
PHYSICAL REVIEW A 103, 043706 (2021)

Enhancing spin-photon coupling with a micromagnet
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Hybrid quantum systems involving solid-state spins and superconducting microwave cavities play a crucial
role in quantum science and technology, but improving the spin-photon coupling at the single quantum level
remains challenging in such systems. Here, we propose a simple technique to strongly couple a single solid-state
spin to the microwave photons in a superconducting coplanar waveguide cavity via a magnetic microsphere. We
show that strong coupling at the single spin level can be realized by virtual magnonic excitations of a nearby
micromagnet. The spin-photon coupling strength can be enhanced up to typically 4 orders of magnitude larger
than that without the use of the micromagnet. This work can find applications in quantum information processing
with strongly coupled solid-state spin-photonic systems.
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I. INTRODUCTION

Hybrid quantum architectures based on degrees of freedom
of completely different nature have attracted much attention
over recent years [1–22], due to a variety of applications in
quantum technologies such as quantum networks [23], infor-
mation processing [13,24], and sensing [25]. The interactions
between solid-state spins and microwave photons play a cen-
tral role in hybrid quantum systems [17–22], which associate
the solid-state spins as quantum memories [26] and the pho-
tons as quantum information carriers [27]. Besides, they can
be useful for fundamental investigation in quantum mechan-
ics, solid-state physics, and quantum optics, which provide
useful platforms and tools to deepen the research of currently
unexploited quantum physics [28,29].

To construct hybrid solid-state platforms, color centers in
diamond are often employed. For example, nitrogen-vacancy
(NV) centers, one of the excellent color centers with long
coherence time and stable triplet ground states [30–36], are
frequently used for quantum storage [26] and sensing [37,38].
While the realization of strong coupling is difficult due to the
large mismatch between the spatial extension of free-space
photons and typical spins, the solid-state spins can strongly
couple to superconducting coplanar waveguide (CPW) res-
onators [17,18,39], similar to cavity quantum electrodynamics
with atoms [40]. However, current experiments in hybrid sys-
tems often involve spin ensembles rather than single spins
[18,22,41,42], since the single spin-photon coupling strength
is just around 10 Hz, which is far from the strong coupling
regime [13,28].

Here, we propose a feasible scheme to realize the strong
spin-photon coupling at the single quantum level via virtual
excitations of magnons in a micromagnet. Magnons, the en-
ergy quanta of spin waves, play an essential role in quantum
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information processing and quantum sensing [43–48], with
different types of magnets such as sphere magnets [49–59],
film layer magnets [60–66], and cylinder magnets [67].
Thanks to the small mode volume and high spin density of
the Kittel mode in a sphere micromagnet, it can focus the
field energy to enable the strong spin-magnon interaction [68].
Therefore, the Kittel mode in the sphere magnet is frequently
used in the magnon-cavity coupling system to achieve the
strong coupling between magnons and microwave cavity pho-
tons [41,47,69–76]. The nanoscale micromagnet, yttrium iron
garnet (YIG) sphere, considered in this work is well matched
with the NV spins and CPW cavities and is very crucial
to the strong interactions among the three subsystems. We
consider efficient coupling of magnonic excitations to a single
NV spin and a CPW cavity. We show that, even when the
Kittel mode is only virtually populated, the magnon-mediated
interaction between the NV spin and the microwave cavity
mode can be modified significantly. The induced spin-photon
coupling strength can be enhanced up to typically 4 orders of
magnitude larger than that in the absence of the micromagnet.
This regime may provide a powerful tool for applications of
quantum information processing based on strong spin-photon
interactions at the single quantum level.

II. DESCRIPTION OF THE SYSTEM

A. The setup

As illustrated in Fig. 1(a), we consider a hybrid tripar-
tite system where a spherical micromagnet with radius R is
magnetically coupled to a NV center and a CPW resonator
simultaneously. Here, the magnetic microsphere is a YIG
sphere. The NV center is placed above the microsphere, which
is close to the surface of the CPW resonator.

