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Violating the Leggett-Garg inequalities with classical light
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In an endeavor to better define the distinction between classical macroscopic and quantum microscopic
regimes, the Leggett-Garg inequalities were established as a test of macroscopic-realistic theories, which are
commonly thought to be a suitable class of descriptions for classical dynamics. The relationship between their
violation and nonclassicality is however not obvious. We show that classical states of light, which in the quantum
optical sense are any convex sums of coherent states, may not satisfy the Leggett-Garg inequalities. After
introducing a simple Mach-Zehnder setup and showing how to obtain a violation with a single photon using
negative measurements, we focus on classical states of light, in particular those of low average photon number.
We demonstrate how one can still perform negative measurements with an appropriate assignment of variables,
and show that the inequalities are violable with coherent states. Finally, we abandon the initial phase reference
and demonstrate that the violation is still possible, in particular with thermal states of light, and we investigate
the effect of intermediate dephasing.
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I. INTRODUCTION

One of the hallmarks of quantum theory is the coherent su-
perposition of states. States which have coherence [1,2] are an
important resource in applied physics, notably for the devel-
opment of quantum information and its applications [3], such
as metrology [4–6] or computation [7–11]. However, coherent
superpositions have long been at the core of fundamental
issues, famously illustrated by Schrödinger’s cat gedanken
experiment [12]. Making sense of the disconnect between
quantum microscopic and classical macroscopic regimes has
given rise to different models for and interpretations of open-
system quantum dynamics [13–17].

Similar to Bell’s inequalities, based on correlations be-
tween spatially separated systems, which are a necessary
condition for local realism [18], the Leggett-Garg inequalities
(LGIs) test the validity of classical descriptions through the
correlations between successive measurements in time of a
single system [19]. The LGIs are a consequence of macro-
scopic realism, or macrorealism (MR), which is defined as the
conjunction of three assumptions [20]: macroscopic realism
per se (MRps), under which a system which has access to
a number of distinct macroscopic states is always in exactly
one of those states; noninvasive measurability (NIM) under
which a system’s state can be measured by impinging an
arbitrarily faint perturbation on that state; and induction (I)
which demands that information be forward propagating in
time. Induction is usually taken for granted.
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Since the LGI was first proposed [19], several subtleties
regarding what is meant by MR and the precise significance
of an LGI violation have been clarified [21,22]. Contrary to
the no-signaling in time conditions which are equivalent to
MR, the LGI is a necessary condition for MR [23,24]. It
was furthermore pointed out that there exist different varieties
of MRps, and the only flavor of MR ps that can be ruled
out by an LGI violation is termed “operational eigenstate
mixture macrorealism” [25]. Hence this is the meaning of
MRps adopted in our work. LGI violations do not rule out the
existence of a hidden variable model explaining the violation
[26]. However, they have long been considered to be relevant
witnesses of nonclassicality [27,28], and finding such viola-
tions is still an active area of interest [29–34]. To no surprise,
the LGIs have been experimentally violated with microscopic
systems such as superconducting qubits and atomic quantum
walks [35,36].

There exists another well-established notion of classical-
ity of a state, in quantum optics. A state of light ρ can be
represented by a distribution in the complex plane as ρ =∫

P(α)|α〉〈α|d2α, where |α〉 are coherent states [37,38]. The
state is said to be classical whenever P is a probability density
function on phase space [39]. This criterion is justified by the
fact that a coherent state is considered a classical pure state
[40], in the sense that it minimizes uncertainty relations and
is robust against decoherence [41]. By contrast, a superposi-
tion of coherent states |α〉 and |β〉 is nonclassical, and when
the displacement parameters α, β differ considerably, this is
referred to as a Schrödinger cat state [42]. Such a nonclassi-
cal state, whose P representation is not a probability density
function, is a valuable resource for quantum information tasks
[43,44], as indicators of quantum behavior. Yet, it turns out
that classical states can very well exhibit quantum properties,
especially when they have a significant vacuum component,
as we shall show.
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In this paper we investigate whether states of light that have
positive P functions, which we refer to as classical states,
such as coherent and thermal states, can simulate quantum
behavior, specifically the violation of an LGI. Violations with
light have already been established [45–50], although with
manifestly nonclassical states such as single photons. Viola-
tions using the polarization degree of freedom of a laser field
were more recently shown to be possible [51]. However, this
violation is a particular implementation of a qubit to violate
the LGI, whereas our proposal uses measurements on the co-
herent state itself to achieve the violation. More importantly,
the previously established violations have not determined to
what degree the phase reference, which plays a central role
in the decoherence model explaining the quantum-classical
transition [52], is necessary to have LGI violations. We will
demonstrate a violation of the LGI with a particularly simple
setup in which light is classical at each stage and the measure-
ment itself is not weak [53].

