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Giant Kerr nonlinearities and magneto-optical rotations in a Rydberg-atom gas via double
electromagnetically induced transparency
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We investigate the Kerr and magneto-optical effects for a probe laser field with two orthogonally polarized
components, propagating in a cold Rydberg atomic gas with an inverted-Y-type level configuration via double
electromagnetically induced transparency (EIT). Through an approach beyond both mean-field and ground-state
approximations, we make detailed calculations on third-order nonlinear optical susceptibilities and show that the
system possesses giant nonlocal self- and cross-Kerr nonlinearities contributed by Rydberg-Rydberg interaction.
The theoretical result of the cross-Kerr nonlinearity obtained for 85Rb atomic gas is very close to the experimental
one reported recently. Moreover, we demonstrate that the probe laser field can acquire a very large magneto-
optical rotation via the double EIT, which may be used to design atomic magnetometers with high precision.
The results presented here are promising not only for the development of nonlocal nonlinear magneto-optics but
also for applications in precision measurement and optical information processing and transmission based on
Rydberg atomic gases.

DOI: 10.1103/PhysRevA.103.043709

I. INTRODUCTION

The study of the Kerr effect is a key topic in nonlinear
optics because the Kerr effect is essential for the realization
of most nonlinear optical processes [1,2]. In recent decades,
tremendous new applications of the Kerr effect have been
found such as quantum optical squeezing [3,4], quantum en-
tanglement and concentration [5–9], quantum nondemolition
measurements [10–12], single-photon switches and transis-
tors [13], and quantum computation and quantum information
[14–26]. Usually, passive optical media (e.g., glass-based op-
tical fibers) are exploited for generating Kerr nonlinearity,
where excitation schemes are far-off-resonance ones for evad-
ing high optical absorption. The Kerr nonlinearity realized in
this way is weak and thus cannot meet the ever-increasing
demand for optical information processing and transmission.

To obtain a large Kerr nonlinearity, a natural idea is to
make use of active (resonant) optical media, which however
results in significant optical absorption. One of the methods to
resolve this problem is the utilization of electromagnetically
induced transparency (EIT), typically occurring in resonant
three-level atomic systems where the optical absorption of a
probe laser field can be largely suppressed by the quantum
destruction effect induced by a control laser field [27]. In
addition to the suppression of optical absorption, the light
propagation in EIT media exhibits also many other interest-
ing properties, including the significant reduction of group
velocity and the resonant enhancement of Kerr nonlinearity
[28,29], by which important applications (e.g., photonic mem-
ory, quantum phase gates, entangled photon sources, optical
clocks, highly efficient four-wave mixing, optical splitters

and routers, and slow-light solitons) can be realized [19,22–
26,28–48]. Nevertheless, the Kerr nonlinearity obtained in
conventional EIT media is still too small for many nonlinear
optical processes working at single-photon levels.

In recent years, considerable attention has been paid to the
investigation of cold Rydberg atomic gases, where atoms are
electrically excited to quantum states with a very large prin-
cipal quantum number n (i.e., Rydberg states) which possess
many striking features [49–51]. One of the research directions
in this vibrant field is the study of nonlinear and quantum
optical effects based on Rydberg EIT [52,53], where three
levels with a ladder-type configuration are employed, and
the Kerr nonlinearity in such systems has been investigated
both experimentally and theoretically. It has been shown that
the Kerr nonlinearity via the Rydberg EIT can be enhanced
several orders of magnitude compared to conventional EIT
[54–64]. The reason is that the contribution to the nonlinear
optical susceptibilities by the interaction between Rydberg
atoms (called Rydberg-Rydberg interaction) is much larger
than cases where the Rydberg-Rydberg interaction is absent
[62,64,65].1

Recently, Sinclair et al. reported the first experimental
observation of cross-Kerr nonlinearity in a cold 85Rb atomic
gas with an inverted-Y-type level configuration via a double

1If the Rydberg-Rydberg interaction is absent, EIT systems may
support local Kerr nonlinearity with low absorption that occurs by
photon-atom interaction when the two-photon detuning �4 �= 0 (see
[62,64,65]).
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Rydberg EIT [66]. Through the measurement of a nonlinear
phase written onto a probe laser pulse, they found that, due
to the Rydberg-Rydberg interaction, the third-order nonlinear
optical susceptibility χ (3) of the system can reach the order of
magnitude 1 × 10−8 m2 V−2. Because cross-Kerr nonlineari-
ties have potential applications ranging from optical quantum
information processing to quantum nondemolition measure-
ment, it is necessary and timely to make a detailed theoretical
study of the self- and cross-Kerr nonlinear effects in systems
working with the double Rydberg EIT.

In this work we investigate theoretically the Kerr nonlin-
earity in a cold inverted-Y-type atomic gas working under
the condition of double Rydberg EIT. We assume that the
two lower levels of the atoms are Zeeman sublevels (split
from a hyperfine ground-state level by a weak, static magnetic
field) and coupled by a probe laser field with two orthogo-
nally polarized components [see Fig. 1(a)]. By means of an
approach beyond both the mean-field approximation (MFA)

FIG. 1. Schematics of the model. (a) Level diagram and ex-
citation scheme of the double Rydberg EIT, realized by an
inverted-Y-type four-level atomic gas. Here |1〉 and |2〉 are two
ground states (split from a hyperfine ground-state level by a weak
static magnetic field B) and |3〉 and |4〉 are the intermediate state
and the high-lying Rydberg state, respectively. The two circularly
polarized components of the probe field (with half Rabi frequen-
cies �p1 and �p2, respectively) couple the transitions |1〉 ↔ |3〉
and |2〉 ↔ |3〉, respectively. The control field (with the half Rabi
frequency �c) couples the transition |3〉 ↔ |4〉. In addition, � j are
detunings; � jl are rates of spontaneous decay or incoherent popula-
tion transfer. The interaction between the two Rydberg atoms located
at positions r and r′, respectively, is described by the van der Waals
potential VvdW ≡ h̄V (r′ − r), with V (r′ − r) = −C6/|r′ − r|6 (C6 is
the dispersion parameter). (b) Red solid circles show the atoms that
have been excited to the Rydberg state |4〉. Blue solid circles show
the atoms that are not excited to the Rydberg state |4〉. Large pale
red domains (with dashed circles) show Rydberg blockade spheres.
The large red arrow shows �c (the half Rabi frequency of the control
field). The Ep+ and Ep− are the two circularly polarized components
of the probe field Ep, B is the weak static magnetic field (applied
along the z direction), and ψ is the deflection angle of the polar-
ization vector of the probe field, resulted from the magneto-optical
effect.

and the ground-state approximation (GSA) [67],2 we present
systematic and detailed calculations of the third-order nonlin-
ear optical susceptibilities of the system. We show that such a
system possesses giant nonlocal self-Kerr and cross-Kerr non-
linearities contributed by the Rydberg-Rydberg interaction.
Our theoretical result on the cross-Kerr nonlinearity of 85Rb
atomic gas is very close to the experimental measurement
reported by Sinclair et al. [66]. Moreover, we demonstrate
that, by virtue of the double Rydberg EIT, the probe field may
acquire a very large magneto-optical rotation (MOR) if a very
weak external magnetic field is applied.

Before proceeding, we would like to emphasize that, al-
though in recent years a number of theoretical studies on
the Kerr nonlinearity in Rydberg atomic gases have appeared
[55,56,58–64], our work calculates the self- and cross-Kerr
nonlinearities via double EIT beyond the mean-field approx-
imation. Furthermore, our calculated result agrees well with
the experimental observation [66], which will possibly trigger
further theoretical and experimental investigations because
the giant cross-Kerr nonlinearities of Rydberg gases have
important applications in optical and quantum information
processing. Moreover, the method of calculation developed
here has not only given reasonable results agreeing with the
experiment, but also clarified the confusion in the literature
where several theoretical approaches [i.e., MFA, GSA, and
reduced density matrix expansion (RDME); see Secs. III A
and III D] were adopted for the calculation of Kerr nonlinear-
ities in Rydberg gases. In addition, the giant MOR predicted
here is one order of magnitude larger than that obtained by
using conventional EIT (see Sec. IV), which can be used to
design atomic magnetometers with much higher precision.
Thus, the research presented here opens a route for the devel-
opment of nonlocal nonlinear magneto-optics and the results
are promising for practical applications in precision measure-
ments, optical information processing, and transmission based
on Rydberg atomic gases [68–70].

The remainder of the paper is arranged as follows. In Sec. II
the physical model of the double Rydberg EIT is described
and its linear optical property is discussed. In Sec. III the
third-order nonlinear optical susceptibilities of the system in
regimes of both dispersion and dissipation are calculated in
detail beyond the MFA and GSA. In Sec. IV coupled envelope
equations for the two polarization components of the probe
field are derived and the giant MOR and the possibility of
realizing highly sensitive magnetometers are explored. Sec-
tion V contains a summary of the main results obtained in this
work. Some explicit expressions of equations of motion and
related calculation details for finding their solutions are given
in Appendixes A–E.