The magnetic microsphere supports spin waves, which
always exist in the ferrimagnetic or antiferromagnetic mate-
rials in the low-energy limit. The spin wave in a magnetic
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FIG. 1. (a) Schematic of the NV center (red circle with arrow)
coupled to a CPW cavity (blue field) via a YIG sphere (gray). (b) Fre-
quency split of the NV center spin states and the resonant frequency
of the Kittel mode changed with the longitudinal magnetic field.

microsphere can be quantized by the dipolar, isotropic, and
magnetostatic approximations [58], with magnons as the
quanta. In our setup, only the Kittel mode in the YIG sphere is
considered, where all the spins in the magnetic sphere precess
in phase and with the same amplitude [72]. The Hamiltonian
of the Kittel mode (with the destruction operator ŝK ) can be
expressed as

ĤK = h̄ωK ŝ†
K ŝK . (1)

Here, the frequency ωK = |γ |Bz is controlled by the exter-
nal magnetic field, with the gyromagnetic ratio γ = −1.76 ×
1011 T−1 s−1.

For the NV center, the spin-triplet S = 1 ground states
{|0〉, |±1〉} are the eigenstates of the spin operator Ŝz, with
Ŝz|i〉 = i|i〉 and i = 0 and ±1. In the presence of the exter-
nal magnetic field �Bz oriented along the NV symmetry axis
[31,32,34,77,78], the degeneracy of the states |±1〉 are split
via the Zeeman effect. Taking |0〉 as the energy reference, the
Hamiltonian of the NV center can be expressed as

ĤNV = h̄
∑
i=±1

ωi|i〉〈i|, (2)

with ω±1 = D0 ± |γ |Bz and the zero-field-splitting D0 =
2π × 2.87 GHz. With proper magnetic fields, we can choose
the states |0〉 and |−1〉 as a spin qubit, which are selected to
be resonant with the magnon mode. The Hamiltonian of the
NV center can be simplified by

ĤNV = h̄

2
ωNVσ̂z, (3)

where we define the frequency as ωNV ≡ ω−1 and the spin
operator as σ̂z ≡ |−1〉〈−1| − |0〉〈0|. The state |+1〉 can be
safely excluded due to its off-resonance with the Kittel mode.

The CPW resonator is a one-dimensional resonator whose
frequency ωC is related to the length of the transmission line
segment. The electron oscillating in the line cavity creates a
variational electromagnetic field, which can be quantized and
interacts with other devices [71,76,79–81]. The correspond-
ing Hamiltonian of photons in the CPW resonator can be
written as

ĤC = h̄ωCâ†â, (4)

where â is the annihilation operator of the photon mode. The
photon frequency is designed to match the frequencies of
magnons and spins. That means, in this setup, the frequencies
of the three individual systems are equivalent.

B. Interactions between spins and magnons

We now consider the quantization of the magnetic field
induced by the magnetic sphere. This magnetic field exists
both inside and outside the micromagnet. Here, we focus on
the latter because of the location of spin qubit. From classical
electrodynamics, the magnetic field of a magnetic sphere with
the magnetization �M can be expressed as

�Bm(�r) = μ0R3/(3r3){3( �M · �r)�r/r2 − �M}, (5)

where μ0 = 4π × 10−7 T m/A is the vacuum permeability,
R is the radius of the YIG sphere, and �r = (r, θ, φ) is the
position vector relative to the center of the magnetic sphere.
After quantizing the spin wave, the corresponding magnetiza-

tion operator �̂M of the Kittel mode is

�̂M = MK ( �̃mK ŝK + �̃m∗
K ŝ†

K ), (6)

where MK = √
h̄|γ |Ms/2V is the zero-point magnetization,

Ms is the saturation magnetization, and V is the volume.
Meanwhile, we define the Kittel mode function as �̃mK =
�ex + i�ey with the unit coordinate vectors �ex and �ey (see more
details in Appendix A). Remarkably, there is no z component
in the mode function. From the above discussion, we can get

the quantized magnetic field �̂Bm as

�̂Bm(�r) = μ0R3MK

3r3

{[(
3C2

θ − 1
)
X̂ + 3SθCθ P̂

]
�ex

+ [
3SθCθ X̂ + (

3S2
θ − 1

)
P̂
]
�ey

}
, (7)

where we define Cθ = cos θ , Sθ = sin θ , X̂ = ŝK + ŝ†
K , and

P̂ = i(ŝK − ŝ†
K ) for convenience.

