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Magnon-assisted photon-phonon conversion in the presence of structured environments
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Quantum conversion or interface is one of the most prominent protocols in quantum information processing
and quantum state engineering. We propose a photon-phonon conversion protocol in a hybrid magnomechanical
system comprising a microwave optical mode, a driven magnon mode, and a mechanical-vibrating mode, which
has attracted much interest and is expected to become a building block of the future quantum information
network due to its controllability in coupling strengths. The microwave photons in the optical cavity are
coupled to the magnons by the Zeeman interaction, and the latter are coupled to the mechanical phonons by the
magnetostrictive interaction. With a strong photon-magnon interaction and a strong driving on the magnon, an
effective Hamiltonian is constructed to describe the conversion between photons and phonons near their resonant
point. The cavity-magnon system can then play the role of quantum memory. Moreover, the faithfulness of the
photon-phonon conversion is estimated in terms of fidelities for state evolution and state-independent transfer.
The former is discussed in the Lindblad master equation, taking account of the leakages of photons, phonons,
and magnons into consideration. The latter is derived by the Heisenberg-Langevin equation considering the non-
Markovian noise from the structured environments for both optical and mechanical modes. The state-evolution
fidelity is found to be robust to the weak leakage. The transfer fidelity can be maintained by the Ohmic and
sub-Ohmic environments of the photons and is insensitive to the 1/ f noise of the phonons. Our work thus
provides an interesting application for the magnon system as a photon-phonon converter in the microwave
regime.
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I. INTRODUCTION

The cavity-magnon system is a rapidly developing meso-
scopic platform for quantum information processing [1–4]. As
an active topic of research, it has been theoretically investi-
gated [5–8] and experimentally demonstrated [7,9–13] in the
perspective of cavity quantum electrodynamics (cQED) dur-
ing the past decade. Following the circuit-QED [14] systems
and the semiconductor microcavities systems (such as quan-
tum dots embedded in cavities [15,16]), the cavity-magnon
system actually becomes an alternative candidate for exploit-
ing the ubiquitous effects of cQED in the strong-coupling
regime [17–19].

Typically, in a cavity-magnon system, a magnet-spin en-
semble in a single-crystal yttrium iron garnet (YIG) sphere is
loaded into a high-Q cavity. Down to the quantum level, it is
found that the Kittel mode of the spin ensemble (the ground
state) in the YIG sphere could be strongly coupled to the
microwave photons in a cavity mode, and in the meantime the
magnons are coupled to the phonons, describing the mechan-
ical vibration of the same sphere (see the diagram in Fig. 1).
Then a cavity-magnon system could be considered as a cavity-
magnomechanical system, taking inspiration from the cavity
optomechanics, where the optical mode is directly coupled to
the mechanical vibration of the movable mirror via radiation
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pressure [20]. Significant progress regarding the mechanical
vibration has been reported to demonstrate the quantum ad-
vantages, such as the phonon cooling in a non-Markovian
environment [21], the quantum entanglement between me-
chanical elements and cavity modes [22,23], and the quantum
state transfer between photon and phonon [24]. In light of dis-
playing the quantum characteristics, it is interesting to apply
original ideas in the existing hybrid quantum systems [20,25–
28] to the cavity-magnomechanical system. For example,
an implementation of the photon-magnon-phonon interaction
was addressed in Ref. [29], based on which the photon-
magnon-phonon entanglement in cavity magnomechanics was
proposed in Ref. [30].

In terms of quantum conversion, protocols for light-matter
interface and state transfer have been implemented with
atomic systems under cavity QED [31,32]. The quantum
state conversion between microwave and optical photons
was proposed via an optoelectromechanical interface [33].
Optomechanical systems can also serve as light-matter
interfaces, in which quantum information and quantum fluctu-
ations originally encoded in an optical field can be reversibly
mapped to a mechanical oscillator with a much smaller de-
cay rate [34,35], by which the mechanical oscillator serves
as a quantum network node [29,30] for information storage
and processing [36]. In this work, we present a protocol for
photon-phonon conversion in the cavity magnomechanical
system [30] on account of the fundamental interest in the
physical process, also exploiting the strong coupling for the
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magnon-photon and the magnon-phonon interactions and the
negligible phonon decay rate. Note the phonon in the YIG
sphere decays with a rate about 100 Hz [29], much smaller
than its own frequency and that of the photons. In comparison
to the direct photon-phonon interaction in the well-studied
cavity optomechanical system, our proposal realizes indirect
photon-phonon interaction with the same order of magnitude
in a three-mode system. A more important advantage of the
cavity-magnomechanical system [29] is its potential large-
scale parametric implementation due to the fact that the single
coupling strength between magnon and phonon can be tuned
from 0 to 60 MHz by manipulating the direction of the bias
fields.

