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Thermophonon flux in double-cavity optomechanics
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We propose theoretically an optomechanical system with double cavities to explore the thermophonon
transport from the thermal bath of the mechanical oscillator to the coupled system. We find that the direction and
magnitude of thermophonon flux in the system can be controlled flexibly by coupling an active cavity with gain
to the driven cavity. In particular, the injected squeezing vacuum can reverse the nonequilibrium characteristics of
the system and change the thermophonon flux from positive to negative. We also investigate in detail the influence
of the driving power and the photon tunneling strength on the flux, which can widen the energy transfer channel
of the system. The results obtained here have a potential application in the thermal noise energy harvesting and
rectification by the optomechanical setup.
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I. INTRODUCTION

It is well known that energy transfers generally from a
hot source to a cold one and its realization can resort in
the coupling between the mechanical oscillators being im-
mersed into different thermal baths, which helps one identify
the general features of energy transports in nonequilibrium
physics [1–4]. For example, it is found that classical heat
transports in a dissipative open system with two coupled oscil-
lators can be regulated by changing the dissipative strengths
between the oscillators and baths as well as the tempera-
ture of the thermal environment [5]. Further, the nonlinearity
plays an important role in controlling the steady-state heat
flux across an overdamped anharmonic junction with arbitrary
temperature bias [6]. Moreover, the rapid development of
nanotechnology promotes the study of quantum heat transfer
and its dynamical regulation in nanoscale systems, such as a
nanojunction connecting two thermal baths [7–9], semicon-
ductor nanowires [10], silicon membranes [11], molecular
chains [12–14], and so on. In particular, the identification
of the nonequilibrium quantum transport through the low-
dimensional systems guides one to design thermal-based
nanoscale devices, such as thermal diodes [15,16] and ther-
mal rectifiers [17–19], and therefore has much application in
phononics [4].

In recent years, we have also witnessed the rapid
development of cavity optomechanical systems with
micro- or nanoscale movable parts, which aim to realize
the coupling between light and mechanical motion modes
and further explore the quantum effect in macroscopic
motions, i.e., ground-state cooling [20–26], quantum
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entanglement [27–29], mechanical squeezing [30,31],
optomechanically induced transparency (OMIT) [32–35],
and so on. In general, the optomechanical system is always
treated as an open quantum system and the driven cavity
field plays the role of the quantum oscillator coupled to a
zero-temperature or vacuum environment. As a result, the
pumping cooling of the mechanical motion in optomechanical
systems benefits from the transfer of mechanical energy from
a thermal bath to vacuum environment through photon
dissipation [36]. It is noted that the cavity optomechanical
systems can be used as a unique platform to explore the
design of the quantum thermal rectifier by manipulating
the flow of thermal noise [37]. Other thermodynamic
applications of optomechanical systems, i.e., proposals
for the optomechanical quantum heat engine [38–43] and
nonreciprocal optomechanical heat transport [44,45], have
been investigated in detail, which helps demonstrate the
all-optical control of the quantum thermodynamical effect in
small systems and the significant role of the optomechanical
coupling of the optical and mechanical modes.

The context of this work highlights a proposed double-
cavity optomechanical system with gain and loss, for ex-
ploring the characteristics of thermophonon transport in a
coupled oscillator system with thermal and vacuum dissipa-
tion sources. The complicated proposal with gain and loss
optical cavities has been extensively designed to construct
parity-time (PT )-symmetric optomechanical systems, where
many interesting physical behaviors, such as mechanical PT
symmetry [46,47], ultralow threshold chaos [48], phonon
laser [49,50], and distinguishing photon blockade [51], have
been investigated in detail. Moreover, the light transmission
patterns in the optomechanical systems with gain can be
changed by simply adjusting the coupling strength between
the gain and loss optical cavities as well as the gain-to-loss
ratio [35,52,53]. This benefits from the gain photons tun-
neling between the optical cavities, which also regulates the
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energy transfer between the system and its dissipative sources.
Therefore, it will be interesting and important to study the
thermal noise energy harvesting and rectification in optome-
chanical systems with gain environment. In this work, the
main motivation is to derive the general expressions of the
steady-state thermophonon flux in coupled oscillator systems
with gain by using the cumulant generating function (CGF)
approach [5]. Correspondingly, we investigate the thermal
noise flux between the mechanical oscillator and double-
cavity system and examine the dependence of phonon flux on
the adjacent cavity and optomechanical coupling between the
cavity field and the mechanical oscillator. In particular, this
study aims to explore the change of the direction of the ther-
mophonon flux when the squeezed vacuum field is injected
into the passive optical cavity, which can be used to change
optically nonequilibrium characteristics of the system. Fur-
thermore, an attempt is made to demonstrate the manipulation
of the thermophonon flux when the three-mode optomechani-
cal system works in the PT -symmetric regime. With such, the
direction of thermophonon flux in the optomechanical system
is found to be controlled by changing the photon-tunneling
coupling between the gain and loss optical cavities and the
gain of the adjacent cavity. The influences of the laser power
and the decay rate of the adjacent cavity on the characteristics
of the thermophonon flux in the system are discussed in detail.
The results attained here are helpful for the thermal noise
energy harvesting and rectification in optomechanical systems
by means of all-optical regulation.