We then consider the interaction between the spin qubit
and the Kittel mode in the micromagnet. When a magnetic
dipole is placed in a magnetic field, it experiences a torque
which tends to line it up parallel to the field. The Hamiltonian
associated with this torque can be naturally written as

ĤN−K = −geμB

h̄
�̂Bm · �̂S, (8)

with the electronic spin Landé factor ge, the Bohr magne-

ton μB, and the spin operator �̂S = (Ŝx, Ŝy, Ŝz ). In this work,
we define the corresponding components of the spin oper-
ator as Ŝx = h̄(|−1〉〈0| + |0〉〈−1|)/2, Ŝy = h̄(|−1〉〈0| − |0〉
〈−1|)/2i. Assuming that the coupling strength is smaller than
the resonance frequency, the spin-magnon interaction under
the rotation-wave approximation can be described by

ĤN−K = −h̄g(ŝK σ̂+ + H.c.), (9)

where the spin operators are σ̂+ = |−1〉〈0| and σ̂− = |0〉〈−1|.
And the corresponding spin-magnon coupling strength is ex-
pressed as

g =
√ |γ |Ms

12π h̄

geμ0μBR3/2

(R + d )3
, (10)

where the distance between the spin qubit and the surface of
the magnetic sphere is d = r − R [see Fig. 1(a)]. The coupling
strength is proportional to the square root of the micromagnet
volume with d > R, while the coupling strength decreases
slowly with R > d . In Figs. 2(a) and 2(b), we show the de-
pendence of the spin-magnon coupling as a function of R and
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FIG. 2. (a) and (b) The coupling strength g/2π between the in-
dividual NV center spin qubit and the Kittel mode in the YIG sphere
versus the distance d and the radius R. (c) The coupling strength
λ/2π between the CPW resonator photon and the Kittel mode in the
YIG sphere versus the radius R.

d . The coupling rate keeps reducing with the increase of d .
While it increases with the growth of R until the maximum.
From the numerical result we find that if we choose the YIG
sphere with R ∼ 50 nm and the distance d ∼ 10 nm, then the
coupling strength is about ∼1 MHz.

C. Interactions between photons and magnons

We consider the quantizing form of the magnetic field
generated by the CPW resonator. For the single mode, the
magnetic field operator is

�̂Bc = �btr (x, y)(â + â†)/
√

2. (11)

Here, the mode function �btr (x, y) varies strongly in space
depending on the CPW resonator geometry. To obtain the
stronger interaction, the magnetic sphere is in close proximity
to the surface of the CPW resonator. Then the mode function
depends on the radius of the sphere [�btr (R)]. From the dis-
cussion in Sec. II A, the radius is about tens of nanometers,
which is less than the width of the CPW resonator (∼ 1 μm).
Therefore, the variation of the mode function depending on
the radius can be ignored and �btr (R) acts as an estimated
constant ranging from 35 to 40 μG.

We then expound the magnetic interaction between the
CPW resonator and the micromagnet. The classical exchange
energy of a magnetic dipole with the magnetic moment �m
in a uniform magnetic field �Bc is U = − �m · �Bc. For a uni-
formly magnetized sphere, we treat it as a magnetic dipole
with �m = V �M. After replacing the classical quantity with the

magnetization operator �̂M and the magnetic field operator
�̂Bc in the expression above, the photon-magnon interaction
Hamiltonian is

ĤC−K = −h̄λ(ŝK + ŝ†
K )(â + â†).

Here, the homologous coupling strength is defined as

λ =
√

π |γ |Ms

3h̄
bx(R)R3/2. (12)

We ignore the y component of �btr (R), since the magnetic
field is parallel to the x axis. Then, the photon-magnon cou-
pling strength λ can be enhanced to around 1 MHz with
a proper geometrical size of the magnetic microsphere [see
Fig. 2(c)]. Under the rotating-wave approximation, we can get

the photon-magnon interaction Hamiltonian

ĤC−K = −h̄λ(ŝ†
K â + H.c.). (13)

III. REALISTIC CONSIDERATION
AND EXPERIMENTAL PARAMETERS

From the above discussion, we can obtain the total Hamil-
tonian of the hybrid spin-magnon-photon system, which can
be expressed as

Ĥ = h̄ωCâ†â + h̄ωK ŝ†
K ŝK + 1

2 h̄ωNVσ̂z

− h̄g(ŝK σ̂+ + H.c.) − h̄λ(ŝ†
K â + H.c.), (14)

where the first three terms correspond to the free Hamiltonian
from Eqs. (1), (3), and (4), and the last two terms describe two
interactions: one between the Kittel mode and the NV center
spin from Eq. (9), and the other between the Kittel mode and
the photon in the CPW resonator from Eq. (13). As the Kittel
mode is coupled both to the spin qubit and the CPW resonator
photon, it is possible for it to work as a quantum interface
between the spin qubit and the CPW resonator.