The strong coupling inside a hybrid system opens a door to
study the physics of virtual processes governed by the inter-
action Hamiltonian and leads to many interesting phenomena
and applications in quantum engineering [17–19]. For exam-
ple, the interesting Bell states, GHZ states [37], and NOON
states [38] can be generated in the strongly coupled circuit-
QED systems by virtue of the multiple-photon process. We
find that the core idea in these general Rabi models [37–39]
describing a single atomic system strongly coupled to a har-
monic oscillator system can be used to construct an effective
Hamiltonian describing the indirect coupling between photon
and phonon at their resonant point via the virtual process of
magnons. In particular, the effective coupling obtained by the
second-order perturbation theory [38,39] supports a different
conversion protocol between the mechanical oscillation and
the microwave optical mode, resembling the conventional one
in the optomechanical systems.

The rest part of this work is structured as following.
In Sec. II, we introduce the hybrid quantum model and
derive the effective Hamiltonian for the photon-phonon con-
version mediated by the magnon mode. In Sec. III, the
effective Hamiltonian is confirmed by comparison to the
original Hamiltonian with respect to the effective coupling
strength and is phenomenologically tested in terms of the
state evolution under the leakage of photon, magnon, and
phonon by a Lindblad master equation. In Sec. IV, a state-
independent transfer fidelity via the effective Hamiltonian is
derived through a microscopic analysis via the Heisenberg-
Langevin equation. It is shown that our conversion protocol
can be implemented with high fidelity under certain structured
environments for the photon mode. We discuss the Kerr non-
linearity of the magnon mode on the effective Hamiltonian
and then summarize the whole work in Sec. V.

II. MODEL AND THE EFFECTIVE HAMILTONIAN

We consider a hybrid cavity magnon-mechanical system as
shown in Fig. 1, which is constituted by cavity-mode photons,
magnons, and phonons [30] down to the quantum level. The
magnons are embodied by a collective motion of a large
number of spins in a ferrimagnet, e.g., a YIG sphere. Then
the cavity photons are coupled to magnons via the Zeeman
interaction between the magnetic field of light and the magne-
tization of the magnet sphere. The coupling between magnons
and phonons is mediated by the magnetostrictive interaction.
In particular, the temporally varying magnetization induced
by the magnon excitation inside the YIG sphere leads to

FIG. 1. Model diagram: a YIG sphere is placed inside a mi-
crowave cavity near the maximum magnetic field of the cavity mode
and simultaneously in a uniform bias magnetic field, which estab-
lishes the magnon-photon coupling. The magnon mode is driven by
a microwave source (with a magnitude �d ) to enhance the magnon-
mechanical coupling.

the deformation of its geometrical structure, which forms the
vibrational modes (phonons) of the sphere. The sphere size
is considered to be much smaller than the wavelength of the
microwave photons, such that the magnetic dipole interactions
are isotropic and the effect of radiation pressure (proportional
to the photon number 〈a†a〉) over the sphere is negligible. The
system Hamiltonian thus reads (h̄ ≡ 1)

HS = ωaa†a + ωmm†m + ωbb†b

+ i�d (m†e−iωd t − meiωd t )

+ gma(am† + a†m) + gmbm†m(b + b†). (1)

Here a(a†), m(m†), and b(b†) are the annihilation (creation)
operators of the photon, magnon, and phonon modes, respec-
tively. ωa, ωm, and ωb are their respective eigen frequencies.
The Rabi frequency �d = γ

√
5NB0/4 describes the coupling

strength between the driving field with amplitude B0 and
frequency ωd and the magnon mode, where γ is the gyromag-
netic ratio and N is the number of spins [30]. The magnet-spin
ensemble has a long coherent time [40] and strong dipole
transitions for efficient coupling to the microwave photons.
Thus, the magnon-microwave coupling strength gma can be
larger than the dissipation rates of both cavity and magnon
modes, κa and κm, entering into the strong-coupling regime,
gma > κa, κm. To construct the Hamiltonian in Eq. (1), the
photon-magnon interaction term is a result of linearizing mag-
netization using Holstein-Primakoff transformation, assuming
that the magnetic field of light is of linear polarization and per-
pendicular to the static magnetization. We have employed the
rotating-wave approximation, i.e., gma(a + a†)(m + m†) →
gma(am† + a†m), that is valid when ωa, ωm � gma [29].
The single-magnon magnomechanical coupling strength gmb

is typically small, considering the large frequency mis-
match between the magnon and the phonon modes, yet it
can be compensated by a strong parametric drive �d . In
this case, the magnomechanical coupling is described by
a radiation-pressure-like, dispersive interaction Hamiltonian
gmbm†m(b + b†).
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It is convenient to change the description of the mi-
crowave photon mode and the magnon mode by switching to a
frame rotating at the driving frequency ωd . Applying the uni-
tary transformation U = exp(iωdta†a + iωdtm†m) makes the
driving terms time independent [20] and generates a rotating
Hamiltonian H ′

S = UHU † − iU∂U †/∂t of the form

H ′
S = �aa†a + �mm†m + ωbb†b + gmbm†m(b + b†)

+ gma(am† + a†m) + i�d (m† − m), (2)

where �a ≡ ωa − ωd and �m ≡ ωm − ωd . The magnon mode
under driving is assumed to have a large expectation value
|〈m〉| ≡ M � 1, which allows us to linearize [20,41] the sys-
tem dynamics by writing the operator m = M + δm with δm
describing the fluctuation of the magnon mode. The Hamilto-
nian H ′

S turns out to be

H = H0 + V,

H0 = �aa†a + �mδm†δm + ωbb†b,

V = G(δm† + δm)(b + b†) + g(aδm† + a†δm), (3)

where g = gma, and G = Mgmb is the effective magnomechan-
ical coupling strength. During the derivation over Eq. (3), all
the linear terms have been omitted by an appropriate modu-
lation over the detunings, since they indicate the presence of
the average displacements. Then we only keep the quadratic
interaction V [20]. For simplicity, we apply the convention
δm → m in the following content.

