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Linear combination estimator of multiple-outcome detections with discrete measurement outcomes
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Finding the optimal estimator capable of saturating the Cramér-Rao bound is important for quantum parameter
estimation. The maximum likelihood estimator (MLE) is well known to be asymptotically optimal, but it is usu-
ally nonanalytic and hence requires extensive numerical computation. On the other hand, the inversion estimator
is widely used in experiments due to its simplicity, but it is usually suboptimal. Here we derive an estimator based
on the linear combination of multiple inversion estimators associated with the occurrence probability of different
measurement outcomes. This linear combination estimator shares the asymptotic optimality of the MLE and
the simplicity of the inversion estimator and is applicable to general multi-outcome measurements, irrespective
of the specific system and the noise in the system. We demonstrate this estimator for the intensity-difference
measurement to a six-photon twin-Fock input state.
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I. INTRODUCTION

Quantum-enhancement phase (or parameter) estimation
is of importance for multiple areas of scientific research
[1–8], including gravitational wave detection [9–11], biolog-
ical sensing [12,13], atomic clocks [14,15], magnetometry
[16], and so on. In experimental works, the phase estima-
tion by inverting the averaged signal is widely used due to
its simplicity. According to the central limit theorem, the
phase uncertainty of the inversion estimator simply follows
error-propagation formula [8]. For instance, the intensity mea-
surement in a Mach-Zehnder interferometer fed by a coherent-
state of light exhibits the interferometric signal ∝ sin2(θ/2) or
cos2(θ/2), which results in the full width at half maximum
(FWHM) = π and hence the fringe resolution �x ∼ λ/2
(i.e., Rayleigh resolution limit) [17]. Moreover, the achiev-
able phase sensitivity is subject to the standard quantum limit
(SQL) δθSQL = 1/

√
n̄, where n̄ is the number of particles of

the input state.
The two classical limits in the sensitivity and in the res-

olution can be surpassed with nonclassical input states and
optimal measurement schemes followed by a proper data
processing. In 1981, Caves [9] proposed that the sensitivity
can beat the SQL if the two input ports of the interferometer
are fed by a coherent state and a squeezed vacuum state of
light (i.e., the squeezed-state interferometer). With respect
to the squeezed-state interferometer, the photon-counting
measurement is optimal to realize the so-called Heisenberg-
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limited phase estimation precision [18]. However, this is a
non-Gaussian measurement and the achievable sensitivity is
subject to the finite number resolution of the photon counters
[19,20]. Using a Gaussian measurement (e.g., the homodyne
detection at one port of the interferometer [21]), Schäfermeier
et al. [22] demonstrated the superresolution and the supersen-
sitivity simultaneously, where the measured field quadrature
is divided into two bins. A better resolution and an enhanced
sensitivity can be realized if one separates the field quadrature
into three bins, which can be regarded as a multi-outcome
measurement [23].

For a multi-outcome measurement, the inversion estima-
tor is usually suboptimal since it does not take into account
all of the available information from the measurement [8].
Therefore, the inversion estimator usually cannot saturate the
ultimate phase estimation precision that determined by the
Cramér-Rao lower bound (CRB) [1–7]: δθCRB = 1/

√
F (θ ),

where F (θ ) denotes the classical Fisher information (CFI).
Furthermore, some commonly used inversion estimator may
not exist in certain cases. For instance, the intensity-difference
measurement (i.e., the Ĵz measurement) over the twin-Fock
states gives vanishing signal [24,25], which leads to the in-
validity of the inversion estimator. To saturate the CRB, the
maximum likelihood estimation (MLE) and the Bayesian
estimation are usually adopted [26–32]. Particularly, Pezzé
et al. [26] have demonstrated that the Bayesian estimator
can saturate the CRB over a wider phase interval than that
of the inversion estimator. Furthermore, the Ĵz measurement
followed by the MLE is an optimal protocol for the inter-
ferometer fed by the twin-Fock states [30]. This is because
the MLE or the Bayesian estimator is unbiased and its
uncertainty can saturate the CRB asymptotically. However,
the MLE cannot be expressed in an explicit form and its
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evaluation requires much more computational time than that
of the inversion estimator. Therefore, it is highly desirable
to find an estimator that shares the merits of the MLE (i.e.,
unbiasedness and asymptotic optimality in the sensitivity) and
the inversion estimator (i.e., the simplicity).

Recently, Xu et al. [23] proposed a linear combination
of multiple inversion estimators and show its application in
a three-outcome homodyne detection. However, whether this
estimator is valid for other multi-outcome measurements re-
mains unclear. In this work, we present an explicitly analytical
form of the composite estimator for a general multi-outcome
detection with discrete measurement outcomes. As an exam-
ple, we consider the Ĵz measurement in the Mach-Zehnder
interferometer fed by a six-photon twin-Fock state [33]. Using
a Monte Carlo method, we simulate the phase estimation
process and show that the composite estimator can saturate
the CRB in the asymptotic limit of a large number of repeated
measurements. Our result also works for the measurements
with continuous-variable outcomes (e.g., the field quadrature)
provided that one divides the measurement outcome into sev-
eral discrete bins, as done by Refs. [21,22]. Therefore, we
expect the proposed estimator to find use in various quantum
phase-estimation experiments.

II. MULTI-OUTCOME PHASE MEASUREMENTS

For arbitrary multi-outcome measurement, the output sig-
nal is the average of an observable �̂ = ∑

k μk�̂k with
respect to a phase-encoded state ρ̂(θ ),

〈�̂(θ )〉 =
∑

k

μkPk (θ ) ≈
∑

k

μk
Nk

N , (1)

where μk and Pk (θ ) = Tr[ρ̂(θ )�̂k] denote the eigenvalue
and the conditional probability of the kth outcome, with
{�̂k} being a discrete set of positive semidefinite measure-
ment operators and satisfying

∑
k �̂k = 1. The probability of

each outcome can be measured by the occurrence frequency
Nk/N . For clarity, we refer to N repeated measurements as
a single run and use Nk as the occurrence number of the
kth discrete outcome. Obviously, N is a deterministic integer,
but Nk is a random integer variable, because Nk may take
different values in different runs [averaged at NPk (θ ), see the
Appendix]. Performing multiple runs at a given θ ∈ (−π, π ),
one can obtain the phase-dependent probabilities from the
statistical average of Nk/N , which comprises the interfer-
ometer calibration [26,33,34]. Next, to estimate an unknown
phase shift θ , we perform a single run and obtain a particular
set of occurrence numbers {Nk} and construct an unbiased
estimator θest.