2The so-called ground-state approximation is the one in which one
assumes that the diagonal elements of the one-atom density matrix
(i.e., atomic populations) ραα are assumed to keep the values of
their initial preparations during the time evolution of the system
([see [67]). Such an approximation was widely used in the study
of conventional EIT and was also employed by some authors for
calculations of the Kerr nonlinearities of Rydberg atomic gases (see,
e.g., Refs. [55,61,63]).
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II. MODEL AND LINEAR DISPERSION RELATION

A. Model

We start by considering a cold, lifetime-broadened,
inverted-Y-type four-level alkali-metal (e.g., rubidium)
atomic gas, with the level diagram and excitation scheme
shown in Fig. 1(a) [66,71]. Here a weak probe laser field with
two orthogonal, circularly polarized components (half Rabi
frequencies �p1 and �p2, respectively) drives the transitions
|1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively, and a strong, linearly
polarized control laser field with half Rabi frequency �c

drives the transition |3〉 ↔ |4〉. The lower levels |1〉 and |2〉
are two Zeeman sublevels (split from a hyperfine ground-state
level by a weak static magnetic field B applied along the z
direction) and |4〉 is a high-lying Rydberg state with a large
principal quantum number n. In the figure, �3 is one-photon
detuning and �2 and �4 are two-photon detunings; � jl is the
spontaneous-emission decay rate from |l〉 to | j〉; �12 (�21)
represents the incoherent population transfer from |1〉 to |2〉
(|2〉 to |1〉). The atomic gas is laser cooled to an ultralow
temperature and the probe (control) field propagates along
the z (−z) direction so that the first-order Doppler effect
can be suppressed [72–75]. A schematic of the experimental
geometry of the system is given in Fig. 1(b). Notice that
in the inverted-Y-type excitation scheme illustrated in
Fig. 1(a), there are two ladder-type excitation paths, i.e.,
|1〉 → |3〉 → |4〉 and |2〉 → |3〉 → |4〉, which constitute two
standard Rydberg EITs (i.e., double Rydberg EIT, with the
state |4〉 a shared Rydberg state).

The expression of the electric field in the system
can be written in the form E = Ep + Ec = (ε̂+Ep+ +
ε̂−Ep−) exp[i(kpz − ωpt )] + ε̂cEc exp[i(−kcz − ωct )] + c.c.
Here Ep+ and ε̂+ ≡ (x̂ + iŷ)/

√
2 [Ep− and ε̂− ≡

(x̂ − iŷ)/
√

2] are, respectively, the amplitude and unit
vector of the right-circular polarization (σ+) component
[left-circular polarization (σ−) component] of the probe field,
with x̂ (ŷ) the unit vector along the x (y) direction; Ec and ε̂c

are the amplitude and polarization unit vector of the control
field, respectively; ωp and kp = ωp/c (ωc and kc = ωc/c) are
the angular frequency and wave number of the probe (control)
field, respectively. The dynamics of the system is controlled
by the Hamiltonian Ĥ = Na

∫
d3rĤ(r, t ), where Ĥ(r, t )

is the Hamiltonian density and Na is the atomic density.
Under the electric dipole approximation and rotating-wave
approximation (RWA), the Hamiltonian density reads

Ĥ = −
4∑

α=2

h̄�α Ŝαα (r, t ) − h̄[�∗
p1Ŝ31(r, t ) + �∗

p2Ŝ32(r, t )

+ �∗
c Ŝ43(r, t ) + H.c.] + Na

∫
d3r′Ŝ44(r′, t )

× h̄V (r′ − r)Ŝ44(r, t ), (1)

where d3r′ = dx′dy′dz′; H.c. represents the Hermitian conju-
gate; �2 = ωp1 − ωp2 − (E2 − E1)/h̄ = −(E2 − E1)/h̄ (be-
cause ωp1 = ωp2 = ωp), �3 = ωp − (E3 − E1)/h̄, and �4 =
ωc + ωp − (E4 − E1)/h̄ are the detunings (with Eα = h̄ωα the
eigenenergy of the state |α〉); and Ŝαβ = |β〉〈α| exp{i[(kβ −
kα ) · r − (ωβ − ωα + �β − �α )t]} (α, β = 1–4) is the

transition operator satisfying the commutation relation

[Ŝαβ (r, t ), Ŝα′β ′ (r′, t )]

= N−1
a δ(r − r′)[δαβ ′ Ŝα′β (r, t ) − δα′β Ŝαβ ′ (r′, t )]. (2)

The half Rabi frequencies of the probe and control fields are
defined by �p1 = (p13 · ε̂−)Ep−/h̄ and �p2 = (p23 · ε̂+)Ep+/h̄
and by �c = (ec · p43)Ec/h̄, respectively, with pαβ the electric
dipole matrix element associated with the transition between
the states |α〉 and |β〉. The third line in the Hamiltonian
density (1) is contributed by the Rydberg-Rydberg
interaction, with the van der Waals potential of the
form V (r′ − r) = −C6/|r′ − r|6 (C6 is the van der Waals
dispersion parameter) describing the interaction between the
atoms located at positions r and r′, respectively [68–70].
The Rydberg-Rydberg interaction results in energy
shifts and hence induces a phenomenon called Rydberg
blockade [50,51], by which only one atom can be excited to
Rydberg states in any spatial region of the atomic ensemble
(i.e., Rydberg blockade sphere) with radius Rb.3 The detailed
derivation of the Hamiltonian (1) is given in Appendix A.

As indicated above, the levels |1〉 and |2〉 are originated
from the Zeeman splitting of a hyperfine ground level. When
the external magnetic field B is applied, the level spacing
between |1〉 and |2〉, i.e., E2 − E1, equals 2μBgF B, which
means that the two-photon detuning �2 = −2μBgF B/h̄ (here
μB and gF are the Bohr magneton and gyromagnetic factor,
respectively). One can speculate that the change of B will
produce changes in the atomic population and coherence and
hence variations of the Kerr nonlinearity and polarization state
of the probe field.

The dynamics of the atomic motion is controlled by the
optical Bloch equation

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − �[ρ̂], (3)

where ρ̂ ≡ 〈Ŝ〉 is the one-body density matrix (DM) (with the
DM elements given by ραβ ≡ 〈Ŝβα〉 for α, β = 1–4)4 and �

is the relaxation matrix describing the spontaneous emission
and dephasing. The explicit expression of Eq. (3) is given by
Eq. (B1).

The evolution of the two polarization components of the
probe field is described by the Maxwell equation ∇2Ep −
(1/c2)∂2Ep/∂t2 = [1/(ε0c2)]∂2Pp/∂t2, with the polarization
intensity defined by Pp = Na{(p13ρ31 + p23ρ32) exp[i(kpz −
ωpt )] + c.c.}, where p13 (p23) is the electric dipole matrix
element related to the transition from |3〉 to |1〉 (|2〉). We
assume that the photon number in the probe field is high so
that a semiclassical description of the system can be adopted

3Here Rb can be estimated by the formula Rb = (|C6/δEIT|)1/6,
where δEIT is the linewidth of the EIT transmission spectrum, given
by δEIT ≈ |�c|2/|�3| for �3 
 γ31 and δEIT = |�c|2/γ31 for |�3| =
0.

4Here 〈Ŝαβ〉 = 〈�(0)|Ŝαβ |�(0)〉, with |�(0)〉 the initial quantum
state of the atomic gas where all the atoms are populated in the
ground states |1〉 and |2〉 before the two probe fields are applied.
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[55,58,62–64]. Under the paraxial and slowly varying enve-
lope approximations, the Maxwell equation is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p1 + κ13ρ31 = 0, (4a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p2 + κ23ρ32 = 0, (4b)

where κ13 = Na|p13 · ε̂−|2ωp/(2ε0ch̄) and κ23 = Na|p23 ·
ε̂+|2ωp/(2ε0ch̄) are coupling constants, with ε0 the vacuum
dielectric constant and c the light speed in vacuum. Note that
for simplicity, we have assumed that the probe field has a
large beam radius in transverse (i.e., x and y) directions, so
the diffraction effect is negligible.

The physical model described above is principally valid
for many alkali-metal atomic gases, such as 85Rb, 87Rb,
and 87Sr. For comparison with the experimental result re-
ported in Ref. [66], in later numerical calculations we
take cold 85Rb gas as an example, for which the atoms
have total nuclear angular momentum I = 5/2. The levels
for realizing the double Rydberg EIT are selected to be
|1〉 = |5 2S1/2, F = 3, mF = 1〉, |2〉 = |5 2S1/2, F = 3, mF =
−1〉, |3〉 = |5 2P3/2, F = 4, mF = 0〉, and |4〉 = |68S1/2〉[76].
The van der Waals dispersion parameter reads C6 � −2π ×
625.6 GHz μm6 [77] and the decay rates are given
by �12 = �21 = 2π × 0.0016 MHz, �3 = 2π × 6.06 MHz,
�4 = 2π × 0.02 MHz, and �13 = �23 = �3/2. For 87Rb
atoms, though having different total nuclear angular momen-
tum (I = 3/2), one can choose similar levels to realize the
double Rydberg EIT and hence to implement related experi-
ments. Note that in our scheme the states |3〉 and |4〉 are not
sensitive to the magnetic field B because of the special choice
of their magnetic quantum number, by which an effective
coupling between the (linearly polarized) control field and the
states |3〉 and |4〉 is allowed only for mF = 0.

B. Linear dispersion relation of the double EIT

We first discuss the linear optical property of the double
Rydberg EIT. In a linear approximation, the Maxwell-Bloch
equations (3) and (4) admit the solution �p j = Fj exp(iθ j ).
Here Fj is a constant, θ j = Kj (ω)z − ωt ( j = 1, 2),5 and
K1(ω) [K2(ω)] is the linear dispersion relation for the σ+ (σ−)
polarization component of the probe field given by

Kj (ω) =ω

c
+ κ j3(ω + d4 j )

2[|�c|2 − (ω + d3 j )(ω + d4 j )]
, (5)

where dα j = �α − � j + iγα j (α = 3, 4 and j = 1, 2) are
constants, with γα j the damping parameters related to the
spontaneous emission and dephasing of the atoms (see
Appendix B).

Figure 2 illustrates absorption spectra Im(K1) (blue dashed
line) and Im(K2) (red solid line) as functions of ω. When

5Generally, in the atomic gas the frequency and wave number of
the probe field are given by ωp + ω and kp + K (ω), respectively (ωp

and ω are the center and sideband frequencies, respectively). Thus
the case ω = 0 corresponds to the probe-field frequency taking its
center frequency ωp.