To realize the photon-phonon conversion assisted by the
magnon mode via the linearized approximate Hamiltonian
in Eq. (3), generally one can extract an effective transition
from the near-degenerate subspaces based on the standard
perturbation theory with respect to the coupling strengths
g and G. When the phonon frequency ωb is near resonant
with the detuning frequency �a, and both of them are far
off resonant from the detuning frequency �m, i.e., ωb ≈
�a � g, G and |ωb − �m| � g, G, it is found that the tensor-
product state |nalmkb〉 ≡ |n〉a|l〉m|k〉b is near degenerate with
|(n − 1)alm(k + 1)b〉. Here the subscripts a, m, b respectively
represent the photon, magnon, and phonon modes, and n, l, k
indicate their individual Fock states.

The indirect connection for any two eigenstates |i〉 and | j〉
of the unperturbed Hamiltonian H0 can be constructed to the
leading order by [37,39]

geff =
∑
n 
=i, j

VjnVni

ωi − ωn
, (4)

where Vnm ≡ 〈n|V |m〉 and ωn is the eigenenergy of state |n〉,
provided the interaction Hamiltonian V is regarded as a per-
turbation to H0.

A good approximation of the effective Hamiltonian de-
scribing the transition between arbitrary base pair |nlk〉 and
|(n − 1)l (k + 1)〉 can be analytically obtained using the pre-
ceding second-order perturbation theory. It can be expressed
in the form

Heff = (�a + ε1)|nlk〉〈nlk|
+ (ωb + ε2)|(n − 1)l (k + 1)〉〈(n − 1)l (k + 1)|
+ geff (|nlk〉〈(n − 1)l (k + 1)| + H.c.), (5)

FIG. 2. All the second-order (leading-order) paths involving ar-
bitrary base pair |nlk〉 ≡ |n〉a|l〉m|k〉b and |(n − 1)l (k + 1)〉. Blue
solid lines mark the transitions mediated by the photon-magnon
coupling. Red long-dashed lines mark the transitions mediated by
the magnon-phonon coupling.

where ε1 and ε2 are the energy shifts due to the effective cou-
pling for the states |nlk〉 and |(n − 1)l (k + 1)〉, respectively,
and geff is the effective coupling strength. These are three
coefficients to be determined in this ansatz.

We first consider the energy shift ε1 for the state |nlk〉.
Summarizing all six paths from |nlk〉 and back to itself
through an intermediate state (see Fig. 2), e.g., |nlk〉 → |n(l −
1)(k − 1)〉 → |nlk〉, one can obtain the second-order energy
correction (shift) ε1 according to Eq. (4)

ε1 = (n − l )g2

�a − �m
+ (k − l )G2

ωb − �m
− (l + k + 1)G2

�m + ωb
. (6)

Similarly, the energy shift ε2 for the state |(n − 1)l (k + 1)〉 is
found to be

ε2 = (n − l − 1)g2

�a − �m
+ (k − l + 1)G2

ωb − �m
− (m + l + 2)G2

�m + ωb
.

(7)
Note an exact photon-phonon resonance facilitated by

Eq. (5) allows a complete Rabi oscillation between arbitrary
|nlk〉 and |(n − 1)l (k + 1)〉, which requires that the first two
terms in Eq. (5) constitute the identity operator in the relevant
subspace. Thus, �a + ε1 = ωb + ε2. Assuming the distance
between �a and ωb is δ, one can then have

δ ≡ �a − ωb = ε2 − ε1

= G2

ωb − �m
− g2

�a − �m
− G2

ωb + �m

= G2 − g2

ωb − �m
− G2

ωb + �m
− g2

(ωb − �m)2
δ + O(δ2)

= A − Bδ + O(δ2), (8)

where A≡(G2 − g2)/(ωb − �m) − G2/(ωb + �m), B ≡ g2/

(ωb − �m)2, and O(δ2) represents all the higher orders of δ

from the first order in Taylor expansion. Then δ is consistently
solved as δ = A/(1 + B) up to the second-order correction.
Note B ≈ O(g2/|ωb − �m|2), so that up to the second order
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of the coupling strengths g or G, we have

δ = G2 − g2

ωb − �m
− G2

ωb + �m
. (9)

Note δ is a Fock-state-independent coefficient in comparison
to both ε1 and ε2.