Numerically, we adopt a Monte Carlo method to simulate
a multi-outcome measurement [18,26,35] using N random
numbers at each θ and recording the occurrence frequencies
Nk/N . After M replicas, the averaged occurrence frequencies
are fit as P(fit)

k (θ ). As illustrated by Fig. 1(a), we consider the Ĵz

measurement to an N-photon twin-Fock input state |n, n〉a,b ≡
|n〉a ⊗ |n〉b [24,25], where N = 2n and the subscripts a and
b denote two orthogonal modes of the interferometer. The
two-mode Mach-Zehnder interferometer can be described by

FIG. 1. (a) Light intensity-difference (i.e., Ĵz) measurement at the
output ports of the interferometer fed by a N-photon twin-Fock state,
and (b)–(d) the occurrence probabilities of (N + 1)-outcome Ĵz mea-
surement with number of photons N = 6. The circles and the bars in
panels (b)–(d) indicate the mean values of the occurrence frequencies
Nk/N and their standard deviations, simulated with M = 20 replicas
of N = 500 random numbers at each a given θ ∈ (−π, π ).

a unitary operator (see, e.g., Refs. [8,36])

Û (θ ) = ei π
2 Ĵx e−iθ Ĵz e−i π

2 Ĵx = exp(−iθ Ĵy), (2)

where Ĵ = 1
2 (â†, b̂†)σ̂ (â, b̂)T denotes Schwinger’s represen-

tation of the angular momentum, with â and b̂ being the
annihilation operators of the two modes, and σ̂ = (σ̂x, σ̂y, σ̂z )
the Pauli matrix. We adopt eigenstates of Ĵz to express the out-
put state as |ψ (θ )〉 = Û (θ )| j, 0〉, where | j, k〉 ≡ | j + k, j −
k〉a,b for k ∈ [− j,+ j], with the total spin j = N/2 = n. For
a N-photon twin Fock state, the Ĵz measurement gives N + 1
outcomes, with the occurrence probabilities Pk (θ ). Recently,
Xiang et al. [33] demonstrated P0(θ ) as a function of θ

for the six-photon twin-Fock state (e.g., N = 2n = 6). The
probabilities of all the measurement outcomes are shown in
Figs. 1(b)–1(d).

Once all phase-dependent {Pk (θ )} and hence the average
signal are known, one can infer unknown value of θ via
the inversion estimator θinv = g−1(

∑
k μkNk/N ), where g−1

denotes the inverse function of g(θ ) = 〈�̂(θ )〉. According to
the central limit theorem, the phase uncertainty follows error-
propagation formula [8]:

�θ = 1√
N

��̂

|∂〈�̂〉/∂θ | , (3)

where ��̂ ≡ (〈�̂2〉 − 〈�̂〉2)1/2 denotes the root-mean-square
fluctuation of the signal. The inversion estimator is widely
adopted by experiments due to its simplicity, but it is usu-
ally suboptimal. This is because the phase sensitivity per
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measurement δθ ≡ √
N�θ cannot saturate the CRB [1–8]:

δθ � δθCRB ≡ 1√
F (θ )

, (4)

where the total CFI and its contribution from each outcome
are given by

F (θ ) =
∑

k

fk (θ ), fk (θ ) = 1

Pk (θ )

[
∂Pk (θ )

∂θ

]2

, (5)

respectively. It is well known that the MLE saturates the CRB
when the number of independent measurements N � 1 (see,
e.g., Ref. [6]). However, the MLE can only be expressed
in a nonanalytic way θmle = argmaxθP (θ |{ N k}), which is a
particular value of θ that maximizes the likelihood function
(i.e., a multinomial distribution):

P (θ |{Nk}) = N !
m∏

k=1

1

Nk!
[Pk (θ )]Nk , (6)

where m is number of outcomes and Nk ≡ Nk (θ0) denotes the
occurrence number of each outcome at a given true value of
phase shift θ0. When N = ∑

k Nk � 1, the phase distribution
can be well approximated by a Gaussian:

P (θ |{Nk}) ∝ exp

[
− (θ − θmle)2

2σ 2

]
, (7)

where σ is a 68.3% confidence interval of the Gaussian around
the MLE [18,26,32,37].

A new phase-estimation protocol can be obtained by a
convex combination of the CFI of each outcome [23]. Our
method starts from the inversion estimator of each outcome
θinv,k = P−1

k (Nk/N ), which can be obtained by inverting the
equation Pk (θ ) = Nk/N around θ0. Next, we consider the oc-
currence numbers of each outcome Nk � 1 and use Stirling’s
formula in Eq. (6):

P (θ |{Nk})≈ 1√
(2πN )m−1

m∏
k=1

1√
Pk (θ )

[
1 + ξk

Pk (θ )

]−(Nk+ 1
2 )

,

(8)
where we have introduced ξk ≡ N k/N − Pk (θ ) ∼
O(N−1/2), which are random numbers and satisfy
|ξk| � Pk (θ ) for large enough N (see the Appendix). To
obtain a phase estimator, we further approximate P (θ |{Nk})
by neglecting the terms up to O(N 0), and obtain (see the
Appendix)

P (θ |{Nk}) ∝ e−NB(θ ), (9)

where

B(θ ) =
m∑

k=1

ξ 2
k

2Pk (θ )
=

m∑
k=1

[Nk/N − Pk (θ )]2

2Pk (θ )
. (10)

For each outcome, if we consider the single root of the equa-
tion Pk (θ ) = Nk/N around θ0 and expand Pk (θ ) as

Pk (θ ) ≈ Pk (θinv,k ) + ∂Pk (θ )