FIG. 2. Linear absorption spectra Im(K1) (blue dashed line) and
Im(K2) (red solid line) for the σ+ and σ− polarization components
of the probe field, respectively, plotted as functions of ω for �2 =
2π × 1.28 MHz. (a) Case with �c = 0 (no EIT). (b) Case with �c =
2π × 6.37 MHz, for which an EIT window appears for both Im(K1)
and Im(K2) (i.e., a double EIT occurs). When �2 = 0, Im(K1) nearly
coincides with Im(K2) (i.e., they are almost degenerate).

plotting the figure, the system parameters were chosen to be
those given in the preceding section, together with |p13| �
|p23| = 3.58 × 10−27 C cm [76], Na = 1 × 1010 cm−3, �3 =
�4 = 0, and ρ

(0)
11 = ρ

(0)
22 = 0.5.6 Figure 2(a) shows the case

in the absence of the control field (i.e., �c = 0), for which
no EIT occurs [i.e., both Im(K1) and Im(K2) have a single
absorption peak]. Figure 2(b) shows the case in the presence
of the control field (�c = 2π × 6.37 MHz), for which an EIT
transparency window appears near ω = 0 for both Im(K1)
and Im(K2). This means that two EITs occur (or a double
EIT occurs) in the system. Note that if �2 = 0 the curves of
Im(K1) and Im(K2) nearly coincide with each other, which
means that the two EITs are nearly degenerate.

III. GIANT NONLOCAL SELF- AND CROSS-KERR
NONLINEARITIES

A. Calculation of nonlinear optical susceptibilities

We now consider how to calculate the third-order non-
linear optical susceptibilities for this double Rydberg EIT
system. Note that the electric polarization intensity of the
probe field can be written in the form Pp = ε0(ε̂−Ep−χ1 +
ε̂+Ep+χ2) exp[i(kpz − ωpt )] + c.c. (c.c. means complex con-
jugate), where χ1 and χ2 are the optical susceptibilities of the
two polarization components, respectively given by

χ1 = Na(ε̂− · p13)ρ31

ε0Ep−
, (6a)

χ2 = Na(ε̂+ · p23)ρ32

ε0Ep+
. (6b)

To acquire χ1 and χ2, one must solve the Bloch equation
(3) to get one-body DM elements ρ31 and ρ32, which how-
ever depend on the two-body DM elements ραβ,μν (r′, r, t ) =
〈Ŝαβ (r′, t )Ŝμν (r, t )〉 due to the Rydberg-Rydberg interaction
[see the explicit expression given in Eq. (B1)]. Thus one must

6Principally, one can prepare different initial population distribu-
tions ρ

(0)
11 and ρ

(0)
22 (ρ (0)

11 + ρ
(0)
22 = 1) in the ground states |1〉 and |2〉.

For simplicity, here we consider only the case ρ
(0)
11 = ρ

(0)
22 = 0.5.
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solve the equations for the two-body DM elements simulta-
neously, which however involves three-body DM elements
ραβ,μν,γ δ (r′′, r′, r, t ) = 〈Ŝαβ (r′′, t )Ŝμν (r′, t )〉Ŝγ δ (r, t )〉 and so
on. For example, the equation for the two-body DM element
for ρ44,41 reads[

i
∂

∂t
+ i�34 + d41 − V (r′ − r)

]
ρ44,41

+ �cρ34,41 + �cρ44,31 − �p1ρ44,43 − �∗
cρ43,41

− Na

∫
d3r′′ρ44,44,41(r′′, r′, r, t )V (r′′ − r) = 0, (7)

which involves the three-body DM element ρ44,44,41. As a
result, one obtains a chain of infinite equations for N-body
reduced DM elements (N = 1, 2, 3, . . . ,∞) (i.e., BBGKY
hierarchy [78]), which are coupled to each other. For the
problem where the Kerr effect is large, an effective approach
beyond the MFA for solving these reduced DM elements must
be developed. In particular, a technique to truncate such a
chain of equations must be adopted. Our method is to employ
the RDME [79–81]

ραβ,μν,γ δ (r′′, r′, r, t )

= ραβ (r′′, t )ρμν,γ δ (r′, r, t ) + ραβ,μν (r′′, r′, t )ργδ (r, t )

+ ραβ,γ δ (r′′, r, t )ρμν (r′, t )

− 2ραβ (r′′, t )ρμν (r′, t )ργδ (r, t ) (8)

for the three-body DM elements appeared in the equations of
the two-body DM elements. In this way, the chain of infinite
equations can be truncated consistently and thus the problem
can be reduced to solving the closed equations for the one-
and two-body DM elements only [62,64]. We stress that in
our approach the GSA [67] is not used, in which the equations
of motion of the diagonal DM elements are solved together
with those of the nondiagonal ones. Thus the approach is valid
for cases where the system possesses strong Kerr nonlinear
effects.

Similar to Ref. [62], based on the RDME and noting
that the calculation of χ1 and χ2 can be accomplished
by solving the Bloch equation (3) [or the closed equa-
tions for the one- and two-body DM elements) in a
steady state (i.e., ∂/∂t = 0) through a perturbation expan-
sion by taking �p j as small quantities, we can get the
solution of ρ3 j up to the third-order approximation, with
the result given by ρ3 j � a(1)

3 j �p j + ∑1,2
l a(3,loc)

3 j,l |�pl |2�p j +∫
d3r′ ∑1,2

l a(3,nloc)
3 j,l |�pl (r′)|2�p j ( j = 1, 2). As a result, we

obtain the expression of the optical susceptibility of jth po-
larization component of the probe field

χ j = χ
(1)
j + χ

(3,loc)
j1 |Ep−|2 + χ

(3,loc)
j2 |Ep+|2

+ χ
(3,nloc)
j1 |Ep−|2 + χ

(3,nloc)
j2 |Ep+|2. (9)

Here χ
(1)
j = Na|p j3|2

ε0 h̄
d4 j

2Dj
is the first-order (linear) susceptibility,

while

χ
(3,loc)
jl = Nab j

Dj

[
d4l

(
a(2)

j j,l − a(2)
33,l

) + �∗
ca(2)

43,l + δ jl d4l a
(2)
l j

]
,

(10a)

χ
(3,nloc)
jl = N 2

a b j�
∗
c

Dj

∫
d3r′a(3)

44,4 j,l (r
′ − r)V (r′ − r), (10b)

are the local and nonlocal third-order nonlinear suscep-
tibilities, contributed by the photon-atom interaction [65]
and the Rydberg-Rydberg interaction [which is nonlocal,
manifested by the integration in (10b)], respectively. In the ex-
pressions (10), Dj = |�c|2 − d3 jd4 j and b j = |p j3|4/(ε0 h̄3).
Physically, the case for j = l ( j �= l) comes from the self-Kerr
(cross-Kerr) effect of the system, describing the self-phase
(cross-phase) modulation of the probe field. The detailed
derivation of the result (D6) and explicit expressions of a(2)

j j,l ,

a(2)
43,l , a(2)

l j , and a(3)
44,4 j,l in the expressions (10) are presented in

Appendixes C and D, respectively. A notable character of the
nonlocal Kerr nonlinear susceptibilities χ

(3,nloc)
jl is that they

are proportional to N 2
a , while the local Kerr nonlinear sus-

ceptibilities χ
(3,loc)
jl are proportional to Na. Because the local

nonlinear susceptibilities χ
(3,loc)
jl are generally three orders of

magnitude smaller than the nonlocal nonlinear susceptibilities
χ

(3,nloc)
jl (they become vanishing when the two-photon detun-

ing �4 = 0), we will neglect them in the following discussion.

B. Kerr nonlinearities in the dispersion regime

Based on the analytical result given above, numerical val-
ues of the third-order Kerr nonlinear optical susceptibilities
can be calculated for realistic system parameters. The Kerr
nonlinearities may be divided into different regimes depend-
ing on the system parameters, mainly depending on the ratio
between the single-photon detuning �3 and the decay rate �3

(=�13 + �23) of the intermediate state |3〉 [55,62,68–70]. In
particular, if �3 is much larger (smaller) than �3, the Kerr
nonlinearity is in a dispersion (dissipation) regime.

We first study the case of the dispersion regime
by taking �3 = 2π × 100 MHz (i.e., the ratio �3/�3 =
16.5 
 1), �2 = 2π × 0.5 MHz (corresponding to B =
11.9 μT), �4 = 2π × 2 MHz, �c = 2π × 31 MHz, Na =
4 × 1010 cm−3, and ρ

(0)
11 = ρ

(0)
22 = 0.5.6 Because of the large

detunings, the dephasing rates γ
dep
jl play no significant role

and thus can be neglected. Based on the formula (10b), we
obtain the result of the self-Kerr and the cross-Kerr nonlinear
optical susceptibilities, given in Table I.

From the table we see that the Kerr nonlinear susceptibili-
ties χ

(3,nloc)
jl possess the following interesting features.

(i) The values of the real parts of both the self-Kerr
and cross-Kerr nonlinear susceptibilities can reach the or-
der of magnitude 10−8 m2 V−2 for atomic density Na =
4 × 1010 cm−3. Such giant Kerr nonlinearities stem from the
strong Rydberg-Rydberg interaction in the atomic ensemble.

(ii) The imaginary parts of the self-Kerr (cross-Kerr) non-
linear susceptibilities (i.e., Im[χ (3,nloc)

jl ]) are much smaller

than the corresponding real parts (i.e., Re[χ (3,nloc)
jl ]). Thus

the nonlinear absorption of the probe field can be largely
suppressed, which is due to the EIT effect and the contribution
of the large detuning �3.