Next, we consider the contribution from the two paths
connecting |nlk〉 and |(n − 1)l (k + 1)〉 in Fig. 2, i.e., |nlk〉 →
|(n − 1)(l + 1)k〉 → |(n − 1)l (k + 1)〉 and |nlk〉 → |n(l −
1)(k + 1)〉 → |(n − 1)l (k + 1)〉, to their effective coupling
strength. By virtue of Eq. (4), one can have

geff = (l + 1)
√

n(k + 1)Gg

�a − �m
− l

√
n(k + 1)Gg

ωb − �m

= (l + 1)
√

n(k + 1)Gg

ωb − �m

[
1 − δ

ωb − �m
+ O(δ2)

]

− l
√

n(k + 1)Gg

ωb − �m

=
√

n(k + 1)
Gg

ωb − �m
, (10)

up to the second order of the coupling strengths g or G.
Eventually, the effective Hamiltonian in Eq. (5) can be
written as

H (nk)
eff = geff (|nlk〉〈(n − 1)l (k + 1)| + H.c.)

= geff (|nk〉〈(n − 1)(k + 1)| + H.c.)| ⊗ |l〉〈l|. (11)

The effective Hamiltonian extended to the whole Hilbert
space of photon and phonon is therefore found to be

Heff = G̃(ab† + ba†). (12)

Here

G̃ = Gg

ωb − �m
(13)

is the effective coupling strength of the two modes, which is in
the same order as the deviation δ of the avoided level-crossing
point from ωb. More importantly, both G̃ and δ are Fock
state independent and robust to the variation in the magnon
occupation number, which is the key to a generic conversion
rather than the state transfer in special subspaces. It should
be remarked that the same effective Hamiltonian could also
be obtained by adiabatic elimination [42–44] in analog hy-
brid systems. The adiabatic-elimination technique forces the
steady value of the fast variables into the dynamical equation
to inversely obtain the effective Hamiltonian and then calcu-
late the system shift δ and the effective coupling strength geff

through some optimization procedure in the interested sub-
space, while the preceding treatment provides an alternative
bottom-up approach to first derive these parameters and then
obtain the effective Hamiltonian.

The effective Hamiltonian in Eq. (12) is conserved in
the excitation number, so that it can be written in a block-
diagonal matrix formation on the Fock-state basis. For
example, if we focus on the single-exciton subspace {|001〉 ≡
|0〉a|0〉m|1〉b, |100〉} in which the magnon remains at the

0.9 0.95 1.0 1.05 1.1
0.85

0.9

0.95

1

1.05

1.1

FIG. 3. Normalized energy-level diagram and avoided level
crossing for the photon-phonon conversion in a single-exciton sub-
space, which are plotted as a function of the detuning frequency
�a/ωb. Apparently the interactions in the system shift the avoided
level crossing point from �a/ωb = 1 by δ, as given by Eq. (9). Here
we fix �m = 1.7ωb and g = G = 0.1ωb.

ground state, then we can have an X gate:

H (1)
eff =

[
0 G̃
G̃ 0

]
= G̃σx. (14)

We plot the associated energy levels in Fig. 3, where the
eigenvalues {En} and the eigenstates of the Hamiltonian in
Eq. (3) are obtained by the standard numerical diagonalization
method in a truncated Hilbert space. An avoided level cross-
ing (distinguished in the dark circle) presents between two
eigenstates of the original Hamiltonian in Eq. (3), when the
detuning frequency of photon �a approaches (but not exactly
equals) the frequency of phonon ωb. The mutual interaction
between the photon and the magnon and that between the
magnon and the phonon induce a negative shift from �a = ωb.
Here we choose �m = 1.7ωb to avoid unnecessary exciting of
the magnon mode. When the system is prepared as |100〉, it
can be converted to |001〉 via a half-Rabi oscillation deter-
mined by H (1)

eff after a duration π/|2G̃|.
The effective Hamiltonian in the double-exciton subspace

spanned by {|002〉, |101〉, |200〉}, where the magnon remains
at the ground mode, can be written as

H (2)
eff =

⎡
⎣ 0

√
2G̃ 0√

2G̃ 0
√

2G̃
0

√
2G̃ 0

⎤
⎦, (15)

whose eigenstructure is found to be

E1 = √
2G̃, |�1〉 = |002〉+|200〉

2 + |101〉√
2

,

E2 = −√
2G̃, |�2〉 = |002〉+|200〉

2 − |101〉√
2

,

E3 = 0, |�3〉 = |002〉−|200〉√
2

,

(16)

and the time-evolution operator reads

U (t ) = 1

2

⎡
⎣ c + 1 −s

√
2i c − 1

−s
√

2i c −s
√

2i
c − 1 −s

√
2i c + 1

⎤
⎦ (17)
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FIG. 4. Normalized energy-level diagram and avoided level
crossing in a double-exciton subspace, which are plotted as a func-
tion of the detuning frequency �a/ωb. Here we fix �m = 1.7ωb and
g = G = 0.1ωb.

with c ≡ cos(2G̃t ) and s ≡ sin(2G̃t ). The energy diagram and
the avoided level crossing between |200〉 and |002〉 are plotted
in Fig. 4. The conversion time is still π/|2G̃|. In addition,
it is interesting to observe that the last eigenstate |�3〉 is
a dark state in this specific case. The vanishing eigenvalue
implies that this eigenstate will remain intact during the time
evolution.