Our paper is organized as follows. We begin by show-
ing a known derivation of the LGI and we introduce the
Mach-Zehnder setups to establish an LGI violation with a
single-photon Fock state in Sec. II. We suggest in Sec. III
an alternative observable assignment for nondichotomic vari-
ables to permit negative measurements. This allows one to
show how an LGI violation can be obtained with coherent
states of light. Finally, we investigate the effects of losing the
phase reference. We consider dephased input states in Sec. IV
and demonstrate that LGI violations are still possible, namely
with thermal states of light. We also show in Sec. V that
complete intermediate dephasing prevents any LGI violation.

II. LGI VIOLATION WITH A SINGLE PHOTON

Before introducing the setup and illustrating an LGI vi-
olation, let us briefly show how to establish the LGIs, and
introduce useful notations as well as the notion of negative
measurement. Following a review [20] we present a brief
derivation of the LGIs.

Using the ontic models framework [54], let us suppose that
the system under study is prepared in the ontic state σ with a
probability density π (σ ). A measurement that is performed
at instant ti results in the outcome function μi(Qi|σ ) which
gives the probability of obtaining the value Qi given the ontic
state σ . Induction guarantees that preparing a measurement
setup does not influence the initial ontic state distribution
π (σ ). Then P (Qi ) = ∫

dσμi(Qi|σ ). Assuming NIM, the
joint probability distribution for the two measurements
reads Pi j (Qi, Qj ) = ∫

dσμ j (Qj |σ )μi(Qi|σ )π (σ ). Let us
now restrict to (Qi, Qj ) ∈ Si × S j ⊂ [−1, 1]2. Si and S j

are the sets of values that Qi and Qj can respectively
take, and those values are real and absolutely less than or
equal to the unit. Then the correlation coefficient reads
Ci j = 〈QiQj〉 = ∑

(Qi,Qj )∈Si×S j
QiQjPi j (Qi, Qj ). Inserting

the joint probability expression into the last equation gives
Ci j = ∫

dσ 〈Qi〉σ 〈Qj〉σπ (σ ), where the expectation value
is explicitly 〈Q〉σ = ∑

Q∈S QP (Q). Thus K = C12 + C23 −
C13 = ∫

dσ [〈Q1〉σ 〈Q2〉σ + 〈Q2〉σ 〈Q3〉σ − 〈Q1〉σ 〈Q3〉σ ]π (σ ).
Therefore, having S1 × S2 × S3 ⊂ [−1, 1]3 yields

K = C12 + C23 − C13 � 1, (1)

regardless of the cardinality of the sets Si. In particular,
it will be useful in Sec. III to note that if (S1, S2, S3) =
({+1}, {0,+1}, {−1, 0,+1}), then the LGI (1) still holds.

Let us now show a simple violation in a Mach-Zehnder
interferometer. Mach-Zehnder setups have been considered
to test LGIs with dichotomic variables [55], and featured for
detailed proposals of LGI violations with electrons [56,57].
We present the three Mach-Zehnder setups, along with the
notations and observable definition, and give an example of
LGI violation with macroscopic observables and negative
measurement in the case of a single photon input state.

We consider three setups as illustrated in Figs. 1(a)–1(c).
All in all, the ideal setup consists of two perfect mirrors,
two or three photon detectors, and two identical 50:50 loss-
less beam splitters. For our purpose the detectors need not
be photon counters, but rather simply detect the presence or
absence of photons in the mode. The general beam-splitter
operator is defined as B̂ = e

θ
2 (â†

LâR−âLâ†
R ), where â†

L and â†
R are

bosonic creation operators in the left-hand and right-hand field
modes, and we shall fix θ = π/2 throughout this paper. Using
Hadamard’s lemma and bosonic commutation relations, the
50:50 beam splitter acts upon photonic modes according to
the following rules:

B̂â†
RB̂† = 1√

2
(â†

L + â†
R),

B̂â†
LB̂† = 1√

2
(â†

L − â†
R). (2)

There are two setups for the intermediate measurement, and
this is a requirement for ideal negative measurements, also
known as interaction-free measurements [58,59]. Such mea-
surements are important in order to have a meaningful LGI
violation, as direct measurements disturb the state and imme-
diately invalidate the NIM hypothesis. The idea of a negative
measurement, in the single-photon case, is to say that by not
observing a photon in one of the two detectors, one can con-
clude its presence in the other mode without having destroyed
it. If an intermediate detector clicks, the trial is discarded, but
this case is accounted for when the detector is in the other
mode. Of course, even negative measurements do disturb the
quantum state, however, from a realist’s point of view, it is but
an update of an agent’s knowledge of the state of the system.

Let us note that this measurement method is straight-
forward only when the beam splitters are lossless and the
detectors are ideal (no dark current, and unit quantum effi-
ciency), which we assume in this work. We briefly discuss
in the next section why this assumption does not prevent our
proposal from being viable.