(iii) The self-Kerr nonlinear susceptibilities χ
(3,nloc)
j j ( j =

1, 2) have the same orders as the cross-Kerr nonlinear suscep-
tibilities χ

(3,nloc)
jl ( j, l = 1, 2 and j �= l) even for a low atomic
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TABLE I. Third-order Kerr nonlinear optical susceptibilities in
the dispersion regime: χ

(3,nloc)
11 and χ

(3,nloc)
22 are the third-order self-

Kerr nonlinear susceptibilities of the first and second polarization
components of the probe field, respectively, and χ

(3,nloc)
12 and χ

(3,nloc)
21

are third-order cross-Kerr nonlinear susceptibilities between the two
polarization components of the probe field. The system parameters
are �2 = 2π × 0.5 MHz (i.e., B = 11.9 μT), �3 = 2π × 100 MHz,
�4 = 2π × 2 MHz, �c = 2π × 31 MHz, and Na = 4 × 1010 cm−3.

Susceptibility Value (m2 V−2)

χ
(3,nloc)
11 (−1.5107 + i0.0063) × 10−8

χ
(3,nloc)
12 (−1.3519 + i0.0049) × 10−8

χ
(3,nloc)
21 (−1.3521 + i0.0115) × 10−8

χ
(3,nloc)
22 (−1.2092 + i0.0097) × 10−8

density. This is quite different from those obtained by conven-
tional EIT systems (without the Rydberg-Rydberg interaction)
where the self-Kerr nonlinear susceptibilities can be made
much smaller than the cross-Kerr nonlinear susceptibilities for
a low atomic density [82].

The giant Kerr nonlinear susceptibilities obtained in the
present double Rydberg EIT system are very promising for
realizing many nonlinear and quantum optical processes,
such as quantum phase gates, few-photon bound states, and
quantum nondemolition measurements [68–70], and also for
realizing nonlocal weak-light vector solitons and vortices, and
so on.

C. Kerr nonlinearities in the dissipation regime

We turn to study the case of the dissipation regime of the
Kerr nonlinearity, which can be realized by taking smaller
values of �3. As an example, we take �3 = 0 and the other
system parameters are �2 = 0 (i.e., B = 0), �4 = 0, �c =
2π × 9 MHz, Na = 4 × 1010 cm−3, and ρ

(0)
11 = ρ

(0)
22 = 0.5. In

this situation, some additional decoherence processes (such
as high-order Doppler effects,7 dephasing of the Rydberg
state by decaying to nearby nP states, blackbody radiation,
atomic collisions, and frequency instability of the lasers
used) will be significant and hence should be taken into ac-
count in the theoretical calculation. To effectively include
these decoherence processes, we assume γ

dep
31 = γ

dep
32 = 2π ×

90 MHz and γ
dep
41 = γ

dep
42 = 2π × 1.8 MHz. Due to the com-

plete resonance, one maybe expects that the Kerr effect in
this dissipation regime could be larger than that obtained in
the dispersion regime given in the preceding section, but the
additional coherence processes will play roles in lowering the
Kerr nonlinearities of the system.

With the use of the formula (10b), the self-Kerr and the
cross-Kerr nonlinear optical susceptibilities in the dissipa-
tion regime can be numerically calculated, with the result
presented in Table II. From the table we see that the Kerr

7The high-order (residual) Doppler effects in the Rydberg EIT are
much larger than that in conventional EIT because the probe and
control fields in the system of Rydberg EIT have a large wavelength
difference.

TABLE II. Third-order Kerr nonlinear optical susceptibilities in
the dissipation regime: χ

(3,nloc)
11 and χ

(3,nloc)
22 are the third-order self-

Kerr nonlinear susceptibilities of the first and second polarization
components of the probe field, respectively, and χ

(3,nloc)
12 and χ

(3,nloc)
21

are third-order cross-Kerr nonlinear susceptibilities between the two
polarization components of the probe field. The system parameters
are �2 = 0 (i.e., B = 0), �3 = �4 = 0, �c = 2π × 9 MHz, and
Na = 4 × 1010 cm−3.

Susceptibility Value (m2 V−2)

χ
(3,nloc)
11 (−1.4946 + i1.4948) × 10−8

χ
(3,nloc)
12 (−1.4946 + i1.4948) × 10−8

χ
(3,nloc)
21 (−1.4946 + i1.4948) × 10−8

χ
(3,nloc)
22 (−1.4946 + i1.4948) × 10−8

nonlinear susceptibilities χ
(3,nloc)
jl in this regime have the fol-

lowing characters.
(i) The values of the self-Kerr and cross-Kerr nonlin-

ear susceptibilities can reach the order of 10−8 m2 V−2 for
atomic density Na = 4 × 1010 cm−3, which also stems from
the strong Rydberg-Rydberg interaction.

(ii) Different from the dispersion regime, the imaginary
parts of the Kerr nonlinear susceptibilities Im[χ (3,nloc)

jl ] (for
both the self-Kerr and cross-Kerr ones) in this dissipation
regime have the same orders of magnitude as their corre-
sponding real parts Re[χ (3,nloc)

jl ], which means that both the
nonlinear optical absorption and the phase modulation are
significant in the system.

Recently, the first experimental measurement on the real
part of the cross-Kerr nonlinear susceptibility of a cold 85Rb
gas was reported in Ref. [66], where the system works in a
dissipation regime with the parameters � j ( j = 2, 3, 4), �c,
and Na the same as those given in caption of the Table II. We
note that there is a small difference between our theoretical re-
sult given here and the experimental one (i.e., Re[χ (3,nloc)

12 ] ≈
1.0 × 10−8 m2 V−2)8 reported in Ref. [66]. The physical rea-
son for this difference is probably due to other physical factors
(e.g., the involvement of multiple Rydberg states, imperfect
EIT, or some other unknown noise), which existed in the
experiment [66] but are not considered in our theoretical ap-
proach. Clarifying this difference is a topic deserving further
exploration.

Generally, one can tune the ratio �3/�3 to realize a tran-
sition from the dispersive Kerr nonlinearity to the dissipative
Kerr nonlinearity. In addition, the values of the Kerr nonlin-
ear susceptibilities can be further optimized by the choice
of system parameters, which are omitted here. The giant
Kerr nonlinearities in the dissipation regime have promising
applications for generating single photons and realizing all-
optical switches and transistors at single-photon levels, etc.
[68–70].

8The real parts of the third-order Kerr nonlinear susceptibilities
(i.e., Re[χ (3,nloc)

jl ]) are negative (self-defocusing type) because the
Rydberg-Rydberg interaction in the system is repulsive.
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D. Comparison between the results obtained
by the MFA, GSA, and RDME

For calculations of the Kerr nonlinearities in Rydberg
atomic gases, there exist three theoretical approaches: the
MFA, RDME, and RDME with GSA (here called GSA
for simplicity) [55,58–64,80,83–87]. The differences between
these approaches are in the methods of treating high-order
many-body correlators (i.e., many-body DM elements) that
appear in the equations of the lower-order correlators. For
completeness, here we compare the self- and cross-Kerr non-
linear optical susceptibilities for our model obtained through
the MFA, GSA, and RDME, respectively.

(i) The MFA. In this approach, one assumes that any two-
body correlators can be decomposed as

ραβ,μν (r′, r, t ) ≈ ραβ (r′, t )ρμν (r, t ). (11)

With such an assumption, the one-body DM equation (3)
becomes self-closed and hence can be solved very simply.
However, in this approach the atom-atom correlations are
completely neglected, which is not valid for systems with
strong atom-atom interaction. In particular, it is broken for
many nonlinear optical processes in Rydberg gases due to the
strong Rydberg-Rydberg interaction [80]. Under the MFA and
using the same system parameters as those given in Sec. III B,
one obtains the Kerr nonlinear susceptibilities of the system,
given by χ

(3,nloc)
jl � −(1.18 + i0.02) × 10−2 m2 V−2, which

is obviously unacceptable. Nevertheless, the MFA becomes
valid if the atomic density Na is very low so that the correla-
tion effect between atoms plays no significant role.

(ii) The GSA. In this approach, one assumes that the di-
agonal elements of the one-body DM (i.e., the population in
the atomic quantum states) are not changed during the time
evolution of the system, e.g., ρ11 = a0 and ρ22 = b0 (with
a0 + b0 = 1) and ρ33 = ρ44 = 0. With the GSA, the number
of equations for the one-body DM elements is largely reduced,
which also results in a significant reduction of the number of
equations for the high-order DM elements.9 In this way, the
calculation of the nonlinear optical evolution of the system
can be simplified greatly. However, such an approximation
is questionable for Rydberg gases because the change in
the atomic population cannot be neglected due to the strong
Rydberg-Rydberg interaction, especially for the case with a
high atomic density. Hence one must take into account and
solve the equations of motion for the diagonal DM elements,
which give nonzero ρ33 and ρ44 and hence non-negligible
contributions to the Kerr nonlinear optical susceptibilities in
the system [62].

(iii) The RDME. This is the approach used in our calcu-
lations [62,64], in which all the equations for the diagonal
and nondiagonal one-body DM elements are considered; the
three-body DM elements appearing in the equations of the

9In the GSA, there is another assumption that must be used
for decomposing the two-body DM elements (which describe the
Rydberg-Rydberg interaction appearing in the equations of the one-
body DM elements) into three-body DM elements. In order to make
the problem closed and solvable, a truncation of infinite hierarchy of
equations is still necessary.

FIG. 3. Comparison between the results of the Kerr nonlin-
ear optical susceptibilities χ

(3,nloc)
jl ( j, l = 1, 2) in the dispersion

regime, obtained by using the MFA, GSA, and RDME. (a) Real
part of χ

(3,nloc)
11 (i.e., Re[χ (3,nloc)

11 ]) as a function of atomic den-
sity Na, obtained by the MFA (gray dashed line), GSA (blue
dash-dotted line), and RDME (red solid line). (b)–(d) Similar to
(a) but for (b) Re[χ (3,nloc)

12 ], (c) Re[χ (3,nloc)
21 ], and (d) Re[χ (3,nloc)

22 ]. The
system parameters are �2 = 2π × 0.5 MHz, �3 = 2π × 100 MHz,
�4 = 2π × 2 MHz, and �c = 2π × 31 MHz. The susceptibilities
obtained by the MFA shown in all four panels have been divided
by 2 × 106. The inset in (a) is the natural logarithm diagram of
|Re[χ (3,nloc)

11 ]| for the results obtained by the MFA, GSA, and RDME.

two-body DM elements are factorized by using the formula
(8) and hence the equations for the one- and two-body DMs
become closed. It is an approach beyond both the MFA and the
GSA and can be solved by using the perturbation expansion,
presented in Appendix D. Note that the contribution by the
two-body DM elements starts only from the second-order ap-
proximation; for the inverted-Y-type system considered here,
in the third-order approximation of the perturbation expansion
there are eight correlator equations for each component of the
probe field, given by Eq. (D3).