More versatile physics can be exploited in the subspace
with more excitons, in which the magnon always stays
as the vacuum state. For a fixed total number of photon
and phonon N , the effective Hamiltonian in Eq. (12) in
the subspace spanned by {|N00〉, |(N − 1)01〉, . . . , |10(N −
1)〉, |00N〉} can be expressed by

H (N )
eff = G̃

⎡
⎢⎢⎢⎢⎢⎣

0 L1 0 · 0
L1 0 L2 · 0
0 L2 0 · 0
· · · · ·
· · · · LN−1

0 0 0 LN−1 0

⎤
⎥⎥⎥⎥⎥⎦

, (18)

where Ln = √
n(N − n). It is interesting to be identical to the

matrix representation of the Hamiltonian H = 2G̃Sx, where Sx

is the angular momentum operator for a fictitious particle with
spin S = (N − 1)/2. The Hamiltonian H (N )

eff also describes an
open-end spin chain governed by the site-dependent nearest-
neighbor interactions [45]

Hspin =
∑

n

G̃Ln

2

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
, (19)

which is used to realize a perfect state transfer through the
chain. If the initial state is prepared as |N00〉, then the proba-
bility amplitude for state transfer is

A(t ) = 〈00N | exp(−i2G̃Sxt )|N00〉 = [−i sin(G̃t )]N−1. (20)

Therefore, the perfect conversion about a quantum state be-
tween photon and phonon is accomplished in a constant time
π/|2G̃|, irrespective to the exciton number or the particular
subspace. Ideally, any superposed state of the photon can be
converted into the phonon mode through the evolution time
π/|2G̃|.
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FIG. 5. [(a), (c)] Comparison between the numerically calculated
normalized effective coupling strength |G̃|/ωb (blue dots) and the
corresponding analytical results in Eq. (3) from the second-order
perturbation theory (orange solid lines) as functions of g/ωb and
G/ωb, respectively; [(b), (d)] comparison between the numerically
calculated normalized energy shift δ/ωb (blue dots) and the corre-
sponding analytical results in Eq. (9) (orange solid lines) as functions
of g/ωb and G/ωb, respectively. For panels (a) and (b), G = 0.1ωb,
and for panels (c) and (d), g = 0.1ωb. Here we fix �m = 1.7ωb.

III. THE APPLICATION RANGE OF THE
EFFECTIVE HAMILTONIAN

We first check the applicability range of the effective
Hamiltonian in Eq. (12) in terms of the coupling strength. It
can be estimated or constrained by comparing the numerical
results obtained from the original Hamiltonian in Eq. (3)
for the full Hilbert space and the analytical results obtained
via the perturbative derivation for the reduced subspace. The
energy splitting |G̃| of the two eigenstates at the avoided
level-crossing point (see Fig. 3 in the single-exciton case) is
presented in Figs. 5(a) and 5(c) as a function of the original
coupling strengthes g and G in the interaction Hamiltonian,
respectively. The result given by the analytical expression
in Eq. (13) is compared to that evaluated by the numerical
simulation over the whole Hilbert space. It is found that the
effective coupling strength |G̃| is valid until g/ωb � 0.1 and
G/ωb � 0.1. For a larger g or G, higher order contributions
have to be included to capture the whole effect from the
interaction Hamiltonian on modifying the eigenstructure of
the bare system. However, an apparent yet still small deviation
δ can be observed when either g or G is enhanced to 0.15ωb.
The effective Hamiltonian in Eq. (12) could therefore be used
to investigate the strong-coupling regime.

Similarly, the energy shift δ in Eq. (9) can also be justified
by Figs. 5(b) and 5(d). We check the same range of g and G as
in Figs. 5(a) and 5(c). It is shown that the analytical results do
match with the numerical ones, at least when the normalized
photon-magnon interaction strength g/ωb � 0.15 or phonon-
magnon coupling strength G/ωb � 0.15.

Next we take the open-quantum-system framework to fur-
ther test the effective Hamiltonian in Eq. (12) in terms of
the state-evolution fidelity. Under the standard assumptions
(Markovian approximation, factorization of the system-
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FIG. 6. Time evolution of the state fidelity by the master equa-
tions (21) and (23) to show the transfer between the initial state
|100〉 and the target state |001〉. Here we fixed �m = 1.7ωb and
g = G = 0.1ωb.

environment density matrix, structure-free environment at the
vacuum state), one can arrive at the Lindblad master equation
for the density matrix of the interested hybrid system,

ρ̇(t ) = −i[H, ρ(t )] + κaL[a]ρ(t )

+ κmL[m]ρ(t ) + γbL[b]ρ(t ). (21)

Here H is the full Hamiltonian of the system given in Eq. (3),
κa, κm, and γb are the relaxation rates for cavity mode,
magnon, and phonon, respectively, and the superoperator
L[O], O = a, m, b, is defined as

L[O]ρ ≡ 1
2 (2OρO† − O†Oρ − ρO†O). (22)

For the effective model constituted by the photon and the
phonon in Eq. (12), the Lindblad equation in the reduced
subspace is written as

ρ̇(t ) = −i[Heff , ρ(t )] + κaL[a]ρ(t ) + γbL[b]ρ(t ). (23)

To simplify the discussion but with no loss of generality,
we assume the decay rates of the photon and the magnon
are the same κa = κm = κ , and set the decay rate of phonon
γb = 10−2κ regarding that the decoherence rates of phonon
are much smaller than that of cavity-mode or magnon [30].