This being said, let us consider a single photon arriving
on the first beam splitter from the left, so |ψ1〉 = |10〉 is the
input state. With no intermediate detection, the intermediate
state between the two beam splitters is the Bell pair |ψ2〉 =

1√
2
(|10〉 − |01〉), and the output state is |ψ3〉 = −|01〉. If the

intermediate detector is placed on the right-hand intermediate
mode, then the only state that one can measure negatively
is |ψ2〉R = |10〉. Similarly, we will denote |ψ2〉L = −|01〉 the
only negatively measurable state when the detector is placed
on the left intermediate mode.
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FIG. 1. Three setups for the two-step quantum random walk. The states in each space, input, intermediate, and output, are labeled according
to the intermediate detector’s position. Photons are detected at the output of the Mach-Zehnder interferometer at two distinct positions x = L
and x = R. (a) Detector on the right intermediate mode. (b) No intermediate detection. (c) Detector on the left intermediate mode.

Those are negatively measured states in the sense that one
can deduce their form from the absence of a click on the
intermediate detector, which is a pivotal point to make in order
to even consider NIM. Hence all trials where the interme-
diate detector clicks have to be discarded. The output states
after negative intermediate measurement are then |ψ3〉R =

1√
2
(|10〉 − |01〉) and |ψ3〉L = 1√

2
(|10〉 + |01〉), where the in-

dex is a label for the position of the intermediate detector, and
is absent if no intermediate measurement is performed.

It should be stressed that discarding trials where the in-
termediate measurement was not negative (i.e., a detector
clicked) does not affect the resulting statistics only if the dis-
carded cases can be picked up in the statistics in the symmetric
setup, as illustrated with atomic quantum random walks in
Ref. [36].

We now define the Qi values to obtain a violation as fol-
lows. We set Q1 = +1 when there is a photon in the left input
mode and none in the right input mode. This corresponds
to the preparation. We trivially set Q2 = +1 whenever the
photon finds itself in either of the intermediate modes. Finally,
we set Q3 = +1 when the left output detector clicks, and
Q3 = −1 if the right output detector clicks.

Then it is straightforward to establish 〈Q3〉 = −1 and
〈Q3〉R,L = 0. Trivially C12 = +1, and C13 = 〈Q3〉 = −1. Fi-
nally, as Q2 = +1 always holds and trials where the
intermediate detector clicks are discarded (i.e., half of the
trials for each intermediate detector position), one has C23 =
1
2 (〈Q3〉R + 〈Q3〉L). All in all K = +2 which violates (1).

III. LGI VIOLATION WITH A COHERENT STATE

We now consider a coherent state impinging on the
first beam splitter from the left |ψ1〉 = |α〉L|0〉R = D̂L(α) ⊗
1R|00〉, where D̂(α) = eαâ†−α∗â is the displacement operator.
At the output of the first beam splitter, the state of light is
|ψ2〉 = |α/

√
2〉 ⊗ | − α/

√
2〉. Hence, the state at the output

of the interferometer with no intermediate measurement is
given by |ψ3〉 = |0〉 ⊗ | − α〉. In setups with intermediate
measurement where any detected flux results in a discarded

experiment, the negatively obtained states at the output are
|ψ3〉R,L = | ± α/

√
2〉 ⊗ | ± α/

√
2〉.

Given the different output states, it may seem at first sight
that the LGI violation will immediately follow from what
was already shown for the single photon. However, the initial
assignment for the observables Qi that lead to the single-
photon LGI violation, despite being a good starting point, is
problematic. The issue is twofold: The observables as defined
previously are no longer well determined, and their values
can no longer be negatively measured with a state-selective
discarding. Let us explicitly make those points and present a
solution.

First, keeping Q3 = +1 when photons impinge on the left
detector at the output, and none to the right, and Q3 = −1
when photons impinge to the right and none to the left, would
result in an observable that does not have distinct states. Since
there is not just a single photon, both modes could carry
photons at the same time, in which case Q3 would have two
simultaneous values.

The second point is more troublesome. While with a single
photon, trials that are discarded are picked up in the statistics
using the symmetric setup, this no longer holds with multiple
photons. Indeed, when a flux is detected at t2 then two cases
arise: Either there are no photons in the other mode, or there
are.