For a comparison of the three theoretical approaches,
Fig. 3 shows the results of the real parts of the self-Kerr
and cross-Kerr nonlinear optical susceptibilities χ

(3,nloc)
jl , i.e.,

Re[χ (3,nloc)
jl ] ( j, l = 1, 2), in a dispersion regime, which are

obtained by exploiting the MFA (gray dashed lines), GSA
(blue dash-dotted lines), and RDME (red solid lines). Illus-
trated are Re[χ (3,nloc)

11 ] [Fig. 3(a)], Re[χ (3,nloc)
12 ] [Fig. 3(b)],

Re[χ (3,nloc)
21 ] [Fig. 3(c)], and Re[χ (3,nloc)

22 ] [Fig. 3(d)] as func-
tions of the atomic density Na. When plotting the figure, the
system parameters were chosen to be �2 = 2π × 0.5 MHz,
�3 = 2π × 100 MHz, �3 = 2π × 2 MHz, and �c = 2π ×
31 MHz. Note that, for the convenience of the comparison, the
Kerr nonlinear susceptibilities obtained by the MFA shown
in all four panels have been divided by 2 × 106. The inset in
Fig. 3(a) is the natural logarithm diagram of |Re[χ (3,nloc)

11 ]| for
the results obtained by the MFA, GSA, and RDME, respec-
tively.
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By inspecting Fig. 3, we arrive at the following conclu-
sions. (i) The Kerr nonlinear susceptibilities obtained by using
the MFA are much larger than those obtained by using the
GSA and RDME, which are not physically reasonable, in par-
ticular for the case of high atomic density. (ii) For low atomic
density, the results obtained by the GSA and by the RDME are
closed; however, for high atomic density the results obtained
by these two approaches display very different behaviors. In
particular, the values given by the GSA are lower than those
given by the RDME. This means that the contributions by
the nonzero ρ33 and ρ44 (disregarded in the GSA) cannot be
neglected.

IV. GIANT MAGNETO-OPTICAL ROTATIONS

Finally, as one of the promising applications of the double
Rydberg EIT and the enhanced Kerr effects illustrated above,
we consider the MOR [72] of the system and show that it
is possible to realize a giant enhancement of the MOR of
the probe field if an external magnetic field B = (0, 0, B) is
applied and the system works in the dispersive nonlinearity
regime. The MOR enhancement can be used to design a mag-
netometer [73] that can measure very weak magnetic fields
with very high precision.

As indicated in Sec. II A, when the magnetic field B is
present the Zeeman effect generated by the magnetic field
makes the levels |1〉 and |2〉 (which are degenerate when B =
0) produce the energy spacing �E = E2 − E1 = 2μBgF B.
For the D2 line of 85Rb atoms, gF = 1/3; thus we have the
expression of the two-photon detuning [see Fig. 1(a)]

�2 = −2μBB

3h̄
, (12)

which will appear in the Bloch equation (3) (see the ex-
plicit expression presented in Appendix B, where dαβ ≡
�α − �β + iγαβ) and result in a MOR of the probe field. We
stress that, due to the choice of magnetic quantum numbers
and the linear polarization of the control field, the levels |3〉
and |4〉 are not sensitive to the applied magnetic field.

To investigate the MOR, one needs the nonlinear coupled
equations controlling the evolution of the envelopes of the two
polarization components of the probe field. Such equations
can be derived by using the method of multiple scales [64,88]
and have the nondimensional form

i
∂u j

∂s
−

(
2∑

l=1

w jl |ul |2
)

u j

−
∫

d3ζ ′
2∑

l=1

g jl (�ζ ′ − �ζ )|ul (�ζ ′)|2u j (�ζ ) = 0, (13)

where we have defined u j = Fj/U0 (Fj is the envelope of the
jth polarization component, with j = 1, 2), s = z/LNL, and
�ζ = r/R0 = (ξ, η, s). In these definitions, U0 is the typical
half Rabi frequency and LNL = 1/(|W22|U 2

0 ) is the nonlinear-
ity length. In Eq. (13) we have also defined w jl = Wjl/|W22|
and gjl = Gjl/|W22|. Here Wjl (proportional to χ

(3,loc)
jl ) are

coefficients of local Kerr nonlinearities characterizing the
self-phase modulations (SPMs) for j = l and cross-phase
modulations (CPMs) for j �= l , and Gjl (proportional to

χ
(3,nloc)
jl ) are coefficients of nonlocal Kerr nonlinearities char-

acterizing the nonlocal SPMs for j = l and CPMs for j �= l .
The detailed derivation of Eq. (13) and explicit expressions of
Wjl and Gjl are presented in Appendix E.

Equation (13) admits the exact solution (describing phase
modulation) u j = Aj exp(−iϕ j s), where ϕ j = ∑2

l=1[w jl +∫
d3ζg jl (�ζ )]A2

l , with Aj ( j = 1, 2) arbitrary constants. Ex-
pressed by the original variables, the solution takes the form

�p j = U0Aj exp(iKjL)

× exp

{
−

2∑
l=1

A2
l

[
w jl +

∫
d3ζg jl (�ζ )

]
L/LNL

}
, (14)

where L is the length of the atomic cell. To illustrate
how the MOR occurs, we define the parameters ψlin, ψloc,
ψnloc, and ψtot, which denote the rotation angles contributed
by the linear, local nonlinear, nonlocal nonlinear, and total
magneto-optical effects in the system, respectively. A simple
calculation gives the following expressions:

ψlin = L

2
(ϕ1 − ϕ2), (15a)

ψloc = L

2LNL

[
(w11 + w12)A2

1 − (w21 + w22)A2
2

]
, (15b)

ψnloc = L

2LNL

∫
d3ζ

2∑
l=1

[
g1l (�ζ )A2

1 − g2l (�ζ )A2
2

]
. (15c)

ψtot = ψlin − ψloc − ψnloc. (15d)

Figure 4(a) shows a schematic of the MOR, where the
magnetic field B is applied along with the propagation (i.e., z)
direction and the red (blue) solid circular curve with an arrow
gives the polarization direction of the circular polarization
component Ep+ (Ep−) of the probe field, which is orthogonal
to the propagation direction. The gray region is the atomic cell
and ψtot is the rotation angle due to the MOR after passing
through the atomic cell.

Figure 4(b) shows MOR angles (in radian units) of ψlin

(green dashed line), ψloc (yellow dotted line), ψnloc (blue
dash-dotted line), and ψtot (red solid ine) as functions of
the magnetic field B (in microtesla units) for L = 5 mm.
When plotting the figure, the system parameters were taken
to be �3 = 2π × 100 MHz, �4 = 2π × 0.18 MHz, �c =
2π × 6.5 MHz, Na = 3 × 1010 cm−3, and A1U0 = A2U0 =
2.74 × 106 s−1.

From the figure we see that ψlin and ψloc are very small
and have a very weak dependence on the magnetic field
B; however, ψnloc is strongly dependent on B and increases
rapidly as B increases. In fact, ψnloc can take a sizable value
and it is the main contributor to the total MOR angle ψtot

when the magnetic field departs from zero. For instance, for
B = 0.9999 μT we obtain the total MOR angle of the probe
field

ψtot = −0.2016 rad (�−11.55◦), (16)

which is one order of magnitude larger than that obtained by
using conventional EITs (without Rydberg-Rydberg interac-
tions) where ψtot is estimated to be 0.0265 rad (�1.5192◦)
only. Consequently, the Rydberg-Rydberg interaction in the
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FIG. 4. Giant magneto-optical rotation of the probe field con-
tributed by the enhanced Kerr effects. (a) Schematic of the MOR with
the magnetic field applied along the propagation (i.e., z) direction of
the probe field. The red (blue) solid circular curve with an arrow
is the polarization direction for the circular polarization component
Ep+ (Ep−), which is orthogonal to the propagation direction. In order
to facilitate the distinction, the two components in the same position
are separated by a little distance. Here ψtot is the rotation angle due to
the MOR. (b) The MOR angles as functions of the applied magnetic
field B for the atomic-cell length L = 5 mm. Here ψlin is the rotation
angle due to the linear MOR (green dashed line), ψloc is the rotation
angle due to the local Kerr nonlinearities (yellow dotted line), ψnloc

is the rotation angle due to the nonlocal Kerr nonlinearities (blue
dash-dotted line), and ψtot = ψlin − ψloc − ψnloc is the total rotation
angle (red solid line).

system may be harnessed to realize a giant MOR of the probe
field. Based on the giant MOR, one can design a magne-
tometer through double Rydberg EIT, by which very weak
magnetic fields can be measured with very high precision.

V. SUMMARY

In this work we have investigated the Kerr nonlinearities
and related magneto-optical effects for a probe laser field with
two orthogonal polarization components, propagating in a
cold Rydberg atomic gas with an inverted-Y-type level config-
uration and working under the condition of a double EIT. By
means of an approach beyond both the MFA and the GSA, we
have carried out systematic and detailed calculations on the
third-order nonlinear optical susceptibilities and demonstrated
that such a system supports giant nonlocal self- and cross-Kerr
nonlinearities, which are contributed by the Rydberg-Rydberg
interaction via the double EIT. The theoretical result of the

cross-Kerr nonlinearity for 85Rb atomic gas is very close to
the experimental one reported recently. In addition, we have
shown that the probe laser field can gain a very large MOR un-
der the action of an external weak magnetic field. The research
results reported in the present work are useful for the devel-
opment of nonlocal nonlinear magneto-optics and also have
potential practical applications for precision measurements
and for optical information processing and transmission, in-
cluding the design of atomic magnetometers, quantum phase
gates, few-photon bound states, quantum nondemolition mea-
surement, nonlocal weak-light vector solitons and vortices,
and so on.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN
DENSITY

For completeness, here we give a detailed derivation of the
Hamiltonian density (1) in the main text.