∂θ

∣∣∣∣
θinv,k

(θ − θinv,k ), (11)

then we obtain an approximate result of B(θ ) as

B(θ ) ≈
∑

k

1

2Pk (θinv,k )

(
∂Pk (θ )

∂θ

∣∣∣∣
θinv,k

)2

(θ − θinv,k )2

=
∑

k

fk (θinv,k )

2
(θ − θinv,k )2, (12)

where we have used the relation Pk (θinv,k ) = Nk/N and fk (θ )
denotes the CFI associated with the kth outcome, given by
Eq. (5). Finally, we obtain the phase estimator using the equa-
tion (see the Appendix)

∂P (θ |{Nk})

∂θ

∣∣∣∣
θest

∝ ∂B(θ )

∂θ

∣∣∣∣
θest

= 0, (13)

which yields

θest =
∑

k

ckθinv,k, ck = fk (θinv,k )∑
k′ fk′ (θinv,k′ )

. (14)

The above result has a clear physical meaning as a linear com-
bination of all the inversion estimators {θinv,k} weighted by
the contribution of the Fisher information from each outcome
[23]. The performance of θest can be quantified by M replicas
of N independent measurements at each given θ0, which
yields the estimators {θ (1)

est , θ
(2)
est , . . . , θ

(M )
est }. For large enough

N , the composite estimator is unbiased if 〈θ (i)
est〉s − θ0 could

be almost vanishing, where 〈(· · · )〉s ≡ ∑M
i=1(· · · )/M denotes

the statistical average. Moreover, the composite estimator is
optimal if the mean-square error

σest =
√〈(

θ
(i)
est − θ0

)2〉
s (15)

can saturate the CRB 1/
√
NF (θ0) asymptotically. Before the

conclusion of this work, we show that the composite estimator
can be regarded as an approximated analytical form of the
MLE in the asymptotic limit.

Note that the composite estimator in Eq. (14) is valid
for any kind of multi-outcome detection with discrete mea-
surement outcomes, independently from specific system and
the noise in the system [38,39]. To obtain θest, it is impor-
tant to measure all the probabilities {Pk (θ )} and hence the
CFIs { fk (θ )}, as well as the inversion estimators θinv,k =
P−1

k (Nk/N ). For each k, we need to determine a unique solu-
tion of Pk (θ ) = Nk/N , which requires some prior information
about θ0. When our prior knowledge is sufficient (e.g., there
are two solutions θinv,k = 0 or π/2, but we already know
θ0 ∈ [−π/4, π/4]), this does not cause any problem. How-
ever, when our prior knowledge is not sufficient, we cannot
determine the inversion estimator uniquely. This problem also
occurs not only for the inversion estimator that widely used in
experiments (see, e.g., Refs. [26,33,34]), but also for the MLE
[40–42]. The standard solution is to use multistep estimation
protocol [40–42], or simply a two-step protocol [43].

As the most simplest case, the inversion estimators have
been obtained in real experiments by measuring a specific
outcome (i.e., a binary-outcome measurement [44,45]). For
instance, for the six-photon twin-Fock state [33], it has been
shown that the inversion estimator of the outcome k = 0 (i.e.,
measuring equal number of photons at the output ports). For
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the N-photon NOON states, the phase uncertainties of θinv,0

and θinv,1/2 have been demonstrated for N = 2 and 3 [34].
In these two experiments [33,34], the inversion estimator is
equivalent to the MLE and therefore its uncertainty follows
the CRB (see below). To extract much more phase informa-
tion, we consider the multi-outcome measurement shown in
Fig. 1(a), which can be realized in the experimental setup sim-
ilar to Ref. [33]. We numerically demonstrate how to obtain
the inversion estimators of all the measurement outcomes and
therefore the composite estimator.

III. PHASE ESTIMATION WITH THE TWIN-FOCK STATE

As illustrated by Fig. 1(a), we now consider the twin-
Fock states as the input of the interferometer. In contrast to
a number of entangled states, the twin-Fock states are be-
lieved to be robust to the decoherence and hence result in
better phase estimation precision under typical experimen-
tal noise [27]. However, the Ĵz measurement to the output
state exp(−iθ Ĵy)| j, 0〉 gives vanishing signal, due to 〈Ĵz〉 =∑

k kPk (θ ) = 0 [25]. This is because the symmetric properties
of the occurrence probabilities

Pk (θ ) = |〈 j, k|e−iθ Ĵy | j, 0〉|2 = [
d j

k,0(θ )
]2

, (16)

i.e., P−k (θ ) = Pk (θ ) and Pk (−θ ) = Pk (θ ) for k = − j, − j +
1, . . ., + j. Here d j

m,n(θ ) = 〈 j, m| exp(−iθ Ĵy)| j, n〉 denote
the Wigner’s small d functions, and j = N/2 (see, e.g.,
Ref. [46]). To obtain a phase-sensitive signal, various mea-
surement schemes have been proposed and experimentally
demonstrated, such as the parity detection [47–53], the Ĵ2

z
measurement [36,54], and the single-fringe detection [33,55].
Particularly, Xiang et al. [33] proposed the single-fringe de-
tection to realize high-precision phase measurement beyond
the SQL (see below). For the N-photon twin-Fock states, the
Ĵz measurement followed by the MLE can achieve a global
phase estimation at the Heisenberg limit [30]. However, the
ideal result of the CRB, δθCRB = √

2/
√

N (N + 2), cannot be
saturated due to the experimental imperfections.

Inspired by Ref. [33], we numerically simulate the Ĵz

measurement over the six-photon twin-Fock state and demon-
strate phase-estimation protocol based on Eq. (14). In
Figs. 1(b)–1(d), we introduce the experimental imperfections
by replacing the occurrence probabilities as

P(im)
k (θ ) = A0Pk (θ ) + Bk, (17)

where A0 = 0.9293, B0 = 0.0245, B1 = 0.0087, B2 =
0.0068, and B3 = 0.0076 (see Ref. [30]). These parameters
are chosen such that the symmetric properties of the
probabilities remain, i.e., P(im)

−k (θ ) = P(im)
+k (θ ), which

requires B−k = B+k . Furthermore, the probabilities satisfy
the normalization condition

∑
k P(im)

k (θ ) = ∑
k Pk (θ ) = 1.