In the first case, the discarded trial is accounted for in
the symmetric setup. In the second case, however, the tri-
als in which there were photons in both output modes of
the first beam splitter are simply lost. This poses an issue
with noninvasiveness as artificially selecting only cases where
all the flux is in one mode would completely alter the C23

correlator.
We propose a way to solve this issue by choosing the set

of values for Q2 to be {0,+1}. In particular, we include 0
specifically as a possible value and will make use of its anni-
hilating property. The assignments are summed up in Table I
and the corresponding quantum operators for observables Q2

and Q3 are shown in Eqs. (6) and (7). Such an assignment was
obtained as follows.
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TABLE I. Assignment of values for the observables, with respect
to mode states. L and R designate modes that are respectively on
the left-hand side and on the right-hand side. For Q1 those are the
input modes, for Q2 those are the intermediate modes, and for Q3,
the output modes. As the preparation of the experiment sets the
right input mode in the vacuum state, no values need to be assigned
in other cases for Q1, though any arbitrary value would be valid.
N.A.=not applicable.

L R Q1 Q2 Q3

Vacuum Vacuum +1 0 −1
Vacuum Photons N.A. +1 −1
Photons Vacuum +1 +1 +1
Photons Photons N.A. 0 0

We set Q1 = +1 when there are no photons in the right
input mode. Other cases concerning the first beam splitter’s
input states never occur as this is the way the experiment is
prepared. The preparation process results in Q1 = +1 con-
stantly.

We furthermore set Q3 = −1 when the left detector does
not click, Q3 = +1 when the right detector does not click and
the left detector clicks, and Q3 = 0 when both detectors click.
Note that when no detectors click at all, Q3 = −1.

Finally we must be careful with the assignment of Q2.
In an attempt to salvage noninvasive measurability, we will
define Q2 = +1 when all photons are in the same intermediate
mode. Perhaps the most important choice, and what saves the
negative measurement method, is the assignment Q2 = 0 if
there are photons in both intermediate modes or if there are
no photons at all. This way, Q2 = +1 will be realized as long
as exactly one of the two intermediate modes is in the vacuum
state, and Q2 = 0 otherwise.

Setting Q2 = 0 in the case where there are photons in
both modes may seem to make it so that the discarded trials,
which are permanently lost, in fact would not have had any
impact on the C23 correlation coefficient as C23 = 〈Q2Q3〉 =∑

Q2Q3P23(Q2, Q3). So, be they discarded or not, instances
in which photons are in both intermediate modes would not
contribute to C23.

However, this reasoning is too hasty, as discarding cases
when Q2 = 0, while having no effect on the number of
nonzero terms in the sum defining C23, does nonetheless
change the joint probability distribution P (Q2, Q3).

Nevertheless, setting Q2 = 0 when both intermediate
modes contain photons does make it possible to save nonin-
vasive measurability, but in fact without discarding any trials
that cannot be negatively distinguished. To show this, let us
observe the four following cases that make up all possible
situations:

(1) If the detector at t2 does not click, then
(a) either no photons are detected at t3 which means there

were no photons at all so Q2 = 0,
(b) or photons are detected at t3, so Q2 = +1 because all

photons are in the other mode, then Q2 = +1 is known via a
negative measurement.

(2) If the detector at t2 does click, then

TABLE II. All possible measurement outcomes in the evaluation
of the C23 correlator. Clicks are symbolized by 1 and absence of
clicks by 0. The only discarded trials are the ones in which Q2 = +1
is directly measured via the click of the t2 detector but the absence
of clicks at t3. Those trials are not lost as they are counted in the
symmetric setup, where the t2 detector is placed in the other mode.
All other direct measurements at t2 (when the t2 detector clicks)
are effectively noninvasive and so are not discarded, as the Q2Q3

outcome no longer depends on the value measured at Q3, as long as
at least one of the t3 detectors click.

t2 t3L t3R Q2 Q3 Case and t2 measurement type

0 0 0 0 −1 (1) (a) Negative
0 0 1 +1 −1 (1) (b) Negative
0 1 0 +1 +1 (1) (b) Negative
0 1 1 +1 0 (1) (b) Negative
1 0 0 +1 −1 (2) (a) Direct and invasive (discarded)
1 0 1 0 −1 (2) (b) Direct and effectively noninvasive
1 1 0 0 +1 (2) (b) Direct and effectively noninvasive
1 1 1 0 0 (2) (b) Direct and effectively noninvasive

(a) either no detectors click at t3, in which case Q2 = +1
but we can discard the trial, and this situation is taken into
account in the other setup where the intermediate detector is
positioned on the other mode,

(b) or detectors do click at t3, in which case Q2 = 0 because
there were photons in both modes. Then by having chosen
Q2 = 0 we do not need to discard this trial, as regardless of
the measurement outcome at time t3 one will have Q2Q3 =
0 in any case. This means that whether the t2 measurement
was invasive or not does not matter at all. Whether the Q3

value that is obtained was a possessed value or a measured
value plays no role either. What matters is that at least one
detector clicks at t3, but the measurement outcome value is of
no importance.