1. Hamiltonian for a single atom interacting with the laser fields

Under the electric dipole approximation, the Hamiltonian
of a single atom at a given position r reads

Ĥsingle = Ĥ0 + Ĥ ′, Ĥ ′ = −p · E(r, t ). (A1)

Here Ĥ0 is the Hamiltonian of the atom in the absence of
the external optical field E, Ĥ ′ is the interaction Hamiltonian
between the atom and the laser field, and p is the electric
dipole moment of the atom. The laser field is E = Ep1 +
Ep2 + Ec, with Ep j = ep jEp j exp[i(kpjz − ωp jt )] + c.c. ( j =
1, 2) and Ec = ecEc exp[i(−kcz − ωct )] + c.c. Assuming |α〉
is the eigenstate of Ĥ0, i.e., Ĥ0|α〉 = Eα|α〉 (α = 1–4), we
have

Ĥsingle =
∑

α

Eα|α〉〈α| − E(r, t ) ·
∑
α,β

pαβ |α〉〈β|

=
∑

α

Eασ̂αα − E(r, t ) ·
∑
α,β

pαβ σ̂αβ, (A2)

where σ̂αβ = |α〉〈β| is the transition matrix. Introducing the
transformation σ̂αβ (r, t ) = Û †(r, t )σ̂αβÛ (r, t ), where Û (r, t )
is the evolution operator satisfying the Schrödinger equation
ih̄ ∂

∂t Û (r, t ) = ĤsingleÛ (r, t ), we obtain the Hamiltonian in the
Heisenberg picture

Ĥ =
∑

α

Eασ̂αα (r, t ) − E(r, t ) ·
∑
α,β

pαβσ̂αβ (r, t ), (A3)

with σ̂αβ (r, t ) satisfying the commutation relation [σ̂αβ

(r, t ), σ̂α′β ′ (r′, t )] = δ(r−r′)[δα′β σ̂αβ ′ (r, t )−δαβ ′ σ̂α′β (r, t )].
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2. Hamiltonian and equation of motion for an atomic ensemble
with Rydberg-Rydberg interaction

Based on the above result, the Hamiltonian of an
atomic ensemble with density Na (assumed to be a con-
stant for simplicity) reads Ĥensemble = ∑

j[
∑

α Eασ̂αα (r j, t ) −
E(r j, t ) · ∑

αβ pαβσ̂αβ (r j, t )], which can be written in the
form

Ĥensemble = Na

∫
d3r

[∑
α

Eασ̂αα (r, t )

−E(r, t ) ·
∑
α,β

pαβ σ̂αβ (r, t )

]
. (A4)

The Rydberg-Rydberg interaction energy between the atoms
at the positions r j and r j′ , respectively, is σ̂44(r j′ , t )VvdW(r j′ −
r j )σ̂44(r j, t ); the total energy due to the Rydberg-
Rydberg interaction is ĤvdW = ∑

j, j′ σ̂44(r j′ , t )VvdW(r j′ −
r j )σ̂44(r j, t ) = N 2

a

∫
d3r

∫
d3r′σ̂44(r′, t )h̄V (r′ − r)σ̂44(r, t ),

where h̄V (r′ − r) ≡ VvdW(r′ − r) is the van der Waals

interaction potential, with r′ �= r [70]. Hence, in the presence
of the Rydberg-Rydberg interaction, the Hamiltonian of the
atomic ensemble is given by Ĥtotal = Ĥessemble + ĤvdW =
N

∫
d3rHtotal(r, t ), where

Htotal(r, t ) =
∑

α

Eασ̂αα (r, t ) − E(r, t ) ·
∑
αβ

pαβ σ̂αβ (r, t )

+Na

∫
d3r′σ̂44(r′, t )h̄V (r′ − r)σ̂44(r, t )

(A5)

is the Hamiltonian density. The Heisenberg equation of mo-
tion for σ̂αβ (r, t ) reads

ih̄
∂

∂t
σ̂αβ (r, t ) = [σ̂αβ (r, t ), Ĥtotal]. (A6)

Making the transformation σ̂αβ (r, t ) = Ŝβα (r, t ) exp{i[(kβ −
kα ) · r − ( Eβ−Eα

h̄ + �β − �α )t]}, with k1 = 0, k2 =
kp1 − kp2, k3 = kp1, k4 = kp1 + kc, �1 = 0, �2 =
ωp1 − (E3 − E1)/h̄, �2 = ωp1 − ωp2 − (E2 − E1)/h̄, and
�4 = ωc + ωp1 − (E4 − E1)/h̄, the Hamiltonian density
becomes

Htotal(r, t ) =
∑

α

Eα Ŝαα (r, t ) −
∑
αβ

(pαβ · E)Ŝαβ (r, t ) exp

{
i

[
(kα − kβ ) · r −

(
Eα − Eβ

h̄
+ �α − �β

)
t

]}

+Na

∫
d3r′Ŝ44(r′, t )h̄V (r′ − r)Ŝ44(r, t ), (A7)

which is the Hamiltonian density. The Heisenberg equation (A6) becomes

[
i
∂

∂t
+

(Eα − Eβ

h̄
+ �α − �β

)]
Ŝαβ (r, t ) = 1

h̄
[Ŝαβ (r, t ), Ĥtotal]. (A8)

3. Hamiltonian under the rotating-wave approximation

Because the probe and control fields have a near-resonance interaction with the atoms, one can make a RWA to simply the
Hamiltonian [2]. By keeping only the near-resonance terms, Eq. (A7) is reduced to the RWA Hamiltonian

ĤRWA(r, t ) ≡
∑

α

Eα Ŝαα (r, t ) − h̄
[
�∗

p1Ŝ31(r, t ) + �∗
p2Ŝ32(r, t ) + �∗

c Ŝ43(r, t ) + H.c.
]

+Na

∫
d3r′Ŝ44(r′, t )h̄V (r′ − r)Ŝ44(r, t ). (A9)

For convenience, we define a Hamiltonian density

Ĥ(r, t ) ≡ −
∑

α

(Eα + h̄�α )Ŝαα (r, t ) + ĤRWA(r, t )

= −
∑

α

h̄�α Ŝαα − h̄[�∗
p1Ŝ31(r, t ) + �∗

p2Ŝ32(r, t ) + �∗
c Ŝ43(r, t ) + H.c.] + Na

∫
d3r′Ŝrr (r′, t )h̄V (r′ − r)Ŝrr (r, t ),

(A10)
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which is the one given in Eq. (1). With the total Hamiltonian Ĥ = Na
∫

d3rĤ(r, t ), Eq. (A8) is reduced to the simplified
form

i
∂

∂t
Ŝαβ (r, t ) = 1

h̄
[Ŝαβ, Ĥ ]. (A11)

APPENDIX B: EXPLICIT EXPRESSION OF THE OPTICAL BLOCH EQUATION

Based on the Heisenberg equation of motion (A11) and taking ep1 = ε̂+, ep2 = ε̂−, ec = ε̂c, Ep1 = Ep+, Ep2 = Ep−, kp1 =
kp2 = kp, and ωp1 = ωp2 = ωp, we can obtain an optical Bloch equation for the DM elements ραβ (r, t ) = 〈Ŝαβ (r, t )〉 (α, β =
1–4), with the explicit form given by

i
∂

∂t
ρ11 + i�21ρ11 − i�12ρ22 − i�13ρ33 + �∗

p1ρ31 − �p1ρ13 = 0, (B1a)

i
∂

∂t
ρ22 + i�12ρ22 − i�21ρ11 − i�23ρ33 + �∗

p2ρ32 − �p2ρ23 = 0, (B1b)

i
∂

∂t
ρ33 + i�3ρ33 − i�34ρ44 − �∗

p1ρ31 + �p1ρ13 − �∗
p2ρ32 + �p2ρ23 + �∗

cρ43 − �cρ34 = 0, (B1c)

i
∂

∂t
ρ44 + i�34ρ44 − �∗

cρ43 + �cρ34 = 0 (B1d)

for diagonal matrix elements and (
i
∂

∂t
+ d21

)
ρ21 + �∗

p2ρ31 − �p1ρ23 = 0, (B1e)

(
i
∂

∂t
+ d31

)
ρ31 + �∗

cρ41 + �p1(ρ11 − ρ33) + �p2ρ21 = 0, (B1f)

(
i
∂

∂t
+ d32

)
ρ32 + �∗

cρ42 + �p2(ρ22 − ρ33) + �p1ρ12 = 0, (B1g)

(
i
∂

∂t
+ d41

)
ρ41 + �cρ31 − �p1ρ43 − Na

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (B1h)

(
i
∂

∂t
+ d42

)
ρ42 + �cρ32 − �p2ρ43 − Na

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (B1i)

(
i
∂

∂t
+ d43

)
ρ43 + �c(ρ33 − ρ44) − �∗

p1ρ41 − �∗
p2ρ42 − Na

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0 (B1j)

for nondiagonal matrix elements. Here dαβ = �α − �β + iγαβ , γαβ = (�α + �β )/2 + γ
dep
αβ , �β = ∑

α<β �αβ�αβ is the spon-

taneous emission decay rate from the state |β〉 to the state |α〉, γ
dep
αβ is the dephasing rate reflecting the loss of phase

coherence between |α〉 and |β〉, and VvdW ≡ h̄V (r′ − r) is the van der Waals interaction potential between two Rydberg
atoms located at positions r and r′. Note that the above equations for one-body DM elements involve two-body DM elements
ρ44,4α (r′, r, t ) = 〈Ŝ44(r′, t )Ŝ4α (r, t )〉 (α = 1, 2, 3).