Then one can numerically calculate the state fidelity Fs =√〈φ|ρ|φ〉, where |φ〉 is the target state, under either Eq. (21)
or Eq. (23). The distinction between the results from different
master equation measures both the validity of the effective
Hamiltonian and the robustness of our photon-phonon con-
version protocol. In Fig. 6, we plot the state-fidelity dynamics
under different decoherence rates when the initial state and the
target state are chosen as |001〉 and |φ〉 = |100〉, respectively.
The blue solid line and the yellow dot-dashed line are the
results from Eq. (23) using the effective Hamiltonian, and
the orange dashed line and the purple dotted line are those
from Eq. (21) using the full Hamiltonian. It is found that
the results using the full Hamiltonian have a slightly longer
period than those using the effective Hamiltonian in time
evolution, yet they match almost with each other at least for
the first two or three periods of Rabi oscillation. In the case

of no decoherence, the state fidelity achieves over 0.97 by
the full Hamiltonian. With the Markovian decoherence rate
κ = 10−3ωb, both master equations produce the desired target
state with a fidelity over 0.90 for photon-phonon conversion
during the first period and maintain the target state with a
fidelity about 0.85 during the third period.

IV. THE TRANSFER FIDELITY UNDER THE
STRUCTURED ENVIRONMENTS

The phenomenological analysis on the Markovian errors
on the state fidelity depends on the choice of the initial state
and the target state during the photon-phonon conversion. It is
indispensable to discuss the relationship between the transfer
fidelity by the effective Hamiltonian that is independent of
the state and the non-Markovian errors that are ubiquitous
in almost all of the solid-state systems. In this section, we
investigate the effect from the structured environment using
the non-Markovian Heisenberg-Langevin equation [20,24],
assuming that in a microscopic way the system is coupled
to its environment consisting of a collection of independent
harmonic oscillators. The total Hamiltonian reads

Htot = Heff + HE + HI . (24)

Here the environmental Hamiltonian for the photon-phonon
system reads

HE =
∑

k

ωka†
kak +

∑
j

� jb
†
jb j, (25)

where ωk and � j are the reservoir frequency for the kth optical
and the jth mechanical modes respectively. The two reservoirs
are assumed to be uncorrelated. The interaction between the
system and the environment can then be described by

HI =
∑

k

gk (a†
ka + a†ak ) +

∑
j

f j (b
†
jb + b†b j ), (26)

where gk and f j are the respective system-reservoir coupling
strengthes for the optical mode and the mechanical mode
[46] and supposed to be real numbers for simplicity. Here
the interaction Hamiltonian is written in a form under the
rotating-wave approximation, which is valid when the cou-
pling strength is much smaller than the resonant frequency of
the system, i.e., gk, f j  ωb,�a.

With the effective Hamiltonian for the system part in
Eq. (12) and the interaction Hamiltonian in Eq. (26), one
can write down the Heisenberg-Langevin equations in the
rotating frame with respect to the environmental Hamiltonian
in Eq. (25),

Ȯ(t ) = −iCO(t ) −
∫ t

0
dτ F̄ (t − τ )O(τ ) + εin(t ). (27)

Here the time-evolution operator for the system modes
is O(t ) = (a(t ), b(t ))T and the input noise operator is
εin(t ) = (ain(t ), bin(t ))T , where ain ≡ −i

∑
k gke−iωkt ak (0)

and bin ≡ −i
∑

j f je−i� j t b j (0) depend on the initial condition
of the environment. The thermal average occupation
numbers in the particular modes of the two reservoirs
are n̄a(ωk ) ≡ 〈a†

k (0)ak′ (0)〉 = 1/[exp(h̄ωk/kBTa) − 1]δkk′

and n̄b(ω j ) ≡ 〈b†
j (0)b j′ (0)〉 = 1/[exp(h̄ω j/kBTb) − 1]δ j j′ ,
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respectively. The coefficient matrixes C and F̄ (t ) are given by

C =
(

0 G̃
G̃ 0

)
, F̄ (t ) =

(
fa(t ) 0

0 fb(t )

)
, (28)

respectively, where fa(t ) ≡ ∑
k g2

ke−iωkt and fb(t ) ≡∑
j f 2

j e−i� j t are the nonlocal time correlation functions.
We can rewrite the correlation functions by introducing the
spectral density functions

fx(t ) =
∫

dωJx(ω)e−iωt , x = a, b (29)

for the optical and the mechanical environments, respec-
tively. The environment for the cavity mode is generally of
an Ohmic-like spectrum, i.e., Ja(ω) = ηω(ω/ω0)s−1e−ω/ω0 ,
where η is a dimensionless coupling strength between system
and environment, and ω0 is a high-frequency cutoff [47].
The parameter s classifies the environment as sub-Ohmic
(0 < s < 1), Ohmic (s = 1), or super-Ohmic (s > 1). For the
phonon mode in the YIG sphere, the solid-state environment
is assumed to be a 1/ f -like spectrum, similar to that for
the optomechanical system recently measured in experiments.
We therefore use the spectral density function Jb(ω) = cωk ,
where the coupling coefficient c > 0, k is a negative number
around −1 [48], and the bandwidth in this work is chosen as
ω ∈ (0.1ωb, 2ωb).