In this manner, direct invasive measurements at t2 are either
discarded but not permanently lost, or a rigorously noninva-
sive t2 measurement would contribute to C23 in the exact same
way as the possibly invasive real t2 measurement. Another
way of phrasing what we have done is that by setting Q2 =
0 when there are photons in both intermediate modes, the
only measurements that contribute to C23 are either negative
measurements or effectively noninvasive measurements. All
in all, the whole argument to salvage noninvasive measurabil-
ity hinges on the use of the value 0 which is absorbing (or
annihilating) for the multiplication. For clarity we explicitly
show of all the cases in the measurement of C23 in Table II.

One point worth discussing is the exposure to a fair sam-
pling loophole. We have assumed here that all detectors are
ideal, however our assignment does not absolutely require unit
quantum efficiencies and noiseless dynamics. To show that the
experiment can work in principle with imperfect detectors,
consider an overall error rate η and let us suppose all errors
give the worst outcome (i.e., skews the average K value the
most towards an LGI violation) in which Q1Q2 + Q2Q3 −
Q1Q3 = 3. Then under macroscopic realism the highest at-
tainable value for K is (1 + 2η). If each of the three detectors
used to establish the Q values has a generic error rate (in
telling apart the vacuum from a nonvacuum state) ε, then the
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FIG. 2. LG correlation function with respect to the average
photon number. Plot obtained for a coherent state input in the
Mach-Zehnder interferometer with appropriate observable value
assignment.

overall error rate will be η = 1 − (1 − ε)3. Taking ε = 5%
yields η = 0.15 so that the K function threshold for an LGI
violation may be shifted to 1.3. As we shall see, this new
threshold can be exceeded with a coherent state input, as well
as with a thermal field input.

Let us now show that the violation is indeed achieved. To
this end, recall that the probability of detecting n photons in a
coherent state |α〉 is Poissonian,

pn(α) = e−|α|2 |α|2n

n!
. (3)

First, C12 = 〈Q2〉 can be expressed by introducing the
photon numbers nR and nL respectively in the right and
left intermediate modes. We may rewrite the event {Q2 = 0}
as ({nL > 0} ∧ {nR > 0}) ∨ ({nL = 0} ∧ {nR = 0}), and note
that photon numbers in the two output modes are indepen-
dent of one another. Hence using Eq. (3) we obtain C12 =
P (Q2 = +1) = 4e− 3|α|2

4 sinh(|α|2/4). Next, C13 = 〈Q3〉 = −1
is straightforward as the output state when there is no interme-
diate measurement is |0〉 ⊗ | − α〉, hence all the flux arrives
at the right-hand output detector. Finally C23 ∝ 〈Q3〉L +
〈Q3〉R = 0, because the beam splitters are 50:50. Since cases
where possible interference may occur, and the vacuum, are
assigned Q2 = 0, the situations that contribute to C23 are those
where photons impinge on the second beam splitter from only
one side. Then the detection probabilities are equal in both
output modes, and since Q3 takes opposite values in those
cases, the average value is null. This results in the following
LG correlation,

K (α) = 1 + 4e− 3|α|2
4 sinh

( |α|2
4

)
, (4)

for which a plot is shown in Fig. 2.
We observe a violation of the LGI with a maximum vio-

lation when the average photon number |α|2 is just over 1.
More explicitly, the maximum is reached at |α|2 = 2 ln(2),
with a value of K (αmax) = 1.5. Let us note that this maximum
is reached when the intermediate modes are equally balanced

superpositions of the vacuum state and all other Fock states
2−1/2(|0〉 + |n > 0〉).

We also note that the K function decays for high laser
intensities. This is due to our observable value assignment
choice. Indeed, as the laser field becomes more intense, trials
in which all photons end up in the same mode become less
likely, so we should expect C12 to drop to 0. This shows that
even if classical light can in principle violate an LGI, the vio-
lation will become extremely unlikely to occur experimentally
at high laser intensities.

IV. LGI VIOLATION WITH DEPHASED INPUT STATES

Using the same setup and observable assignment, we let
go of any sort of phase reference in the input coherent state.
That is to say, we now consider the input state ρ1(α) =∑+∞

n=0 pn(α)|n, 0〉〈n, 0|, where pn(α) is given by Eq. (3).
The output state is formally given by ρ3 = B̂B̂ρ1B̂†B̂†. By
linearity of all performed operations, we may as well sim-
plify calculations by considering Fock input states ρ1(n) =
|n, 0〉〈n, 0|. The state after the first beam splitter reads
ρ2(n) = 1

n! B̂â† n
L B̂†|0, 0〉〈0, 0|B̂ân

LB̂†. The beam-splitter trans-
formations (2) yield

ρ2(n) = 1

2n

n∑
k,�=0

√(
n

k

)(
n

�

)
(−1)k+�|k, n − k〉〈�, n − �|.