As depicted by Figs. 1(b)–1(d), the occurrence probabilities
P(im)

k (θ ) exhibit multifold oscillatory pattern, with the
visibility ≈92%. We show numerical simulations of the
occurrence probabilities by using the Monte Carlo method
[35], where N random numbers are generated according to
{Pk (θ )} at given θ ∈ (−π, π ). Next, we record the occurrence
numbers {Nk} and the occurrence frequencies {Nk/N } of
each outcome. Repeating the above processes for M times, we

FIG. 2. Phase distribution P (θ |{Nk}) and its approximate result
[i.e., Eqs. (9) and (12)] as a function of θ , simulated with N random
numbers for (a) N = 10, (b) N = 100, (c) N = 1000, (d) full range
of panel (c) for θ ∈ (−π, π ). The inversion estimators of the Ĵz

measurement are obtained by solving the equations Pk (θ ) = N k/N ,
where k = − j, − j + 1, ..., j with j = N/2 = 3 and the occurrence
numbers Nk are generated at the true value of the phase shift θ0 =
π/4. Red dashed line shows exact result of the phase distribution.
Blue solid line shows approximate result of P (θ |{Nk}).

can obtain the averaged occurrence frequencies (the circles)
and their standard deviations (the bars).

Next, we investigate the phase-estimation protocol based
upon the composite estimator θest. In Fig. 2, we com-
pare the exact and the approximate results of P (θ |{Nk})
to show the validity of θest, where the approximate re-
sult is given by Eq. (9), with B(θ ) given by Eq. (12).
Numerically, this can be obtained by generating N ran-
dom numbers at θ0 and recording the occurrence num-
bers of all the outcomes {Nk}. Next, we obtain all the
inversion estimators {θinv,k} by inverting the equations
Pk (θ ) = Nk/N around θ0, where k = − j, − j + 1, . . ., + j,
with j = N/2 = n. Then we construct a phase estimator θest

according to Eq. (14). More directly, the estimator θest is
given by the peak of the approximate result, indicated by the
vertical dotted lines. One can find that there are significant
discrepancies between the exact and the approximate phase
distributions for N up to 100. This is because our protocol
requires the conditions Nk ∼ O(N ) and N = ∑

k Nk � 1.
As N increases up to 1000, one can find that the approximate
result shows good agreement with the exact result (the red
dashed line). Remarkably, the approximate result shows only
one peak within a whole phase interval θ ∈ (−π, π ). This is
because for each outcome we choose the only one root of the
equation Pk (θ ) = Nk/N near θ0. It means that the multipeak
structure of P (θ |{Nk}) [40–42] has been bypassed in solving
the inversion estimators {θinv,k}.

In Fig. 3, we show the phase sensitivity δθ = 1/
√
F (θ )

for different values of the phase shift, where F (θ ) is the CFI
of the Ĵz measurement and is given by Eq. (5). One can find
that the sensitivity can beat the SQL (the upper horizontal
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FIG. 3. Phase sensitivities of the Ĵz measurement with and with-
out the coarse-graining against the true value of the phase shift θ0,
obtained after M = 200 replicas of N = 2000 random numbers.
The red circles and the blue solid line show the phase uncertainty
and the CRB of the Ĵz measurement without the coarse-graining.
The triangles and the dashed line show the phase uncertainty and
the CRB of the Ĵz measurement with the coarse-graining (i.e., the
four-outcome Ĵz measurement). The pink dotted line shows the CRB
of the single-fringe measurement 1/

√
F2(θ ), where F2(θ ) is given

by Eq. (18). Horizontal lines: the SQL 1/
√

N and the ideal result
of the CRB

√
2/

√
N (N + 2) for N = 6 [30]. Inset shows statistical

average of the bias θ0 − θest (circles) and its standard deviations
(bars), indicating unbiasedness of the composite estimator.

line) over a wide phase interval. Due to the experimental
imperfections, the best sensitivity that appeared at the optimal
working point θmin ≈ 0.11π (20◦) cannot reach the ideal result
of the CRB. The circles in Fig. 3 are the phase uncertainties√
Nσest, which are obtained by numerical simulation. Specif-

ically, we first obtain all the inversion estimators {θinv,k} and
the composite estimator θest at each a given value of θ0, as
shown by Fig. 2. Next, we repeat the above processes for
M times to obtain the estimators {θ (1)

est , θ
(2)
est , . . . , θ

(M )
est }. Using

Eq. (15), one can find that the uncertainty
√
Nσest (the circles)

almost saturate the CRB (i.e., the blue solid line). The inset in
Fig. 3 shows the mean values of θest (the circles) and their
standard deviations (the bars), indicating the unbiasedness of
the estimator.

IV. THE PHASE ESTIMATION WITH A
COARSE-GRAINING METHOD

In real experiments, it could be difficult to detect all the
outcomes of the Ĵz measurement, especially when the number
of particles N � 1 [56–58]. To remedy it, one can adopt
a proper coarse-graining method by combining several out-
comes into a single one. For instance, as proposed originally
by Sun et al. [55], Xiang et al. have recently demonstrated
such a of measurement scheme [33], where they regard k = 0
as an outcome (i.e., detecting equal number of photons at the
output ports) and all the others detection events as a single one
outcome, denoted by k = ∅. This is the so-called single-fringe
detection [33], or equivalently a binary-outcome measurement

FIG. 4. (a) The occurrence probability of the Ĵz measurement
with the coarse-graining method and the phase distributions for
different number of the measurements with (b) N = 10, (c) 100,
(d) 1000. The solid line in panel (a) is the occurrence probability of
the outcome “∅” given by P∅(θ ) = 1 − P0(θ ) − 2P2(θ ) with Eq. (17).
The circles and the bars in panel (a) are the mean values of the
occurrence frequencies N∅/N and their standard deviations, with M
and N the same as in Fig. 1. In panels (b)–(d), the red dotted (blue
solid) lines are the exact (approximated) results of P (θ |{Nk}), where
the inversion estimator of each outcome is obtained by inverting
the equation Pk (θ ) = Nk/N around θ0 = π/4. The vertical lines
indicate locations of the composite estimator and the MLE.