We now discuss the dynamics of the system in a realistic
situation. In this case, we take into account the dephasing of
the NV center spin (γs), the decays of the Kittel mode (γm),
and the CPW resonator (κ). As a result, the master equation
of the total system can be expressed as

˙̂ρ(t ) = −i/h̄[Ĥ , ρ̂] + L[ρ̂], (15)

where ρ̂ is the density operator. The last term in above equa-
tion is given by

L[ρ̂] = γsD[σ̂z]ρ̂ +
∑

j

{(n̄ j + 1)� jD[ô j]ρ̂ + n̄ j� jD[ô†
j]ρ̂}.

(16)
For compactness we define {�m, �p} ≡ {γm, κ}, {ôm, ôp} ≡
{ŝK , â}, and D[ô]ρ̂ ≡ ôρ̂ρ̂† − {ô†ô, ρ̂}/2. Here, we have in-
troduced the thermal occupation number n̄ j = (eh̄ω j/kT − 1)−1

with frequencies {ωm, ωp} = {ωK , ωC} and the environmental
temperature T [2,82]. Considering the low temperature limit
(T ∼ 10 mT), the thermal occupation number n̄ j is safely ig-
nored with the frequency ω j ∼ 1.4 GHz. Then the dissipation
of the Kittel mode and the photon mode therefore can be
simplified. Then, the master equation turns to

˙̂ρ(t ) = −i/h̄[Ĥ, ρ̂] + γsD[σ̂z]ρ̂ +
∑

j

� jD[ô j]ρ̂. (17)

In the frame rotating at the individual spin qubit frequency
ωNV, the whole Hamiltonian is first transformed to the form
as

Ĥ = h̄�1ŝ†
K ŝK + h̄�2â†â − h̄gŝK σ̂+ − h̄λŝ†

K â + H.c., (18)

where �1 = ωK − ωNV and �2 = ωC − ωNV [40]. In view
of the large detuning (�1 	 g, λ), the Kittel mode can be
eliminated [83] and we can obtain the effective interaction
between the NV center spin qubit and the CPW resonator
photon with the following Hamiltonian:

Ĥeff = h̄(�2 − β2�1)â†â − 1
2 h̄α2�1σ̂z

− h̄geff (â†σ̂− + H.c.), (19)
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(a)

(b)

(c)

(d)

FIG. 3. The effective coupling strength geff/2π and the effective
decay rates γeff/2π and κeff/2π depend on the detuning �1/2π with
the value of (a) R = 50 nm and (b) R = 100 nm, and Inversely these
parameters depend on the radius of the micromagnet sphere R with
the value of (c) �1/2π = 10 MHz and (d) �1 = 20 MHz. We chose
the distance between the spin qubit and the surface of the magnetic
microsphere as d = 30 nm in these figures.

where we defined the dimensionless parameters as α = g/�1

and β = λ/�1 as well as the effective coupling strength geff =
gλ/�1. This result shows that the interface between the spin
and the cavity photon is achieved via utilizing the Kittel mode
in the micromagnet as a medium.

We next discuss the effective coupled system with realistic
consideration. First, the dissipative interaction system can be
described with a reduced effective master equation as

d ρ̂r (t )

dt
= − i

h̄
[Ĥeff , ρ̂r] + γsD[σ̂z]ρ̂r

+ γeffD[σ̂−]ρ̂r + κeffD[â]ρ̂r, (20)

where γeff = α2γm and κeff = κ + β2γm are the effective de-
cay rates, respectively. Here, the original dissipation rates are
chosen as γs/2π ∼ 1 kHz [78], γm/2π ∼ 1 MHz [82], and
κ/2π ∼ 6 kHz [2]. Taking α ∼ β ∼ 0.1 in order to eliminate
the Kittel mode, we therefore estimate the effective decay
rates as γeff ∼ 10 kHz and κeff ∼ 16 kHz. Since the spin
dephasing rate γs is much smaller than the effective decay
rates γeff and κeff , its effect on the dynamics of the system can
be neglected. At the same time, the effective coupling strength
geff can be approximatively obtained as geff ∼ 0.1g, which is
larger than the effective decay rates γeff and κeff . Therefore,
we can obtain the center result of this work: the individual NV
center spin qubit can strongly couple to the microwave photon
in a CPW resonator under the proper conditions. The spin-
photon coupling is well within the strong coupling regime.