(5)
Let us begin by computing C12 = 〈Q2〉, where

Q̂2 =
+∞∑
n=1

|0, n〉〈0, n| + |n, 0〉〈n, 0|. (6)

Since Q2 ∈ {0,+1} the expectation value is simply
〈Q2〉 = P (Q2 = +1). Because we assume 50:50 beam
splitters, we can write P (Q2 = +1) = ∑+∞

n=1
1

2n−1 pn(α) =
2e−|α|2 (e|α|2/2 − 1). This result, which can also be arrived at
directly as shown in Appendix A (with parameter γ = 1 as
no decoherence is considered at this stage), is identical to the
previously established expression for C12.

As previously argued, C23 = 0, by virtue of the following
inspection. If photons are in both modes or there are no pho-
tons, then Q2 = 0, so those cases, regardless of the obtained
value of Q3, do not contribute to C23. If photons are all in the
same mode then Q2 = +1 and because the beam splitter is
50:50 the assignment of Q3 values results in an overall average
value of 0.

Finally, to compute C13, what we seek is 〈Q3〉 = Tr(ρ3Q̂3),
where

Q̂3 =
(+∞∑

n=1

|n, 0〉〈n, 0| − |0, n〉〈0, n|
)

− |0, 0〉〈0, 0|, (7)

so we may project out all components of the density operator
for which the product with Q̂3 would give an off-diagonal
element. The projected density matrices will be written with a
tilde ρ̃. Applying the beam-splitter transformations (2), one
finds the projected output state ρ̃3(n) = |0, n〉〈0, n|, so that
ρ̃3(α) = ∑+∞

n=0 pn(α)|0, n〉〈0, n|. A detailed proof of the ex-
pression for ρ̃3(n) can be found in Appendix B. From this,
one finds C13 = 〈Q3〉 = Tr[Q̂3ρ̃3(α)] = −1, which is identi-
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cal to the previously established C13 for a coherent input state.
Therefore the LG correlation function, which we note with a
prime to indicate the dephased input, takes the same form as
Eq. (4):

K ′(α) = 1 + 4e− 3|α|2
4 sinh

( |α|2
4

)
. (8)

This shows that the LGI is violated even if the input state is
completely decohered, and underlines the fact that the LGI vi-
olation with a coherent state does not come the from quantum
superposition involved in |α〉 when represented in the Fock
basis.

Interestingly, similar calculations with a different photon
number probability distribution qn(λ) allow us to com-
pute K ′ for a thermal state. Consider a right propagating
thermal state input ρ1(λ) = ∑+∞

n=0 qn(λ)|0, n〉〈0, n|, where
qn(λ) = e−nλ(1 − e−λ) and λ = h̄ω/kT ∈]0,+∞[ defines
the temperature through the photon energy h̄ω and the
Boltzmann constant k. As argued previously, C13 = 〈Q3〉 =
Tr[Q̂3ρ3(λ)] = −∑+∞

n=0 qn = −1, and C23 = 0. Following a
previous calculation, we also find C12 = ∑+∞

n=1
1

2n−1 qn(λ) =
2(1 − e−λ)( 1

2eλ−1 ). This yields

K ′(λ) = 1 + 2(1 − e−λ)

(
1

2eλ − 1

)
. (9)

The LG correlation function reaches its maximum KM =
2

(1+√
2)2 + 1 ≈ 1.343 at λM = ln(1 + 1/

√
2), which shows

LGI violations to be allowed, in theory, with thermal states.

V. INTERMEDIATE DEPHASING

Let us now examine the effect of decoherence after the
first beam splitter. To do so, we choose to write down the
intermediate state after the first beam splitter when there is
no intermediate measurement as ρ2(γ ) = (1 ⊗ �γ )ρ2, where
�γ is a dephasing channel which simply introduces a damp-
ing factor γ ∈ [0, 1] on the off-diagonal terms of the right
intermediate mode, in the Fock basis. Formally, �γ is a
metaoperator with an operator-sum (or Kraus) representation
{√γ1,

√
1 − γ |n〉〈n|n∈N} where γ is the damping factor. In

particular, �1 is the identity metaoperator and �0 completely
decoheres a quantum state.

For an input Fock state ρ1(n) the intermediate state with
decoherence reads

ρ2(n, γ ) = 1

2n

n∑
k,�=0

√(
n

k

)(
n

�

)
(−1)k+�

× [γ + (1 − γ )δk,�]|k, n − k〉〈�, n − �|, (10)

where δk,� is a Kronecker symbol.
The C12 correlator is unaffected by decoherence, as shown

in Appendix A. Decoherence does not affect C23 either, as
the trials where Q2 = +1 is measured negatively correspond
to completely dephased states (all photons are in the same
mode).