[44,45]. The CFI is also given by Eq. (5), namely,

F2(θ ) = [P′
0(θ )]2

P0(θ )
+ [P′

∅(θ )]2

P∅(θ )
= [P′

0(θ )]2

P0(θ )P∅(θ )
, (18)

where P′
k (θ ) ≡ ∂Pk (θ )/∂θ and P∅(θ ) = 1 − P0(θ ). Taking the

experimental imperfections into account, i.e., {P(im)
k (θ )}, one

can obtain the CFI and hence the CRB δθ = 1/
√
F2(θ ); See

the dotted line of Fig. 3 (and also Ref. [33]). The sensi-
tivity diverges at the dark points of P(im)

0 (θ ), e.g., θdark =
arctan(

√
2/3) ≈ 0.22π .

To avoid the divergence, one can consider additional con-
tributions of the outcomes k �= 0. For instance, let us consider
the outcomes k = 0 and ±2 into the CFI

F4(θ ) = [P′
0(θ )]2

P0(θ )
+ 2

[P′
2(θ )]2

P2(θ )
+ [P′

∅(θ )]2

P∅(θ )
, (19)

where the factor two arises from the symmetry P−2(θ ) =
P2(θ ). Obviously, this is indeed a four-outcome measurement
and all the other outcomes k = ±1, ±3 have been treated as a
single outcome “∅” with the occurrence probability P∅(θ ) =
1 − P0(θ ) − 2P2(θ ) shown in Fig. 4(a). The occurrence prob-
abilities P0(θ ), P2(θ ), and thereby P∅(θ ), can be obtained from
the interferometer calibration, as depicted by Figs. 1(b)–1(d).

In Figs. 4(b)–4(d), we show the validity of θest for the Ĵz

measurement with the above coarse-graining method. Sim-
ilar to Fig. 2, one can find that the approximate result of
P (θ |{Nk}) shows good agreement with that of the exact result
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as N increases up to 1000. For a given θ0 = π/4, the inversion
estimator of each outcome is given by θinv,k = P−1

k (Nk/N )
with k = 0, ±2, ∅. The peak of P (θ |{Nk}) gives the location
of θest, which is slightly less accurate in a comparison with that
of Fig. 2(c). Theoretically, this is because the coarse-graining
method reduces available information about θ0 and the CRB
δθ = 1/

√
F4(θ ) � 1/

√
F (θ ), where F (θ ) is the CFI of the Ĵz

measurement without the coarse graining.
The performances of θest with and without the coarse-

graining method have been shown in Fig. 3. One can note
that the error per measurement (the triangles) almost follow
the CRB (the dashed line), i.e.,

√
Nσest ≈ 1/

√
F4(θ ). This

means that the protocol based on the composite estimator still
works for the coarse-graining method. In addition, one can see
that the best sensitivity also appears at the optimal working
point θmin ≈ 0.11π , similar with that of the Ĵz measurement.
When θ0 > θdark, the achievable sensitivity becomes worse,
due to the loss of phase information. However, the sensitivity
does not show the divergence at θdark, better than that of the
single-fringe detection [33].

Finally, it should be mentioned that the reason why the
composite estimator almost saturates the CRB has not been
addressed in Ref. [23]. With a large amount of numerical
simulations, especially that of Figs. 2 and 4, we realize that
both the exact result of P (θ |{Nk}) and its approximate one
tend to be a Gaussian as N � 1. This numerical observation
inspires us to rewrite Eq. (9) as Eq. (7), namely,

P (θ |{Nk}) ∝ exp

[
−N

∑
k

fk (θinv,k )

2

(
θ2−2θinv,kθ+θ2

inv,k

)]

= exp

[
− 1

2σ 2
est

(
θ2−2θestθ+

∑
k fk (θinv,k )θ2

inv,k∑
k fk (θinv,k )

)]

∝ exp

[
− 1

2σ 2
est

(θ−θest )
2

]
, (20)

where we have used the approximate result of B(θ ) and in-
troduced σest = 1/

√
N

∑
k fk (θinv,k ). One can find that the

new result of σest is indeed 68.3% confidence interval of the
Gaussian around θest. Therefore, as an approximated result
of the MLE, the composite estimator can saturate the CRB
1/

√
NF (θ0) asymptotically.

V. CONCLUSION

In summary, we have proposed a phase-estimation protocol
based on a combination of the inversion estimators associated
with each measurement outcome. As an approximated analyt-
ical form of the maximum-likelihood estimator, we show that
the composite estimator is valid for arbitrary multi-outcome
measurement with discrete outcomes, independently from any
specific system and any kind of noise in the system. Numeri-
cally, we simulate a (N + 1) outcome Ĵz measurement in the
interferometer fed by a N-photon twin-Fock state, with N = 6
[33]. Our numerical results show that the composite estimator
of the system is unbiased and the phase uncertainties saturate
the CRB asymptotically. For an N-particle twin-Fock state
with N � 1 [56–58], it may be hard to detect all the out-
comes. However, a proper choice of coarse-graining method
by combining several outcomes into a single one is possible

to realize the best sensitivity beyond the SQL. We apply this
idea to the six-photon twin-Fock state and demonstrate that
the composite estimator still works to saturate the CRB.

ACKNOWLEDGMENTS

This project was supported by the Science Founda-
tion of Zhejiang Sci-Tech University (18062145-Y), the
National Natural Science Foundation of China (NSFC)
(12075209, 12074206, 11704205, 11775190, 11774021,
11874323, 61975184), the Zhejiang Provincial Natural Sci-
ence Foundation (LZ20A040002), the Open Foundation of
Key Laboratory of Optical Field Manipulation of Zhejiang
Province (ZJOFM-2019-002), the National Key R&D Pro-
gram of China (2017YFA0303400), and the NSFC program
for “Scientific Research Center” (U1930402).