Formally, Eq. (27) can be solved by assuming O(t ) =
U (t )O(0) + V (t ), where U (t ) is a 2 × 2 coefficient matrix
(U11(t ),U12(t );U21(t ),U22(t )) as a function of time, and V (t )
is a vector of operators (V1(t ),V2(t ))T related to the nonequi-
librium Green’s functions of the system. These Green’s
functions obey the following Dyson equations:

U̇ (t ) = −iCU (t ) −
∫ t

0
dτ F̄ (t − τ )U (τ ),

V̇ (t ) = −iCV (t ) −
∫ t

0
dτ F̄ (t − τ )V (τ ) + εin(t ). (30)

Considering the initial conditions U (0) = I and V (0) = 0,
one can formally have

V (t ) =
∫ t

0
dτU (t − τ )εin(τ ). (31)

With the solution about U (t ), the dynamical evolution of b(t )
is written as

b(t ) = U21(t )a(0) + U22(t )b(0) + V2(t ). (32)

Then the expectation value of the phonon number 〈b†(t )b(t )〉
can be evaluated by

〈b†(t )b(t )〉 = |U21(t )|2〈a†(0)a(0)〉 + |U22(t )|2〈b†(0)b(0)〉
+ 〈V†

2 (t )V2(t )〉. (33)

The first term on the right-hand side of Eq. (33) is propor-
tional to the initial average number of photon 〈a†(0)a(0)〉. The
second term is proportional to the initial average number of
phonon 〈b†(0)b(0)〉, whose contribution could be reduced by
precooling the mechanical oscillator to the ground state. As
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FIG. 7. The time evolution of the transfer fidelity under various
environments. The parameters for the structured environments are
chosen as |G̃| = 0.02ωb, η = 1 × 10−4ωb, ω0 = 5ωb, s = 1, c = 1 ×
10−4ωb, and k = −1. For the Markovian environments, the decay
rates κa and γb are obtained by the Weisskopf-Wigner theory.

for the last term, one can express it by

〈V†
2V2〉 =

∫
dω

2π
Ja(ω)n̄a(ω)

∣∣∣∣
∫ t

0
U21(t − τ )e−iωτ

∣∣∣∣
2

+
∫

dω

2π
Jb(ω)n̄b(ω)

∣∣∣∣
∫ t

0
U22(t − τ )e−iωτ

∣∣∣∣
2

. (34)

Assume the environmental temperature for the photon mode
Ta ≈ 0 and the bandwidth of the spectral density for the
mechanical environment is sufficiently narrow around the res-
onant frequency, the average value 〈V†

2V2〉 is upper bounded
by n̄b(ωb)[V2,V†

2 ] due to the fact that

[V2,V†
2 ] =

∫
dω

2π
Ja(ω)

∣∣∣∣
∫ t

0
U21(t − τ )e−iωτ

∣∣∣∣
2

+
∫

dω

2π
Jb(ω)

∣∣∣∣
∫ t

0
U22(t − τ )e−iωτ

∣∣∣∣
2

. (35)

Also note the commutation relation [b(t ), b†(t )] = 1 holds for
any moment t , which renders

|U21|2 + |U22|2 + [V2,V†
2 ] = 1. (36)

Apparently [V2,V†
2 ] � 0. It means that under a low-

temperature Tb, both |U22| and 〈V†
2V2〉 are close to zero when

|U21| ≈ 1. We therefore understand that the transfer fidelity
F from photon to phonon can be quantified by |U21(t )| [24]
using the numerical solution of Eq. (30). Note this fidelity is
obtained in the Heisenberg picture. It is then independent of
the initial and target states.

We first comparing the noise effects on F from various
combinations of the structured and the Markovian envi-
ronments for the photon and phonon modes as shown in
Fig. 7. The structured environments are characterized by
their spectral functions and the Markovian environments are
characterized by their decay constants, which are obtained
under the Weisskopf-Wigner approximation. In particular, the
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FIG. 8. The time evolution of the transfer fidelity under sub-
Ohmic (s < 1), Ohmic (s = 1), and super-Ohmic (s > 1) environ-
ments for the photon mode and a fixed 1/ f -noise environment for
the phonon mode. The other parameters are set as |G̃| = 0.02ωb,
η = 1 × 10−4ωb, ω0 = 5ωb, and c = 1 × 10−4ωb.

optical-mode decay rate is κa = Ja(ωa)/2 and the mechanical-
mode decay rate is γb = Jb(ωb)/2. When both modes are
embedded in the realistic structured environments (see the
blue solid line), the conversion fidelity is close to 0.98 in the
first period of Rabi oscillation and could be still maintained
above 0.9 in the third period. It is nearly invariant when
the environment for the phonon mode is changed to be a
Markovian type (see the yellow dotted line). The conversion
will be greatly damaged when the photon mode is subject
to a Markovian type, and in this case, it is also insensitive
to the choice of the phonon-mode environment (see the red
dashed and purple dotted lines). In both cases, the conversion
fidelity is no more than 0.35 and could not start a second
period of Rabi oscillation. These results indicate that the
non-Markovian noise from the structured environment for the
photon mode are more significant than that for the phonon
mode on protecting the conversion fidelity.