However, the decoherence affects C13 = 〈Q3〉.
With calculations similar to those shown in Ap-
pendix B, the relevant submatrix for the trace reads
ρ̃3(n, γ ) = (γ − 1)δn,0|0, 0〉〈0, 0| + γ |0, n〉〈0, n| +

FIG. 3. LG correlation function for coherent state or Poissonian
Fock mixture input, with respect to the average photon number,
for different values of the damping factor γ of the intermediate
dephasing.

1
4n

(2n
n

)
(1 − γ )(|n, 0〉〈n, 0| + |0, n〉〈0, n|). It follows that

Tr[Q̂3ρ̃3(n, γ )] = (1 − γ )δn,0 − γ − 2δn,0
1
4n

(2n
n

)
(1 − γ ), and

performing the weighted sum with the distribution given by
Eq. (3) gives 〈Q3〉 = −e−|α|2 − γ (1 − e−|α|2 ). This results in
a new LG correlation function of two variables, whose plots
for a few values of the damping factor γ are shown in Fig. 3,
and whose expression reads

K ′(α, γ ) = 4e− 3|α|2
4 sinh

( |α|2
4

)
+ (1 − γ )e−|α|2 + γ . (11)

If the input state is a coherent state |α〉, it turns out all the
correlators are identical. For completeness, the derivation of
those correlators can be found in Appendix C.

We observe that the LGIs are still violated even with strong
decoherence. In fact, as long as the state after the first beam
splitter is not completely decohered (γ > 0), an LGI violation
remains possible, and the only way an LGI violation is real-
ized for all nonzero laser intensities is if there is strictly no
loss of coherence (γ = 1).

The explicit maximum with respect to the damping factor
is reached when |α|2 = 2 ln(1 + γ ). So we expect the maxi-
mal value to be reached at lower and lower laser intensities
with increasing decoherence. The corresponding maximum
reads

K ′(αmax, γ ) = 1 + γ

1 + γ
. (12)

This final form is consistent with previous results, yielding
no LGI violation for γ = 0 (complete decoherence) and a
maximum of 1.5 when γ = 1 (no decoherence).

VI. CONCLUSION

We have found that LGI violations can be achieved with
classical states of light in an elementary Mach-Zehnder setup.
We presented ideal negative measurements in the single-
photon case, and shown how to choose suitable observable
values to use negative measurements for multiple-photon
numbers. In order to identify what was at the origin of the
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violation, we have considered coherent states with no phase
reference, and examined the effects of decoherence after the
first beam splitter.

Should the experiment be carried out successfully, this
would be consistent with the fact that classical wave mechan-
ics, being able to reproduce quantum random walk statistics
[60], can simulate an LGI violation.
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APPENDIX A: DERIVATION OF C12 FOR DECOHERED INPUT

We prove that C12 = ∑+∞
n=1

1
2n−1 pn(α) when the input state ρ1(α) = ∑+∞

n=0 pn(α)|n, 0〉〈n, 0| is the dephased coherent state in
the left mode. The intermediate state ρ2(n, γ ) is obtained by propagating a Fock state input ρ1(n) = |n, 0〉〈n, 0| through the
beam splitter and dephasing in the right intermediate mode, so that

Tr[Q̂2ρ2(n, γ )] = 1

2n

n∑
k,�=0

√(
n

k

)(
n

�

)
(−1)k+�[γ + (1 − γ )δk,�]〈�, n − �|Q̂2|k, n − k〉. (A1)

From Eq. (6) one finds Q̂2|k, n − k〉 = (1 − δn)(|0, n〉δk + |n, 0〉δk,n), hence the general matrix element reads
〈�, n − �|Q̂2|k, n − k〉 = (1 − δn)(δ�δk + δ�,nδk,n). From this, one can deduce Tr[Q̂2ρ2(n, γ )] = 1

2n−1 (1 − δn), and the announced
result follows immediately. Note that the dephasing parameter γ does not affect this correlator.

APPENDIX B: DERIVATION OF PROJECTED OUTPUT DENSITY MATRIX

We prove that ∀n ∈ N, ρ̃3(n) = |0, n〉〈0, n|.
The intermediate state is

ρ2(n) = 1

2nn!

n∑
k,�=0

(
n

k

)(
n

l

)
(−1)k+�â† k

L â† n−k
R |0, 0〉〈0, 0|â�

Lân−�
R . (B1)

Applying the beam-splitter transformation (2) yields

ρ3(n) = 1

22nn!

n∑
k, � = 0

(
n

k

)(
n

�

)
(−1)k+�(â†

L − â†
R)k (â†

L + â†
R)n−k|0, 0〉〈0, 0|(âL − âR)�(âL + âR)n−�, (B2)

which can be expanded into

ρ3(n) = 1

22nn!

n∑
k,�=0

(
n

k

)(
n

�

)
(−1)k+�

k∑
i=0

�∑
j=0

n−k∑
p=0

n−�∑
q=0

(
k

i

)(
�

j

)(
n − k

p

)(
n − �

q

)