APPENDIX C: STEADY-STATE SOLUTIONS OF THE
BLOCH EQUATION UP TO THIRD-ORDER

APPROXIMATION

The expressions of the Kerr nonlinear susceptibilities
of the system can be obtained by solve the Bloch equa-
tion (B1) under a steady-state approximation (i.e., tak-
ing ∂/∂t = 0). To this end, we make the perturbation
expansion ραα = ρ (0)

αα + ερ (1)
αα + ε2ρ (2)

αα + · · · (α = 1, 2, 3, 4)
and ραβ = ερ

(1)
αβ + ε2ρ

(2)
αβ + · · · (α = 2, 3, 4; β = 1, 2, 3; and

β < α), where ε is a dimensionless small parameter char-
acterizing the typical amplitude of the probe field, i.e.,
�p1 ≈ �p2 ∼ ε.

1. Zeroth- and first-order solutions

Substituting the perturbation expansion described above
into the Bloch equation (B1), we get the zeroth-order solution
ρ

(0)
11 + ρ

(0)
22 = 1 with all the other ρ

(0)
jl equal to zero. Here we

assume ρ
(0)
11 = ρ

(0)
22 = 1/2, i.e., the initial population of atoms

is prepared in the two ground states |1〉 and |2〉. At the first
order of the expansion, the solution for ρ

(1)
31 , ρ

(1)
41 , ρ

(1)
32 , and

ρ
(1)
42 reads

ρ
(1)
i j = a(1)

i j �p j, (C1)

where a(1)
31 = d41/(2D1), a(1)

32 = d42/(2D2), a(1)
41 =

−�c/(2D1), a(1)
42 = −�c/(2D2), and Dj = |�c|2 − d4 jd3 j .
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2. Second-order solution

At the second order of the expansion, nonzero matrix ele-
ments ρ

(2)
11 , ρ

(2)
22 , ρ

(2)
33 , ρ

(2)
44 , and ρ

(2)
43 satisfy the equations⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i�21 −i�12 −i�13 0 0 0

0 0 i�3 −i�34 �∗
c −�c

0 0 0 i�34 −�∗
c �c

1 1 1 1 0 0

0 0 �c −�c d43 0

0 0 �∗
c −�∗

c 0 d∗
43

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(2)
11

ρ
(2)
22

ρ
(2)
33

ρ
(2)
44

ρ
(2)
43

ρ
(2)
34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�p1ρ
(1)
13 − �∗

p1ρ
(1)
31

i�∗
p1ρ

(1)
31 − i�p1ρ

(1)
13 + �∗

p2ρ
(1)
32 − �p2ρ

(1)
23

0

0

�∗
p1ρ

(1)
41 + �∗

p2ρ
(1)
42

�p1ρ
(1)
14 + �p2ρ

(1)
24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Their solution has the form ρ (2)
αα = a(2)

αα,1|�p1|2 + a(2)
αα,2|�p2|2,

with the coefficients given by

a(2)
33, j = Aj

i�3
, (C3a)

a(2)
44, j = |�c|2(A∗

j d43 − d∗
43Bj ) − |d43|2Aj + Cja

(2)
33, j

i[2γ43|�c|2 + |d43|2�34]
, (C3b)

a(2)
11, j = −Aj + i(�13 − �12)a(2)

33, j − i�12a(2)
44, j

i(�12 + �21)
, (C3c)

a(2)
22, j = −Aj + i(�13 + �21)a(2)

33, j + i�21a(2)
44, j

−i(�12 + �21)
, (C3d)

a(2)
43, j = −�cB j − a(2)

33, j + a(2)
44, j

d43
, (C3e)

where Aj = a(1)
3 j − a(1)∗

3 j , Bj = 1/(2Dj ), and Cj = i�3|d43|2 +
2iγ43|�c|2. The expression of ρ

(2)
21 reads

ρ
(2)
21 = �p1ρ

(1)
23 − �∗

p2ρ
(1)
31

ω + d21
≡ a(2)

21 �p1�
∗
p2. (C4)

3. Third-order solution

The solutions of ρ
(3)
3 j and ρ

(3)
4 j are obtained by solving the

equations

(
d3 j �∗

c

�c d4 j

)⎛
⎝ρ

(3)
3 j

ρ
(3)
4 j

⎞
⎠

=
( −�p j

(
ρ

(2)
j j − ρ

(2)
33

) − �p,3− jρ
(2)
21

�p jρ
(2)
43 + Na

∫
d3r′V(r′ − r)ρ (3)

44,4 j (r
′ − r)

)
, (C5)

with ρ
(3)
44,4l (r

′ − r) = a(3)
44,4l,1(r′, r, t )|�p1(r′)|2�pl (r′) +

a(3)
44,4l,2(r′, r, t )|�p2(r′)|2�pl (r). Then we have

ρ
(3)
jl = a(3,loc)

jl,1 |�p1|2�pl + a(3,loc)
jl,2 |�p2|2�pl

+
∫

d3r′a(3,nloc)
jl,1 |�p1(r′)|2�pl (r)

+
∫

d3r′a(3,nloc)
jl,2 |�p2(r′)|2�pl (r), (C6)

with the coefficients given by

a(3,loc)
31,1 = �∗

ca(2)
43,1 + d41

(
a(2)

11,1 − a
(2)

33,1

)
D1

, (C7a)

a(3,loc)
31,2 = �∗

ca(2)
43,2 + d41

(
a(2)

11,2 − a
(2)

33,2 + X
)

D1
, (C7b)

a(3,loc)
32,2 = �∗

ca(2)
43,2 + d42

(
a(2)

22,2 − a
(2)

33,2

)
D2

, (C7c)

a(3,loc)
32,1 = �∗

ca(2)
43,1 + d42

(
a(2)

22,1 − a
(2)

33,1 + X ∗)
D2

, (C7d)

a(3,nloc)
3 j,l = �∗

cNaV(r′ − r)a(3)
44,4 j,l (r

′ − r)

Dj
, (C7e)

where X = (a(1)
23 − a(1)

31 )/d21. Note that the solution ρ
(3)
31 and

ρ
(3)
32 given by (C6) includes the parts of local terms and

nonlocal (integral) terms contributed by the Rydberg-Rydberg
interaction; to get the nonlocal terms we must solve the equa-
tions of motion for two-body DM elements ραβ,μν , which are
yet to be determined.

APPENDIX D: STEADY-STATE SOLUTIONS OF THE
EQUATIONS FOR TWO-BODY DM ELEMENTS

1. Second-order solution

The nonzero solution of two-body DM elements starts at
the second-order approximation. The two-body DM elements
ρ

(2)
41,41 and ρ

(2)
42,42 satisfy the equation⎛

⎜⎝
2d4α − V 2�c 0

�∗
c d3α + d4α �c

0 2�∗
c 2d3α

⎞
⎟⎠

⎛
⎜⎜⎝

ρ
(2)
4α,4α

ρ
(2)
4α,3α

ρ
(2)
3α,3α

⎞
⎟⎟⎠

=

⎛
⎜⎝

0

−�pαρ
(1)
4α /2

−�pαρ
(1)
3α

⎞
⎟⎠, (D1)

where α = 1, 2 and ρ
(2)
42,41 satisfies the equation

⎛
⎜⎜⎜⎝

M �c �c 0

�∗
c d42 + d31 0 �c

�∗
c 0 d41 + d32 �c

0 �c �∗
c d32 + d31

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ρ
(2)
42,41

ρ
(2)
42,31

ρ
(2)
41,32

ρ
(2)
32,31

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0

−�p1ρ
(1)
42 /2

−�p2ρ
(1)
41 /2

−�p1ρ
(1)
32 /2 − �p2ρ

(1)
31 /2

⎞
⎟⎟⎟⎟⎠, (D2)

with M = d42 + d41 − V (r′ − r).
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2. Third-order solution

The third-order two-body DM elements can be obtained by solving the equations (α = 1, 2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d3α + i�3 �∗
c −i�34 �∗

c 0 0 −�c 0

�c d3α + d43 −�c 0 �∗
c 0 0 0

0 −�∗
c d3α + i�34 0 0 �∗

c �c 0

�c 0 0 i�3 + d4α �∗
c −i�34 0 −�c

0 �c 0 �c d4α + d43 − V −�c 0 0

0 0 �c 0 −�∗
c i�34 + d4α − V 0 �c

�∗
c 0 −�∗

c 0 0 0 d3α − d∗
43 �∗

c

0 0 0 −�∗
c 0 �∗

c �c −d∗
43 + d4α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(3)
3α,33

ρ
(3)
3α,43

ρ
(3)
3α,44

ρ
(3)
4α,33

ρ
(3)
4α,43

ρ
(3)
4α,44

ρ
(3)
3α,34

ρ
(3)
4α,34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�∗
p1ρρ

(2)
31,3α − �p1d∗

41ρ
(1)
3α /D∗

1 + �∗
p2ρρ

(2)
32,3α − �p2d∗

42ρ
(1)
3α /D∗

2 − �p1ρ
(2)
33 /2

�∗
p1ρρ

(2)
41,3α + �∗

p2ρρ42,3α − �p1ρ
(2)
43 /2

−�p1ρ
(2)
44 /2

�∗
p1ρρ

(2)
31,4α − �p1d∗

41ρ4α/D∗
1 + �∗

p2ρρ32,4α − �∗
p2d∗

42ρ
(1)
4α /D∗

2

�∗
p1ρρ

(2)
41,4α + �∗

p2ρρ
(2)
42,4α

0

−�p1ρ
(1)
14 ρ

(1)
3α − �p2ρ

(1)
24 ρ

(1)
3α − �p1ρ

(2)
34 /2

−�p1ρ
(1)
14 ρ

(1)
4α − �p2ρ

(1)
24 ρ

(1)
4α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D3)

Through solving them, one can obtain the general expression of a(3)
44,4 j,l (r

′ − r), which reads

a(3)
44,4 j,l (r

′ − r) = P0 jl + P1 jlV (r′ − r) + P2 jlV (r′ − r)2

Q0 jl + Q1 jlV (r′ − r) + Q2 jlV (r′ − r)2 + Q3 jlV (r′ − r)3 , (D4)

where Pa jl and Qa jl (a = 0, 1, 2, 3) are functions of �αβ , �α , and �c. Their explicit expressions are lengthy and thus are omitted
here.