APPENDIX: DETAILS OF EQ. (9)

When Nk � 1, we use the Stirling’s formula Nk! ≈√
2πNk (Nk/e)Nk in Eq. (6), which yields

P (θ |{Nk}) ≈
√

2πN
(N

e

)N m∏
k=1

(Pk )Nk

√
2πNk (Nk/e)Nk

= 1√
(2πN )m−1

m∏
k=1

( N
Nk

)Nk+ 1
2

(Pk )Nk

= 1√
(2πN )m−1

m∏
k=1

1√
Pk

( Nk

NPk

)−(Nk+ 1
2 )

, (A1)

where Pk = Pk (θ ). Note that the occurrence numbers {Nk}
can be obtained from N independent measurements (we re-
fer to it as a single run), which are random numbers after
multiple runs. For instance, performing M runs, we obtain
{N (1)

k ,N (2)
k , . . . ,N (M )

k } for the kth outcome. When M is suffi-
ciently large, the mean value of Nk and its standard deviation
approach NPk and

√
NPk (1 − Pk ), respectively. To further

simply Eq. (A1), we introduce small variables

ξk = Nk

N − Pk, (A2)

which gives Nk and therefore Eq. (8) in the main text.
Obviously, ξk are also random numbers after the multirun
measurements. For a fixed Pk at a given θ , the mean value
of ξk is almost 0 and its standard deviation approaches σk =√

Pk (1 − Pk )/N ∼ O(N−1/2). According to the central limit
theorem, the distribution of ξk approaches the Gaussian distri-
bution P(ξk ) ∝ exp[−ξ 2

k /(2σ 2
k )] for N � 1 . As a result, the

probability for any particular realization of |ξk| � ε is well
approximated by

Pr (|ξk| � ε) ≈ Erf

(
ε√
2σk

)
,

where Erf(η) is the error function, which rises rapidly to
1 with the increase of η. If we set η = ε/(

√
2σk ), then all

realization for |ξk| � ε = √
2ησk occurs with a probability

Erf(η) (≈99.99% for η = 2.75), which in turn indicates ξk ∼
O(N−1/2). One can find that all realizations of ξk almost lie
within a few standard deviations from its mean value 0. On the
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other hand, we have Pk ∼ O(N 0) and hence |ξk| � Pk in the
limit of N � 1. Note that the result |ξk| � Pk is also valid
even for a very small value of Pk , provided N � 2η2(1 −
Pk )/Pk . This result can be also obtained by using Hoeffding’s
inequality.

The approximate result Eq. (8) can be further simplified
by using the series expansion (1 + x)n = exp[n ln(1 + x)] ≈
exp[nx(1 − x/2)], namely,(

1 + ξk

Pk

)−(Nk+ 1
2 )

≈ exp

[
−

(
Nk + 1

2

)
ξk

Pk

(
1 − ξk

2Pk

)]

= exp

[
−

(
N (ξk + Pk ) + 1

2

)
ξk

Pk

(
1 − ξk

2Pk

)]

= exp

[
−N ξ 2

k

2Pk

]
e−N [ξk+O(N−3/2 )],

which holds for large enough N and hence |ξk| � Pk , as
mentioned above. Therefore, we obtain

P (θ |{Nk}) ≈ 1√
(2πN )m−1

1√
P1(θ )P2(θ ) · · · Pm(θ )

× exp

[
−N

m∑
k=1

ξ 2
k

2Pk (θ )

]
e−N [

∑
k ξk+O(N−3/2 )]

= A(θ )e−NB(θ )

[
1 + O

(
1√
N

)]
, (A3)

where, in the last step, we have used the relation
∑

k ξk = 0,
and introduced the coefficients

A(θ ) = 1√
(2πN )m−1

1√∏m
k=1 Pk (θ )

, B(θ ) =
m∑

k=1

ξ 2
k

2Pk (θ )
,

as Eq. (10) in main text. Obviously, Eq. (A3) can be rewritten
as P (θ |{Nk}) ≈ A(θ ) exp[−NB(θ )] for large N . Similar
to the MLE, the phase estimator θest is determined by the
equation

0 = ∂P (θ |{Nk})

∂θ

∣∣∣∣
θest

= P (θ |{Nk})

[
A′(θ )

A(θ )
− NB′(θ )

]∣∣∣∣
θest

∝ ∂B(θ )

∂θ

∣∣∣∣
θest

, (A4)

where the prime indicates the first-order derivation, e.g.,
B′(θ ) = ∂B(θ )/∂θ . The last result of the above equation, i.e.,
Eq. (13) in main text, comes from the fact that A′(θ )/A(θ ) is
smaller than NB′(θ ) as N � 1, namely,

A′(θ )

A(θ )
= −1

2

m∑
k=1

P′
k

Pk
∼ O(N 0), (A5)

and

NB′(θ ) = N
m∑

k=1

−2ξkP′
kPk − ξ 2

k P′
k

2P2
k

= −N
m∑

k=1

P′
kξk

2P2
k

(2Pk + ξk )

≈ −N
m∑

k=1

P′
k

Pk
ξk ∼ O(N 1/2), (A6)

where we have used the relation ξ ′
k = −P′

k in the first step
and |ξk| � Pk in the last step. The above results indicate that
the role of A(θ ) is negligible. Furthermore, A(θ ) is a slowly
varying function in a comparison with exp[−NB(θ )], so we
obtain Eq. (9) in main text.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quan-
tum metrology, Nat. Photonics 5, 222 (2011).

[3] S. L. Braunstein and C. M. Caves, Statistical Distance and the
Geometry of Quantum States, Phys. Rev. Lett. 72, 3439 (1994).

[4] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Generalized
uncertainty relations: Theory, examples, and Lorentz invari-
ance, Ann. Phys. (NY) 247, 135 (1996).

[5] M. G. A. Paris, Quantum estimation for quantum technology,
Int. J. Quantum Inform. 7, 125 (2009).

[6] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[7] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum
Theory (North-Holland, Amsterdam, 1982).

[8] B. Yurke, S. L. McCall, and J. R. Klauder, Su(2) and su(1, 1)
interferometers, Phys. Rev. A 33, 4033 (1986).