The rest of the paper is organized as follows. The three-
mode coupled optomechanical system model and the system
dynamics are described in Sec. II. The steady-state ther-
mophonon flux is evaluated in terms of the first and second
moments of the system, and the general expression of the
flux is derived by the cumulant generating function approach
in Sec. III. Section IV provides a discussion of how ther-
mophonon flux between the mechanical oscillator and the
coupled system is regulated by changing the system param-
eters. Finally, a discussion of the general points of the study is
presented in Sec. V.

II. MODEL AND SYSTEM DYNAMICS

As schematically shown in Fig. 1(a), our model is a three-
mode coupled optomechanical system consisting of a passive
cavity, an active cavity, and a mechanical oscillator. The main
aim is to investigate the thermophonon transports from the
thermal bath of the mechanical oscillator to the coupled sys-
tem. Here the left cavity is passive and the decay rate and the
resonance frequency of the cavity are, respectively, γ and ωc1;
the right cavity is a gain optical cavity and the gain rate and
the resonance frequency of the cavity are, respectively, κ and
ωc2; the loss rate and the natural frequency of the mechanical
oscillator are, respectively, γm and ωm. In the optomechanical
subsystem, we assume that the mechanical resonator is only
coupled to the left passive optical cavity with optomechanical
coupling strength g1, where the passive cavity is driven by a
strong driving field with amplitude �d and frequency ωd and
injected by a squeezed vacuum field with central frequency
ωs [26,54–58]. In addition, the photon-tunneling strength
between two adjacent optical cavities is J , which can be
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FIG. 1. (a) Schematic illustration of a three-mode coupled op-
tomechanical system consisting of a passive cavity, an auxiliary
active cavity, and a mechanical oscillator. In this setup, the quantum
mechanical oscillator and the right active cavity (â2) simultaneously
couple to the left passive cavity (â1), which is driven by an external
laser with frequency ωd and injected by a squeezed vacuum field
with central frequency ωs. (b) We also consider that the central
frequency of the broadband squeezed vacuum field is equal to the
driving frequency, i.e., ωs = ωd . From the point of thermodynam-
ics, the mechanical oscillator is immersed in the thermal bath with
the temperature T > 0 and the driven optical mode couples to the
squeezed vacuum bath with an adjustable effective temperature via
the squeezing parameters or photon-tunneling coupling J so that
the energy transfer between the two sources can be generated and
controlled by the optomechanical coupling g1 and the cavity-pump
detuning �c1 = ωc1 − ωd .

adjusted by changing the distance between adjacent cavi-
ties [59–61].

The total Hamiltonian of the system reads (setting h̄ =
1) [62–64]

HT = ωc1â†
1â1 + ωc2â†

2â2 + ωmb̂†b̂ − g1â†
1â1(b̂† + b̂)

+ J (â†
1â2 + â†

2â1) + i(â†
1�d e−iωd t − â1�

∗
d eiωd t ). (1)

Here, â1 (â†
1) and â2 (â†

2) denote the annihilation (creation)
operators of the passive and the active cavities, respectively;
b̂ (b̂†) is the annihilation (creation) operator of the mechan-
ical oscillator. The single-photon optomechanical coupling
g1 between the passive cavity and the mechanical oscillator
can be expressed as g1 = (ωc1/L0)

√
h̄/(2mωm), where the

cavity length and the mass of the mechanical oscillator are,
respectively, L0 and m. The amplitude of the input field can
be normalized to the photon flux, i.e., �d = √