The electric polarization intensity of the probe field in the atomic gas is given by Pp = Na{(p13ρ31 + p23ρ32) exp[i(kpz −
ωpt )] + c.c.}, which can be expressed by Pp = ε0(ε̂−Ep−χ1 + ε̂+Ep+χ2) exp[i(kpz − ωpt )] + c.c., where

χ1(2) = Na(ε̂−(+) · p13(23))ρ31(32)

ε0Ep−(+)
(D5)

are optical susceptibilities. Based on the above results obtained by the perturbation expansions, we have ρ3 j � a(1)
3 j �p j +∑1,2

l a(3,loc)
3 j,l |�pl |2�p j + ∫

d3r′ ∑1,2
l a(3,nloc)

3 j,l |�pl (r′)|2�p j ( j = 1, 2), with �p1(2) = (p13(23) · ε̂−(+)Ep−(+)/h̄. Then we obtain the
explicit expressions of the optical susceptibilities

χ j = χ
(1)
j + χ

(3,loc)
j1 |Ep−|2 + χ

(3,loc)
j2 |Ep+|2

+χ
(3,nloc)
j1 |Ep−|2 + χ

(3,nloc)
j2 |Ep+|2, (D6)

where χ
(1)
j = Na|p j3|2a(1)

3 j /(ε0h̄) are the first-order (linear) susceptibilities and χ
(3,loc)
jl = Na|p j3|4a(3,loc)

3 j,l /(ε0h̄3) and χ
(3,nloc)
jl =

Na|p j3|4a(3,nloc)
3 j,l /(ε0 h̄3) ( j, l = 1, 2) are local and nonlocal third-order nonlinear susceptibilities, respectively.

APPENDIX E: DERIVATION OF THE NONLINEAR
ENVELOPE EQUATIONS

The envelope equations governing the nonlinear evolution
of the two polarization components of the probe field can be
obtained by means of the method of multiple scales [88] to
solve the Bloch equation (B1) and the Maxwell equation (4),

which are coupled together. To get these equations, we take
the perturbation expansion to be the same as that described in
Appendix C, but also with the expansion for the half Rabi fre-
quencies of the probe field, i.e., �p j = ε�

(1)
p j + ε2�

(2)
p j + · · ·

( j = 1, 2). In order to consider the spatial-temporal evolution
of the system, we assume that �

(m)
p j and ρ

(m)
αβ are functions of

the multiple-scale variables zl = εl z and tl = εl t (l = 0, 2).
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Carrying out the calculation up to the third-order approxi-
mation and returning to the original variables, we obtain

i

(
∂F1

∂z
+ 1

Vg1

∂F1

∂t

)
− (

W11|F1|2 + W12|F2|2
)
F1

−
∫

d3r′
2∑

l=1

G1l (r′ − r)|Fl (r′)|2F1(r) = 0, (E1a)

i

(
∂F2

∂z
+ 1

Vg2

∂F2

∂t

)
− (

W21|F1|2 + W22|F2|2
)
F2

−
∫

d3r′
2∑

l=1

G2l (r′ − r)|Fl (r′)|2F2(r) = 0, (E1b)

where θ j = Kj (ω)z − ωt , Fj = �
(1)
p j e−iθ j is the envelope of

the jth ( j = 1, 2) polarization components of the probe field,
Vgj = (∂Kj/∂ω)−1 is the group velocity of the jth polarization
component, Wjl (proportional to χ

(3,loc)
jl ) are coefficients of

local Kerr nonlinearities characterizing the SPMs for j = l
and CPMs for j �= l , and Gjl (proportional to χ

(3,nloc)
jl ) are

coefficients of nonlocal Kerr nonlinearities characterizing the
nonlocal SPMs for j = l and CPMs for j �= l . Explicit expres-
sions of Wjl and Gjl are given by

W11 = −κ14

D1

[
�∗

ca(2)
43,1 + d41

(
a(2)

11,1 − a
(2)

33,1

)]
, (E2a)

W12 = −κ14

D1

[
�∗

ca(2)
43,2 + d41

(
a(2)

11,2 − a
(2)

33,2 + X
)]

, (E2b)

W22 = −κ24

D2

[
�∗

ca(2)
43,2 + d42

(
a(2)

22,2 − a
(2)

33,2

)]
, (E2c)

W21 = −κ24

D2

[
�∗

ca(2)
43,1 + d42

(
a(2)

22,1 − a
(2)

33,1 + X ∗)], (E2d)

Gjl = −κ j4

D1

[
�∗

cNaV(r′ − r)a(3)
44,4 j,l (r

′ − r)
]
. (E2e)

Equations (E1a) and (E1b) can be written in the dimension-
less form

i
∂u j

∂s
+ (−1) j−1igδ

∂u j

∂σ
−

(
2∑

l=1

w jl |ul |2
)

u j

−
∫

d3ζ ′
2∑

l=1

g jl (�ζ ′ − �ζ )|ul (�ζ ′)|2u j (�ζ ) = 0. (E3)

Here we have defined uj = Fj/U0, s = z/LNL, σ = (t −
z/Vg)/τ0, �ζ = r/R0 = (ξ, η, s), Vg = 2Vg1Vg2/(Vg1 + Vg2),
gδ = sgn(δ)LNL/Lδ , w jl = Wjl/|W11|, and g jl = Gjl/|W11|.
In these definitions, U0 is the typical Rabi frequency, τ0

(R0) is the typical temporal duration (transverse size) of the
probe field, LNL = 1/(|W11|U 2

0 ) is the nonlinearity length,
Lδ = τ0/|δ| is the length of group-velocity mismatch, and
δ = (1/Vg1 − 1/Vg2)/2 is the parameter characterizing the
group-velocity mismatch.

Assuming τ0 = 9 × 10−6 s and U0 = 2.74 × 106 s−1

and taking �2 = 2π × 0.005 MHz, �3 = 2π × 100 MHz,
�4 = 2π × 0.18 MHz, �c = 2π × 6.5 MHz, and
Na = 3 × 1010 cm−3, we obtain Vg1 ≈ 2.20 × 10−5c and
Vg2 ≈ 2.28 × 10−5c, which means the two polarization
components of the probe field propagate with ultraslow and
nearly equal group velocities. Because δ ≈ 0 and gδ � 1, the
second term in Eq. (E3) can be safely neglected.

[1] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New
York, 1984).

[2] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, New York,
2008).

[3] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs,
30 years of squeezed light generation, Phys. Scr. 91, 053001
(2016).

[4] R. Schnabel, Squeezed states of light and their applications in
laser interferometers, Phys. Rep. 684, 1 (2017).

[5] P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, New
High-Intensity Source of Polarization-Entangled Photon Pairs,
Phys. Rev. Lett. 75, 4337 (1995).
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[22] S. Rebić, C. Ottaviani, G. D. Giusepp, D. Vitali, and P. Tombesi,
Assessment of a quantum phase-gate operation based on nonlin-
ear optics, Phys. Rev. A 74, 032301 (2006).

[23] P. Kok, Effects of self-phase-modulation on weak nonlinear
optical quantum gates, Phys. Rev. A 77, 013808 (2008).

[24] Q. Lin and J. Li, Quantum control gates with weak cross-Kerr
nonlinearity, Phys. Rev. A 79, 022301 (2009).

[25] C. Hang and G. Huang, Highly entangled photons and
rapidly responding polarization qubit phase gates in a room-
temperature active Raman gain medium, Phys. Rev. A 82,
053818 (2010).

[26] R. B. Li, L. Deng, and E. W. Hagley, Fast, All-Optical, Zero to
π Continuously Controllable Kerr Phase Gate, Phys. Rev. Lett.
110, 113902 (2013).

[27] S. E. Harris, Electromagnetically induced transparency, Phys.
Today 50(7), 36 (1997).

[28] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electro-
magnetically induced transparency: Optics in coherent media,
Rev. Mod. Phys. 77, 633 (2005).

[29] Slow Light Science and Applications, edited by K. B. Khurgin
and R. S. Tucker (CRC/Taylor & Francis, Boca Raton, 2009).

[30] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum
memory, Nat. Photon. 3, 706 (2009).

[31] C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday,
S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H.
Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W.
Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew,
I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and
R. J. Young, Quantum memories, Eur. Phys. J. D 58, 1 (2010).

[32] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin,
Quantum repeaters based on atomic ensembles and linear op-
tics, Rev. Mod. Phys. 83, 33 (2011).

[33] F. Bussières, N. Sangouarda, M. Afzeliusa, H. de Riedmatten,
C. Simon, and W. Tittel, Prospective applications of optical
quantum memories, J. Mod. Opt. 60, 1519 (2013).

[34] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard,
V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum memories:
Emerging applications and recent advances, J. Mod. Opt. 63,
2005 (2016).

[35] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth,
D. F. Phillips, A. S. Zibrov, and M. D. Lukin, Atomic memory
for correlated photon states, Science 301, 196 (2003).

[36] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou,
L.-M. Duan, and H. J. Kimble, Generation of nonclassical
photon pairs for scalable quantum communication with atomic
ensembles, Nature (London) 423, 731 (2003).
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