[9] C. M. Caves, Quantum-mechanical noise in an interferometer,
Phys. Rev. D 23, 1693 (1981).

[10] The LIGO Scientific Collaboration, A gravitational wave ob-
servatory operating beyond the quantum shot-noise limit, Nat.
Phys. 7, 962 (2011).

[11] J. Aasi et al. (The LIGO Scientific Collaboration), Enhanced
sensitivity of the LIGO gravitational wave detector by using
squeezed states of light, Nat. Photonics 7, 613 (2013).

[12] M. A. Taylor and W. P. Bowen, Quantum metrology and its
application in biology, Phys. Rep. 615, 1 (2016).

[13] N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W.
Bowen, Evanescent single-molecule biosensing with quantum-
limited precision, Nat. Photonics 11, 477 (2017).

[14] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Optical atomic clocks, Rev. Mod. Phys. 87, 637 (2015).

[15] H. Katori, Optical lattice clocks and quantum metrology, Nat.
Photonics 5, 203 (2011).

[16] J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C.
Benjamin, G. A. D. Briggs, and J. J. L. Morton, Magnetic field
sensing beyond the standard quantum limit using 10-spin noon
states, Science 324, 1166 (2009).

[17] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Quantum Interferometric Optical
Lithography: Exploiting Entanglement to Beat the Diffraction
Limit, Phys. Rev. Lett. 85, 2733 (2000).

[18] L. Pezzé and A. Smerzi, Mach-Zehnder Interferometry at the
Heisenberg Limit with Coherent and Squeezed-Vacuum Light,
Phys. Rev. Lett. 100, 073601 (2008).

043702-7

https://doi.org/10.1126/science.1104149
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1006/aphy.1996.0040
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1016/j.physrep.2015.12.002
https://doi.org/10.1038/nphoton.2017.99
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1038/nphoton.2011.45
https://doi.org/10.1126/science.1170730
https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1103/PhysRevLett.100.073601


L. K. ZHOU et al. PHYSICAL REVIEW A 103, 043702 (2021)

[19] P. Liu, P. Wang, W. Yang, G. R. Jin, and C. P. Sun,
Fisher information of a squeezed-state interferometer with a
finite photon-number resolution, Phys. Rev. A 95, 023824
(2017).

[20] P. Liu and G. R. Jin, Ultimate phase estimation in a squeezed-
state interferometer using photon counters with a finite number
resolution, J. Phys. A: Math. Theor. 50, 405303 (2017).

[21] E. Distante, M. Ježek, and U. L. Andersen, Deterministic Super-
resolution with Coherent States at the Shot Noise Limit, Phys.
Rev. Lett. 111, 033603 (2013).

[22] C. Schäfermeier, M. Ježek, L. S. Madsen, T. Gehring, and U. L.
Andersen, Deterministic phase measurements exhibiting super-
sensitivity and super-resolution, Optica 5, 60 (2018).

[23] J. H. Xu, A. X. Chen, W. Yang, and G. R. Jin, Data processing
over single-port homodyne detection to realize superresolution
and supersensitivity, Phys. Rev. A 100, 063839 (2019).

[24] M. J. Holland and K. Burnett, Interferometric Detection of
Optical Phase Shifts at the Heisenberg Limit, Phys. Rev. Lett.
71, 1355 (1993).

[25] C. C. Gerry, R. A. Campos, and A. Benmoussa, Comment on
Interferometric Detection of Optical Phase Shifts at the Heisen-
berg Limit, Phys. Rev. Lett. 92, 209301 (2004).

[26] L. Pezzé, A. Smerzi, G. Khoury, J. F. Hodelin, and D.
Bouwmeester, Phase detection at the quantum limit with mul-
tiphoton Mach-Zehnder interferometry, Phys. Rev. Lett. 99,
223602 (2007).

[27] Z. Zhang and L.-M. Duan, Quantum metrology with Dicke
squeezed states, New J. Phys. 16, 103037 (2014).

[28] W. Larson and B. E. A. Saleh, Supersensitive ancilla-based
adaptive quantum phase estimation, Phys. Rev. A 96, 042110
(2017).

[29] H. T. Dinani, D. W. Berry, R. Gonzalez, J. R. Maze, and C.
Bonato, Bayesian estimation for quantum sensing in the ab-
sence of single-shot detection, Phys. Rev. B 99, 125413 (2019).

[30] J. H. Xu, J. Z. Wang, A. X. Chen, Y. Li, and G. R. Jin, Optimal
phase estimation with photon-number difference measurement
using twin-Fock states of light, Chin. Phys. B 28, 120303
(2019).

[31] X. Xue, B. D’Anjou, T. F. Watson, D. R. Ward, D. E. Savage,
M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson,
W. A. Coish, and L. M. K. Vandersypen, Repetitive Quantum
Nondemolition Measurement and Soft Decoding of a Silicon
Spin Qubit, Phys. Rev. X 10, 021006 (2020).

[32] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
L. Pezzé, A. Smerzi, and M. K. Oberthaler, Fisher information
and entanglement of non-Gaussian spin states, Science 345, 424
(2014).

[33] G. Y. Xiang, H. F. Hofmann, and G. J. Pryde, Optimal multi-
photon phase sensing with a single interference fringe, Sci. Rep.
3, 2684 (2013).

[34] Y. Israel, S. Rosen, and Y. Silberberg, Supersensitive Polariza-
tion Microscopy Using NOON States of Light, Phys. Rev. Lett.
112, 103604 (2014).

[35] J. Z. Wang, Z. Q. Yang, A. X. Chen, W. Yang, and G. R. Jin,
Multi-outcome homodyne detection in a coherent-state light
interferometer, Opt. Express 27, 10343 (2019).

[36] T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall,
Influence of decorrelation on Heisenberg-limited interferome-
try with quantum correlated photons, Phys. Rev. A 57, 4004
(1998).

[37] G. R. Jin, W. Yang, and C. P. Sun, Quantum-enhanced mi-
croscopy with binary-outcome photon counting, Phys. Rev. A
95, 013835 (2017).