We show that the effective coupling strength and decay
rates depend on the detuning �1 and the geometrical radius
of the magnetic sphere R in Fig. 3. The effective coupling
rate geff/2π and the decay rate κeff/2π increase with the
increase of the detuning �1/2π , while they decrease with the
increase of R. Another effective decay rate γeff/2π decreases
with the increase of �1/2π and R. There is always a large
range where the effective coupling strength exceeds both the
effective decay rates with various values of detuning �1/2π

and R. Thus, we can take the effective spin-photon system into
the strong coupling regime via tuning the relevant parameters.

In order to compare the effective coupling strength with the
effective decay rates, we employ three parameters: geff/γeff ,
geff/κeff , and the cooperativity C = g2

eff/γeffκeff . As shown in

FIG. 4. (a) The contour map of the parameter geff/γeff as a
function of the detuning �1/2π and the radius R. (b) and (c) Co-
operativity, geff/γeff , and geff/κeff versus the radius R under a certain
detuning. (d) and (e) The contour maps of the parameters, coopera-
tivity and geff/κeff , versus the detuning and the radius. The distance
between the spin qubit and the surface of the magnetic microsphere
is chosen as d = 30 nm.

Fig. 4(a), the parameter geff/γeff increases when the detuning
�1 and the radius R become larger. The results show that
larger physical dimensions of the magnetic microsphere will
allow for stronger effective interaction between the spin qubit
and the CPW resonator photon. In Figs. 4(b) and 4(c), we
show that the three parameters can be larger than 1 when the
radius R is within a certain range. Figure 4(d) shows that the
cooperativity C increases with the increase of the detuning �1

and the radius R, and there is a very large range where the
cooperativity even exceeds 10. There is also a range for the
parameter geff/κeff > 1, as shown in Fig. 4(e). Note that the
results displayed in Figs. 3 and 4 are obtained when the NV
spin qubit is close to the magnetic microsphere (d = 30 nm).

We now explain the significance of the magnetic mi-
crosphere in this spin-photon-coupled system using the
numerical simulation. The direct interaction between the in-
dividual spin qubit and the single photon is very weak on
account of the low magnetic effect generated by a single
microwave photon. Nevertheless, the magnon mode is sen-
sitive to weak magnetic fields. At the same time, individual
spin qubits can strongly couple to the magnon mode with a
small distance apart from the magnetic microsphere. Hence,
the magnons play a pivotal role in the realization of strong
spin-photon coupling. The effective interaction can be pro-
portionally enhanced with the increase of the volume of the
magnetic microsphere within a certain range.

We numerically simulate the time evolution of the occu-
pations of the spin qubit, the Kittel magnon, and the CPW
resonator using the QUTIP package in PYTHON [84] as shown
in the Fig. 5. The damped oscillations of the occupations of
the spin and the photon in Fig. 5(a) show the strong cou-
pling between them in the presence of magnons. While in the
absence of magnons, Fig. 5(b) shows an exponential decay
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(b)

(a)

FIG. 5. (a) The occupation map of the three parts in the system
depends on the dimensionless time gt/π with the parameters γm ∼ g,
γs ∼ 0.1g, κ ∼ 0.5g, g ∼ λ, and �1 ∼ 10g. Panel (b) shows the di-
rect interaction between the spin qubit and the CPW resonator photon
without the magnon mode as an intermediary.

curve without oscillations. This result confirms the validity of
the effective master equation (20). Note that the population of
the virtually excited Kittel mode is nearly zero in the whole
process. These results clearly show the significant role played
by the magnon in realizing the strong coupling between the
spin and the photon.

IV. CONCLUSION

In conclusion, we have proposed a scheme for strongly
coupling a single solid-state spin like NV centers to the mi-
crowave photons in a CPW cavity via a magnetic microsphere.
We have shown that the strong coupling at the single quantum
level can be realized by virtual magnonic excitations of a
nearby micromagnet. In contrast to the case in the absence
of the micromagnet, the spin-photon coupling strength has
been enhanced up to typically 4 orders of magnitude. Here,
the employment of magnons opens up intriguing perspec-
tives for magnonics and spintronics as well. This regime
may facilitate much more powerful applications in quantum
information processing based on strongly coupled solid-state
spin-photonic systems.
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APPENDIX A: QUANTIZATION OF THE SPIN WAVE

In this Appendix, we integrally show the quantization of
the spin wave and obtain the theoretical model of the magnon
in a ferromagnetic microsphere. First, in Appendix A 1, we
introduce the original equation of motion for the magnetiza-
tion, the general Landau-Lifshitz equation, which is simplified
under several physical approximations. Then, we present the
Walker mode in a ferrite sphere in Appendix A 2. Based on
the magnetostatic energy density expression, we obtain the

intrinsic Hamiltonian and quantization of the magnon modes
in Appendix A 3.