× (−1)k+�−i− j
√

(i + p)!(n − i − p)!( j + q)!(n − j − q)!|i + p, n − i − p〉〈 j + q, n − j − q|. (B3)

Then in the evaluation of Tr(Q̂3|i + p, n − i − p〉〈 j + q, n − j − q|) the only nonvanishing terms satisfy (p = n − i) ∧ (q =
n − j) or (q = − j) ∧ (p = −i). Note that both cases account for n = 0. Hence, the relevant submatrix for the calculation of
〈Q̂3〉 is deduced to take the simple form

ρ̃3(n) = 1

22n

{
|n, 0〉〈n, 0|

[
n∑

k,�=0

(
n

k

)(
n

�

)
(−1)k+�

]
+ |0, n〉〈0, n|

[
n∑

k,�=0

(
n

k

)(
n

�

)]}
− |0, 0〉〈0, 0|δn, (B4)

where a vacuum contribution was subtracted to correct for the n = 0 case. Since the first double sum equals δn and the second
equals 22n, the announced result is obtained.

APPENDIX C: CORRELATORS FOR COHERENT STATE INPUT WITH INTERMEDIATE DEPHASING

We consider the input state ρ1 = |α〉〈α|. Then the intermediate state with dephasing can be written using Eq. (3) as

ρ2(α, γ ) =
∣∣∣∣ α√

2

〉〈
α√
2

∣∣∣∣ ⊗
[
γ

∣∣∣∣−α√
2

〉〈−α√
2

∣∣∣∣ + (1 − γ )
+∞∑
n=0

pn

(
α√
2

)
|n〉〈n|

]
. (C1)
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It should be noted that the summed over element |n〉〈n| designates a Fock state, while |α/
√

2〉〈α/
√

2| are coherent states. The
first correlator C12 = 〈Q1Q2〉 = 〈Q2〉 is

Tr[Q̂2ρ2(α, γ )] =
+∞∑
n=1

γ

(〈
0

∣∣∣∣ α√
2

〉〈
n

∣∣∣∣−α√
2

〉〈
α√
2

∣∣∣∣0
〉〈−α√

2

∣∣∣∣n
〉
+ {n ←→ 0}

)

+ (1 − γ )

{
〈0, n|

[∣∣∣∣ α√
2

〉〈
α√
2

∣∣∣∣ ⊗
+∞∑
m=0

pm

(
α√
2

)
|m〉〈m|

]
|0, n〉 + {n ←→ 0}

}
, (C2)

which can be simplified to

Tr[Q̂2ρ2(α, γ )] =
+∞∑
n=1

2γ e− |α|2
2 pn

(
α√
2

)
+ (1 − γ )2e− |α|2

2 pn

(
α√
2

)
. (C3)

Hence we find C12 = 2e−|α|2/2(1 − e−|α|2/2) which, as announced, is the same as with the depolarized case. This is not surprising
as phase noise does not change the photon number statistics and there has not been any interference at this stage.

Let us now proceed with the C13 = 〈Q3〉 correlator. The output state can be written as

ρ3(α, γ ) = γ (|0〉〈0| ⊗ |−α〉〈−α|) + (1 − γ )
+∞∑
n=0

pn

(
α√
2

)
B̂

∣∣∣∣ α√
2

〉〈
α√
2

∣∣∣∣ ⊗ |n〉〈n|B̂†. (C4)

In the calculation of Tr[Q̂3ρ3(α, γ )] the first term is unproblematic (it gives −γ as all the flux is in the right output mode).
Let us focus on the second term where there is interference between a coherent state and a Fock state. We write B̂| α√

2
〉|n〉 =

e−|α|2/4 ∑+∞
k=0

αk√
2kk!

B̂|k, n〉, so that

〈
α√
2

∣∣∣∣〈n|B̂†Q̂3B̂

∣∣∣∣ α√
2

〉
|n〉 = e−|α|2/2

+∞∑
k,�=0

α∗�αk

√
2k+�k!�!

〈�, n|B̂†Q̂3B̂|k, n〉. (C5)

Standard calculations using Eqs. (2) and (7) give

∀(�, m, k, n) ∈ N4, 〈�, m|B̂†Q̂3B̂|k, n〉 = −δ�δmδkδn +
√

(k + n)!(� + m)!√
2k+nk!n!�!m!

[δ�+m,k+n − (−1)k+�δ�+m,k+n], (C6)

from which one finds 〈
α√
2

∣∣∣∣〈n|B̂†Q̂3B̂

∣∣∣∣ α√
2

〉
|n〉 = −e−|α|2/2δn. (C7)

Hence C13 = −e−|α|2 − γ (1 − e−|α|2 ).
Finally, as previously argued in the main text, C23 = 0 by the fact that Q3 is on average null for trials where Q2 = +1.
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