[38] U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S.
Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Op-
timal Quantum Phase Estimation, Phys. Rev. Lett. 102, 040403
(2009).

[39] Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, Quantum
Fisher information of entangled coherent states in the presence
of photon loss, Phys. Rev. A 88, 043832 (2013).

[40] L. Pezzé and A. Smerzi, Sub shot-noise interferometric
phase sensitivity with beryllium ions Schrödinger cat states,
Europhys. Lett. 78, 30004 (2007).

[41] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman,
and G. J. Pryde, Entanglement-free Heisenberg-limited phase
estimation, Nature (London) 450, 393 (2007).

[42] D. W. Berry, B. L. Higgins, S. D. Bartlett, M. W. Mitchell, G. J.
Pryde, and H. M. Wiseman, How to perform the most accurate
possible phase measurements, Phys. Rev. A 80, 052114 (2009).

[43] M. Hayashi, S. Vinjanampathy, and L. C. Kwek, Resolving
unattainable Cramer-Rao bounds for quantum sensors, J. Phys.
B: At., Mol. Opt. Phys. 52, 015503 (2019).

[44] X. M. Feng, G. R. Jin, and W. Yang, Quantum interferometry
with binary-outcome measurements in the presence of phase
diffusion, Phys. Rev. A 90, 013807 (2014).

[45] L. Ghirardi, I. Siloi, P. Bordone, F. Troiani, and M. G. A.
Paris, Quantum metrology at level anticrossing, Phys. Rev. A
97, 012120 (2018).

[46] X. M. Feng, P. Wang, W. Yang, and G. R. Jin, High-precision
evaluation of Wigner’s d matrix by exact diagonalization, Phys.
Rev. E 92, 043307 (2015).

[47] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Optimal frequency measurements with maximally correlated
states, Phys. Rev. A 54, R4649 (1996).

[48] C. C. Gerry, Heisenberg-limit interferometry with four-wave
mixers operating in a nonlinear regime, Phys. Rev. A 61,
043811 (2000).

[49] C. C. Gerry, A. Benmoussa, and R. A. Campos, Nonlinear
interferometer as a resource for maximally entangled photonic
states: Application to interferometry, Phys. Rev. A 66, 013804
(2002).

[50] C. C. Gerry and J. Mimih, The parity operator in quantum
optical metrology, Contemp. Phys. 51, 497 (2010).

[51] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick,
S. D. Huver, H. Lee, and J. P. Dowling, Quantum Metrology
with Two-Mode Squeezed Vacuum: Parity Detection Beats the
Heisenberg Limit, Phys. Rev. Lett. 104, 103602 (2010).

[52] A. Chiruvelli and H. Lee, Parity measurements in quantum
optical metrology, J. Mod. Opt. 58, 945 (2011).

[53] K. P. Seshadreesan, S. Kim, J. P. Dowling, and H. Lee, Phase
estimation at the quantum Cramér-Rao bound via parity detec-
tion, Phys. Rev. A 87, 043833 (2013).

[54] B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P.
Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt et al., Twin matter
waves for interferometry beyond the classical limit, Science
334, 773 (2011).

[55] F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and
G. C. Guo, Experimental demonstration of phase measurement
precision beating standard quantum limit by projection mea-
surement, Europhys. Lett. 82, 24001 (2008).

043702-8

https://doi.org/10.1103/PhysRevA.95.023824
https://doi.org/10.1088/1751-8121/aa86c0
https://doi.org/10.1103/PhysRevLett.111.033603
https://doi.org/10.1364/OPTICA.5.000060
https://doi.org/10.1103/PhysRevA.100.063839
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.92.209301
https://doi.org/10.1103/PhysRevLett.99.223602
https://doi.org/10.1088/1367-2630/16/10/103037
https://doi.org/10.1103/PhysRevA.96.042110
https://doi.org/10.1103/PhysRevB.99.125413
https://doi.org/10.1088/1674-1056/ab4e7f
https://doi.org/10.1103/PhysRevX.10.021006
https://doi.org/10.1126/science.1250147
https://doi.org/10.1038/srep02684
https://doi.org/10.1103/PhysRevLett.112.103604
https://doi.org/10.1364/OE.27.010343
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevA.95.013835
https://doi.org/10.1103/PhysRevLett.102.040403
https://doi.org/10.1103/PhysRevA.88.043832
https://doi.org/10.1209/0295-5075/78/30004
https://doi.org/10.1038/nature06257
https://doi.org/10.1103/PhysRevA.80.052114
https://doi.org/10.1088/1361-6455/aaf348
https://doi.org/10.1103/PhysRevA.90.013807
https://doi.org/10.1103/PhysRevA.97.012120
https://doi.org/10.1103/PhysRevE.92.043307
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevA.61.043811
https://doi.org/10.1103/PhysRevA.66.013804
https://doi.org/10.1080/00107514.2010.509995
https://doi.org/10.1103/PhysRevLett.104.103602
https://doi.org/10.1080/09500340.2011.585251
https://doi.org/10.1103/PhysRevA.87.043833
https://doi.org/10.1126/science.1208798
https://doi.org/10.1209/0295-5075/82/24001


LINEAR COMBINATION ESTIMATOR OF … PHYSICAL REVIEW A 103, 043702 (2021)

[56] Z. Zhang and L.-M. Duan, Generation of Massive Entan-
glement Through an Adiabatic Quantum Phase Transition
in a Spinor Condensate, Phys. Rev. Lett. 111, 180401
(2013).

[57] X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M. K.
Tey, and L. You, Deterministic entanglement generation from

driving through quantum phase transitions, Science 355, 620
(2017).

[58] Y.-Q. Zou, L.-N. Wu, Q. Liu, X.-Y. Luo, S.-F. Guo, J.-H. Cao,
M. K. Tey, and L. You, Beating the classical precision limit
with spin-1 Dicke states of more than 10,000 atoms, Proc. Natl.
Acad. Sci. USA 115, 6381 (2018).

043702-9

https://doi.org/10.1103/PhysRevLett.111.180401
https://doi.org/10.1126/science.aag1106
https://doi.org/10.1073/pnas.1715105115