2Pγ /(h̄ωd ), in
terms of the power of the laser P and the cavity length L0.
Further, considering the rotating-wave approximation of the
system and combining the transformation H → U †HT U −
iU †∂tU written into the interaction picture with respect to
U = exp[−iωd (â†

1â1 + â†
2â2)t], the total Hamiltonian of the
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system becomes

H = �c1â†
1â1 + �c2â†

2â2 + ωmb̂†b̂ − g1â†
1â1(b† + b̂)

+ J (â†
1â2 + â†

2â1) + i(â†
1�d − â1�

∗
d ), (2)

where �ci = ωci − ωd (i = 1, 2) denotes the cavity-pump de-
tuning between the cavity field i and the driving field.

The quantum dynamics of the coupled optomechanical
system can be investigated using the Heisenberg-Langevin
equation with Hamiltonian (2). It is noted that in addition to
the evolution described by the Hamiltonian, the full dynamics
of the system should include the fluctuation-dissipation pro-
cesses affecting the optical fields and mechanical oscillators.
Using the Hamiltonian (2) and taking into account the quan-
tum fluctuations, the dynamics of the system can be described
by the following quantum Langevin equations (QLEs):

˙̂a1 = −i�c1â1 + ig1â1(b̂ + b̂†) − iJâ2

+�d − γ â1 +
√

2γ â1,in(t ), (3)

˙̂a2 = −i�c2â2 − iJâ1 + κ â2 +
√

2κ â2,in(t ), (4)

˙̂b = −iωmb̂ + ig1â+
1 â1 − γmb̂ +

√
2γmb̂in(t ), (5)

where â1,in and â2,in denote the input noise operators acting
on the cavity modes, and b̂in is the thermal noise operator
acting on the mechanical oscillator. Here we consider that the
injected vacuum noise of the passive cavity is squeezed, which
can usually be provided by a finite bandwidth output of an op-
tical parametric oscillator (OPO). This means that the driven
cavity mode is subject to a non-Markovian squeezed vacuum
noise and the corresponding correlation functions will signif-
icantly depend on the bandwidth properties of the injected
squeezing light field [26]. However, in the white-noise limit
for squeezing, the cavity is driven by a broadband squeezed
vacuum field and therefore the quantum vacuum fluctuations
of the passive cavity field satisfy the nonzero time-domain
correlation functions [26,56,57],

〈â1,in(t )â1,in(t ′)〉 = Mse
−i(ωs−ωd )(t+t ′ )δ(t − t ′), (6)

〈â†
1,in(t )â1,in(t ′)〉 = Nsδ(t − t ′), (7)

〈â1,in(t )â†
1,in(t ′)〉 = (Ns + 1)δ(t − t ′), (8)

where Ms and Ns denote two control parameters related to the
squeezed vacuum injection. In particular, in the case of pure
squeezing, Ms = (1/2)sinh(2r)eiθ and Ns = sinh2(r), with r
and θ being the strength and the phase of squeezing, re-
spectively. Further, we consider that the central frequency of
the broadband squeezed vacuum field is equal to the driving
frequency, i.e., ωs = ωd [see Fig. 1(b)]. In this case, the first
correlation of the quantum vacuum fluctuation [Eq. (6)] can
be simplified as [58]

〈â1,in(t )â1,in(t ′)〉 = Msδ(t − t ′). (9)

For the active cavity with gain, the quantum vacuum fluctua-
tion of the cavity field is assumed to be δ correlated [50,65],

〈â†
2,in(t )â2,in(t ′)〉 = δ(t − t ′), (10)

〈â2,in(t )â†
2,in(t ′)〉 = 0. (11)

In addition, the nonzero correlation functions for the thermal
noise are as follows [50,66]:

〈b̂in(t )b̂†
in(t ′)〉 = (nt + 1)δ(t − t ′), (12)

〈b̂†
in(t )b̂in(t ′)〉 = ntδ(t − t ′), (13)

where nt is the mean thermal phonon number of the mechan-
ical mode, defined by nt = 1/[exp (h̄ωm/kBT ) − 1], with kB

and T being the Boltzmann constant and the environmental
temperature, respectively.