1. Spin-wave equations in a magnetic sphere

First, we consider the spin waves with a continuous magne-
tization field, �M(�r, t ), and the corresponding electromagnetic
field intensities �E (�r, t ) and �H (�r, t ). The dynamics of spin
waves generally follows the Maxwell’s equations with the re-
lationship between the induced magnetization and the applied
field. Now we start from the phenomenological Landau-
Lifshitz equation of motion for the magnetization [44,85,86]:

d

dt
�M(�r, t ) = −|γ |μ0 �M(�r, t ) × �Heff ( �M, �r, t ), (A1)

where the effective field �Heff ( �M, �r, t ) comprises the
Maxwellian field �H (�r, t ) and the extra parts �H ′( �M, �r, t ) =
�Hex + �Han + �Hdm [44]. Here, �Hex, �Han, and �Hdm, depending on
�M, �r, and t , are effective fields due to exchange, anisotropy,

and demagnetization induced by the magnetic dipole-dipole
interactions, respectively. This means that the Landau-Lifshitz
equation is inhomogeneous.

We then assume that the magnet is in the saturated mag-
netic state along the z axis (�ez) under the collinear field.
Then the fluctuation of the magnetization and the field is very
small compared with the constant part [58]. Naturally, they are
written as �M(�r, t ) = MS�ez + �m(�r, t ) and �H (�r, t ) = H0�ez +
�h(�r, t ). Here, �m � MS and �h � H0 are the dynamical vari-
ables to be solved. The exchange field is associated with the
domain wall interaction, which is less than the dipole-dipole
interaction when the micromagnet size is large compared with
the domain wall length. The magnetocrystalline anisotropy
for a cubic material is also negligible [44,74,85]. As for the
demagnetizing field, we assume �Hdm = −(MS/3)�ez, which is
suitable for a spherical magnet [85,87]. The above expressions
combined with Eq. (A1) lead to a more clear form of the
Landau-Lifshitz equation as

�̇m(�r, t )

|γ |μ0MSH0
− �ez ×

[ �m(�r, t )

MS
− �h(�r, t )

H0

]
+

[
�ez + �m(�r, t )

MS

]

× (H0 − MS/3)�ez

H0
= �h(�r, t )

H0
× �m(�r, t )

MS
. (A2)

Note that the variables �m/MS and �h/H0 are small. Thus, we
can safely neglect the second-order term in the above equa-
tion. Then the Landau-Lifshitz equation is linearized as [44]

[
ṁx(�r, t )

ṁy(�r, t )

]
=

[−ω0my(�r, t ) + ωMhy(�r, t )

ω0mx(�r, t ) − ωMhx(�r, t )

]
. (A3)

Here, the two relevant system frequencies are ωM = |γ |μ0MS

and ω0 = |γ |μ0(H0 − MS/3).
Finally, it comes to the magnetostatic approximation ∇ ×

�h(�r, t ) � 0. In the Maxwell equations, the electric field
of the spin wave is uncoupled from �h under this cir-
cumstance. In addition, the approximation makes it easy
to introduce the magnetostatic potential through �h(�r, t ) =
−∇ψ (�r, t ). Combined with the zero-divergence condition

043706-5



HEI, DONG, CHEN, SHEN, QIAO, AND LI PHYSICAL REVIEW A 103, 043706 (2021)

∇ · �b = 0 in Maxwell equations, the relation �b = μ0(�h + �m)
allows one to obtain the following equation for three scalar
fields (ψ, mx, my) [44]:

∇2ψ (�r, t ) = ∂xmx(�r, t ) + ∂ymy(�r, t ), (A4)

which is the constraint inside the micromagnet. While the
equation outside the micromagnet is ∇2ψ = 0. Therefore,
the linear scalar equations, Eqs. (A3) and (A4), completely
describe the spin wave with the boundary conditions, which
is the continuity of the normal direction components of �h and
�b, respectively. The spin-wave eigenmodes solved from these
equations are the magnetostatic dipolar spin waves or Walker
modes [44,85].

