 for n > 3,

Q1 ≈ [(Y0 + η) − μν

6
(Y0 + 1 − (1 − η)3)] μ e−μ. (42)
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FIG. 6. Key rates in optical fibers without autocompensation and
with different perturbation coefficients αopt 
= 0 (dashed lines). The
case with autocompensation (αopt = 0) is shown in a solid line.

Next, all these values are inserted into Eq. (37) to obtain
R; however, as commented above, the error eopt has to be
modified in order to take into account the perturbations along
the optical fiber. For that, we use the following trial func-
tion Eopt (L) monotonically increasing with L, as for example
Eopt (L) = A − Be−αoptL, where αopt is the perturbation coeffi-
cient (which has nothing to do with the attenuation coefficient
αatt), A and B are constants, and the following physical lim-
iting values are imposed: Eopt (0) = eopt and Eopt (∞) = (N −
1)/N ; that is, at large distances the accumulated perturbations
make sure that all states have the same probability 1/N to
be detected and therefore the optical error will be (N − 1)/N
as it also occurs for e0. Therefore, we obtain the values A =
(N − 1)/N and B = A − eopt, and consequently

Eopt (L) = eopt +
(

N − 1

N
− eopt

)
(1 − e−αoptL ). (43)

Note that for eopt = 0 we only have the error due to per-
turbations; that is, Eper = [N − 1)/N][1 − e−αoptL]. Now, we
substitute eopt for Eopt (L) into the expression for Eμ given in
Eq. (40) and the expression for e1 given by Eq. (41). Values
of αopt in the interval (1×10−3, 4×10−3) are compatible with
those found in the literature about modal cross-talking due
to perturbations. For instance, for αopt = 2×10−3 km−1 we
obtain an error of 1.5×10−3, which is approximately −28 dB.
This value is a realistic one because spatial and polarization
mode cross-talking in optical fibers can take values around
−30 dB or even larger [44,45]. In short, cross-talking provides
an estimation of errors due to the loss of information (bits)
carried by an optical mode.

In Fig. 6 the key rates for different perturbation coef-
ficients and with N = 4 are shown, that is, the ideal or
autocompensated case characterized by αopt = 0 (solid line),
and three realistic cases (1, 2, 4)×10−3 km−1 with eopt =
0.0964. The following values have been used: μ = 0.2, ν =
0.1, Pdark = 2.06×10−7, αatt = 0.4 dB/km, ηd = 6.09/100,
and ηB = 10−2.45 [12]. Note that for αopt = 2×10−3 km−1 the
key rate is reduced along the optical fiber in a significant way.
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FIG. 7. Function Eopt (L) for several perturbation coefficients
αopt 
= 0 (dashed lines). The value αopt = 0 (solid line) corresponds
to the autocompensation case.

In Fig. 7 the error Eopt (L) is plotted with the distance. Note
that at L = 25 km we have Eopt (25 km) = 0.121; that is, the
error due to perturbations is only 0.025 but with a great impact
in the key rate as shown in Fig. 6. Furthermore, we must
stress that larger key rates are obtained for N > 4. All these
results justify the use of high-dimensional autocompensation
methods as those proposed in this work.

V. CONCLUSIONS

In conclusion, we have proved that a fully autocompen-
sating high-dimensional quantum cryptography in optical
fibers and free space can be achieved by degenerate four-
wave mixing. A single round trip allows to autocompensate
the undesired modal coupling and random phase shifts
among spatial and polarization modes, due to a myriad of
(mechanical, thermal, geometrical, etc.) perturbations and im-
perfections and thus high-dimensional QKD protocols such
as the BB84 can be physically implemented in a plug-and-
play way. We have presented a fiber-optic setup for the case
of multicore optical fibers which in turn can be connected
to integrated devices to perform generation and projective
measurements of states for both weak coherent states and
single-photon states. Special attention has been paid to an
integrated passive device for quantum random choice of the
measurement basis which aids increases of the security of
the system as dimension increases. Likewise, a brief security
analysis for a phase-remapping attack has been made and
it is concluded that QBER tends to 50% as dimensionality
increases, and moreover the round trips for getting autocom-
pensation do not make the system more vulnerable. Likewise,
variation of the security key rates with the distance have been
analyzed when optical fibers undergo perturbations which
have not been compensated. Significant increase in the secret
key rate and therefore in the security distance of decoy-state
QKD is obtained when autocompensation is used, which jus-
tifies the usefulness of the proposed autocompensating optical
method to cancel such perturbations.
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