In Fig. 8, the phonon mode is subjected to a fixed 1/ f noise
with k = −1 and then one can observe the effects from the
sub-Ohmic (s = 0.5), Ohmic (s = 1), and super-Ohmic (s =
2) environments for the photon mode on the time evolution of
the transfer fidelity. We can see that the sub-Ohmic spectrum
and the Ohmic spectrum are better than the super-Ohmic
spectrum in terms of conversion fidelity. For the sub-Ohmic
spectrum, the fidelity could be close to 0.99 during the first
period of Rabi oscillation and still around 0.90 during the
third period. These results are close to those for the Ohmic
spectrum, while the fidelity will drop to about 0.80 during the
third period of Rabi oscillation for the super-Ohmic spectrum.

In Fig. 9, one can observe that the conversion fidelity is also
insensitive to different choices of the structured environments
for the phonon mode. Under a fixed Ohmic environment for
the photon mode, the conversion fidelity shows a slightly
decreasing pattern with increasing |k|. Thus, in realistic sit-
uations, the conversion process between the photon mode and
the phonon mode is strongly resilient to the 1/ f -type noise for
the phonon mode.
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FIG. 9. The time evolution of the transfer fidelity under various
environments for the phonon mode and a fixed structured envi-
ronment for the photon mode with an Ohmic spectrum. The other
parameters are set as |G̃| = 0.02ωb, η = 1 × 10−4ωb, ω0 = 5ωb, and
c = 1 × 10−4ωb.

V. DISCUSSION AND CONCLUSION

When the yttrium iron garnet sphere are strongly pumped
to generate a considerable number of magnons, the Kerr effect
due to the ensued magnetocrystalline anisotropy could not be
completely neglected. When the exciton number in the spin
wave is much smaller than the total number of spins in YIG
sphere, the system Hamiltonian in Eq. (1) can be modified to
be [49,50]

H̃S = HS + Km†mm†m, (37)

where K is the nonlinear coefficient for the Kerr effect. With
the linear approximation, the Kerr term Km†mm†m becomes
2K〈m†m〉m†m, and thus the Hamiltonian H0 in Eq. (3) turns
out to be

H̃0 = �aa†a + �̃mm†m + ωbb†b, (38)

where �̃m ≡ �m + 2K〈m†m〉 [51]. Then the derivation pro-
cess for the effective Hamiltonian describing the photon-
phonon conversion [from Eq. (3) to Eq. (12)] would be merely
revised in quantity to ensure that the frequency detuning of the
magnon mode approaches the frequency of the cavity mode.
The Kerr term will eventually only change the effective cou-
pling strength G̃ in Eq. (13). For a YIG sphere with a diameter
about 250 μm, the Kerr coefficient K/2π ≈ 6.4 × 10−9 Hz
and the magnon exciton number 〈m†m〉 ≈ 1014 correspond-
ing to G = Mgmb ≈ 107 Hz via M =

√
〈m†m〉. Then one can

estimate that K〈m†m〉 ≈ 105 Hz, which is much smaller than
�m. It is therefore shown that our proposal also adapts to such
a hybrid system even with a non-negligible Kerr effect.

In summary, we have presented a protocol to realize a
photon-phonon conversion in a cavity magnomechanical sys-
tem, where the magnon mode in the YIG sphere is coupled to
both a microwave cavity mode and the mechanical-vibration
mode in the same sphere. Our indirect photon-phonon con-
version protocol has considerable merit in physics due to the
strong controllability in this system. This magnon-assisted
protocol relies on the effective Hamiltonian for coupling
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photon and phonon, which is constructed in the strong-
coupling regimes for both magnon-photon interaction and
magnon-phonon interaction. We apply a bottom-up perturba-
tion approach rather than the adiabatic-elimination technique,
which is beneficial to shed light on more physics in special
subspaces. In the open-system framework, the state fidelity of
the photon-phonon conversion is mainly limited by the decay
of the microwave cavity κa rather than the dissipation of the
phonons γb, due to the fact that γb is much smaller than the
phonon frequency ωb [30]. We also analyze the effect from
various environmental noises on the conversion fidelity using
the non-Markovian Heisenberg-Langevin equations. Excel-
lent results can be obtained when the cavity mode is under a
structured environment with sub-Ohmic spectrum even if the
phonons are in a Markovian environment. Our work in pursuit
of the quantum state transfer and protection therefore provides

a different implementation of the photon-phonon interface
realized in a solid system under realistic noises. It also extends
the application of the cavity-magnomechanical system as a
promising hybrid platform for quantum information process-
ing.
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