2. Walker modes and Kittel modes

This section reveals the process of calculating the Walker
modes. We start from the expressions of the magnetization and
magnetic fields in terms of the eigenmodes:

�m(�r, t ) =
∑

β

[sβ �mβ (�r)e−iωβ t + c.c.], (A5a)

�h(�r, t ) =
∑

β

[sβ �hβ (�r)e−iωβ t + c.c.]. (A5b)

Here, the eigenmode fields �mβ (�r) and �hβ (�r) = −∇ψβ (�r)
are characterized by a series of mode indices, {β};
an eigenfrequency, ωβ ; and a complex amplitude, sβ

[88,89]. Then the linearized Landau-Lifshitz equations
turn to iωmx(�r) = ωM∂yψ (�r) + ω0my(�r) and iωmy(�r) =
−ωM∂xψ (�r) − ω0mx(�r), which are time independent. We can
eliminate the scalar field mx(�r) and my(�r) through these
equations and Eq. (A4). The formula merely contains the
magnetostatic potential as

∇2ψout (�r) = 0, (A6a)

(1 + χp)

(
∂2

∂x2
+ ∂2

∂y2

)
ψin(�r) + ∂2

∂z2
ψin(�r) = 0, (A6b)

where ψin and ψout are the magnetostatic potentials inside
and outside the micromagnet, respectively. Here, the diagonal
element of the Polder susceptibility tensor [44] is defined as
χp(ω) ≡ ωMω0/(ω2

0 − ω2).
As for the outside situation, the general solution in the

spherical coordinates is given by

ψout (�r) =
∑
lm

[
Alm

rl+1
+ Blmrl

]
Y m

l (θ, φ). (A7)

Here, Alm and Blm are determined by the boundary con-
ditions and Y m

l (θ, φ) is the spherical harmonics. To solve
the potential, a set of nonorthogonal coordinates {ξ, η, φ} is
introduced. They fulfill x = √

χpR
√

ξ 2 − 1 sin η cos φ, y =√
χpR

√
ξ 2 − 1 sin η sin φ, and z = √

χp/(1 + χp)Rξ cos η.
Thus, the solution of Eq. (A6b) becomes available, which is
an expression including Legendre polynomials and spherical
harmonics [88,89], as

ψin(�r) =
∑
lm

ClmPm
l (ξ )Y m

l (η, φ). (A8)

In each term of the summation, Clm depends on the boundary
conditions.

We then determine all the coefficients by the boundary con-
ditions. First, the term corresponding to Blm is not convergent
at infinity, which should be removed to make the potential ψ

regular. That indicates the first condition, Blm = 0. Consider-
ing the potential on the surface of the sphere, the coordinates
are ξ → ξ0 = √

(1 + χp)/χp and {η, φ} → {θ, φ}. Applying
these coordinates to the two solution expressions, Eq. (A7)
and Eq. (A8), we can have the normal-direction-component
continuity of �h and obtain the second condition

Alm = ClmPm
l (ξ0)Rl+1. (A9)

Similarly, we can apply the continuity of the normal compo-
nent of the �b field to obtain the final condition

∂ψout

∂r

∣∣∣∣
r=R

= ξ0

R

∂ψin

∂ξ

∣∣∣∣
r=R

− i
κp

R

∂ψin

∂φ

∣∣∣∣
r=R

. (A10)

Here, κp(ω) = ωMω/(ω2
0 − ω2) is the off-diagonal element

of the Polder susceptibility tensor [44]. Applying the above
fomula and Eq. (A9), the Walker mode eigenfrequency fulfill
the equation as [88,89]

ξ0(ω)
P′m

l (ξ0(ω))
Pm

l (ξ0(ω))
+ mκp(ω) + l + 1 = 0. (A11)

We can use the indices {l, m, n} to mark the nth eigenmodes
of the spin waves. The mode functions have been explicitly
calculated (Ref. [88]).

3. The intrinsic Hamiltonian and quantization
of the magnetostatic dipolar magnon modes

We now show the quantization of the Walker modes from
a phenomenological micromagnetic energy functional [58]:

Em({ �m}, {�h}) = μ0

2

∫
dV �m(�r, t ) ·

[
HI

MS
�m(�r, t ) − �h(�r, t )

]
.

(A12)

For convenience, we apply Eq. (A3) to the above
expression and the energy becomes Em({ �m}) = 1/(2|γ |MS )∫

dV (mx∂t my − my∂t mx ). Then making use of Eq. (A5a),
we transform the energy expression to Em = 1/(2h̄|γ |MS )∑

β h̄ωβ�β (sβs∗
β + s∗

βsβ ), with �β = 2Im
∫

dV mβym∗
βx

[90,91]. Compared with the Hamiltonian of the harmonic
oscillator, we can choose adequate eigenmode normalization
to fulfill �β = MS|γ |h̄. After replacing the expansion coef-
ficients with the bosonic magnon operators, i.e., {sβ, s∗

β} →
{ŝβ, ŝ†

β} with the commutation relation [ŝβ, ŝ†
β] = 1, we can

obtain the quantized Hamiltonian Ĥm = ∑
β h̄ωβ[ŝ†

β ŝβ +
1/2], where the constant term is the analog of the zero-point
energy.

For simplicity, after defining a zero-point magnetiza-

tion M0β =
√

h̄|γ |MS/�̃β and the normalization constant

�̃β = 2Im
∫

dV m̃∗
x m̃y, the mode functions are replaced

as { �mβ, �hβ} → M0β{ �̃mβ, �̃hβ}. The corresponding magneti-
zation and magnetic field operators are written as �̂m =∑

β M0β ( �̃mβ ŝβ + H.c.) and �̂h = ∑
β M0β ( �̃hβ ŝβ + H.c.).

043706-6
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As for the Kittel mode, especially, the mode function
is m̃K = �ex + i�ey with the coordinate vector �ex and �ey. The
zero-point magnetization is MK = √

h̄|γ |MS/2V with the
saturation magnetization MS and the volume V [58]. The
corresponding magnetization operator is

�̂M = MK (m̃K ŝK + m̃∗
K ŝ†

K ). (A13)

APPENDIX B: QUANTIZATION OF THE MAGNETIC
FIELD GENERATED BY A MAGNETIC SPHERE

AND THE INTERACTION HAMILTONIAN

In this Appendix, we show the quantization of the magnetic
field generated by a magnetic sphere concretely.

We start from the classical electromagnetism result that
the field of a magnetic sphere with magnetization �M can be
described by

�B(�r) = μ0

3

R3

r3

[
3( �M · �r)�r

r2
− �M

]
, (B1)

where �B(�r) is the magnetic field at �r = r cos θ �ex + r sin θ �ey.
We then introduce the quantized magnetization operator from
Eq. (A13), i.e.,

�̂M = MK [(ŝK + ŝ†
K )�ex + i(ŝK − ŝ†

K )�ey]. (B2)

Applying the above expression to Eq. (B1), we can
obtain the operator expression of the magnetic field

as

�̂Bm(�r) = μ0R3MK

3r3

{[(
3C2

θ − 1
)
X̂ + 3SθCθ P̂

]
�ex

+ [
3SθCθ X̂ + (

3S2
θ − 1

)
P̂
]
�ey

}
, (B3)

where we define Cθ = cos θ , Sθ = sin θ , X̂ = ŝK + ŝ†
K , and

P̂ = i(ŝK − ŝ†
K ) for convenience.

Then we consider the interaction between the spin and the

quantized magnetic field described by ĤN−K = (−geμB/h̄) �̂B ·
�̂S, with the spin operator Ŝ = Ŝx�ex + Ŝy�ey + Ŝz�ez, which leads
to the Hamiltonian

ĤN−K = −h̄g
[(

3C2
θ − 1

)
(ŝK + ŝ†

K )(σ̂+ + σ̂−)

+ 3iSθCθ (ŝK − ŝ†
K )(σ̂+ + σ̂−)

− 3iSθCθ (ŝK + ŝ†
K )(σ̂+ − σ̂−)

+ (
3S2

θ − 1
)
(ŝK − ŝ†

K )(σ̂+ − σ̂−)
]
, (B4)

where the spin operators are defined as σ̂± = (Ŝx ± Ŝy)/h̄.
Under the rotating-wave approximation, the imaginary terms
in the second and third lines of the above expression offset
with each other, while the left parts can be simplified to
the final Hamiltonian ĤN−K � −h̄g(ŝK σ̂+ + H.c.). Here, the
coupling strength is defined as

g =
√ |γ |Ms

12π

geμ0μBR3/2

(R + d )3
, (B5)

where the distance between the spin qubit and the surface of
the magnetic sphere is d = r − R [see Fig. 1(a)].
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