Next we derive the linearized dynamics of the quantum
fluctuations around the steady-state expectation values of the
coupled system. This can be achieved by rewriting each
Heisenberg operator as a c-number steady-state value plus
an additional fluctuation operator with zero-mean value, i.e.,
Ô = Os + δÔ (O = a1, a2, b). Then, by inserting this ansatz
into Eqs. (3)–(5) and neglecting all the higher-order terms of
δO, the steady-state expectation values of the coupled optome-
chanical system are as follows:

a1s = (κ − i�c2)�d

(κ − i�c2)(γ + i�) − J2
, (14)

a2s = iJ�d

(κ − i�c2)(γ + i�) − J2
, (15)

bs = ig1|a1s|2
γm + iωm

, (16)

where � = �c1 − 2g1bs is the effective cavity detuning. The
corresponding evolution of the quantum fluctuations is ob-
tained as

δ ˙̂b = (−iωm − γm)δb̂ + ig1â1s(δâ1 + δâ†
1) +

√
2γmb̂in(t ),

(17)

δ ˙̂a1 = (−i� − γ )δâ1 + ig1â1s(δb̂† + δb̂)

− iJδâ2 +
√

2γ â1,in(t ), (18)

δ ˙̂a2 = (−i�c2 + κ )δâ2 − iJδâ1 +
√

2κ â2,in(t ). (19)

In order to solve the operator equations (17)–(19) and de-
rive their second moments determining the heat flux, we adopt
a semiclassical method by converting these operator equations
to a set of c-number Langevin equations [55],

Ḃ = (−iωm − γm)B + ig1a1s(A1 + A∗
1 ) + FB(t ), (20)

Ȧ1 = (−i�− γ )A1+ ig1a1s(B
∗+ B) − iJA2+ FA1 (t ), (21)

Ȧ2 = (κ − i�c2)A2 − iJA1 + FA2 (t ), (22)

where c-number variables Ai and B are, respectively, re-
lated to the fluctuations of the field i and the mechanical
oscillator. It is noted that in the derivation of Eqs. (20)–
(22), we have chosen the antinormal ordering of operators,
i.e., δb̂, δâ1, δâ2, δb̂†, δâ†

1, δâ†
2, such that their first and

second moments are always identical with Eqs. (17)–(19).
Furthermore, the functions FB, FA1, and FA2 in Eqs. (20)–
(22) are again the typical Langevin noise forces which obey
〈Fk (t )〉 = 0 and 〈Fk (t )Fl (t ′)〉 = 〈2Dkl〉δ(t − t ′), where Fk and
Fl can be any of the above noise forces. The diffusion co-
efficients Dkl should be determined by the requirement that
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the evolution equations for the second moments are always
identical to the corresponding operator equations. This leads
to that some of the diffusion coefficients will be altered
when the operator equations (17)–(19) are converted to the
c-number equations (20)–(22). As an example, we derive the
diffusion coefficient DBA1 . From the operator equations (17)
and (18), the time evolution of the second moment 〈δb̂δâ1〉
is [55]

d

dt
〈δb̂δâ1〉 = [−i(ωm + �) − γm − γ ]〈δb̂δâ1〉

+ ig1a1s〈(δâ1 + δâ†
1)δâ1〉 − iJ〈δb̂δâ2〉

+ ig1a1s〈δb̂(δb̂ + δb̂†)〉. (23)

We note that the term related to δâ†
1δâ1 is not our chosen order

because the operator δâ†
1 is to the left of δâ1. Therefore, we

have to use the commutation relation [δâ1, δâ†
1] = 1 to bring

this term into chosen order. Then, we obtain

d

dt
〈δb̂δâ1〉 = [−i(ωm + �) − γm − γ ]〈δb̂δâ1〉

+ ig1a1s〈δâ1(δâ1 + δâ†
1)〉 − ig1a1s

− iJ〈δb̂δâ2〉 + ig1a1s〈δb̂(δb̂ + δb̂†)〉. (24)

Further, using Eqs. (20) and (21), we obtain the corresponding
c-number evolution equation,

d

dt
〈BA1〉 = [−i(ωm + �) − γm − γ ]〈BA1〉

+ ig1a1s〈A1(A1 + A∗
1 )〉 − iJ〈BA2〉

+ ig1a1s〈B(B + B∗)〉 + 2〈FB(t )FA1 (t )〉. (25)

The time evolutions of the second moments 〈δb̂δâ1〉 and 〈BA1〉
should be equal so that the diffusion coefficient DBA1 is given
by

2DBA1 = −ig1a1s/2. (26)

Other nonvanishing c-number diffusion coefficients can be
calculated in an analogous way and are given by

2DBB∗ = 2γm(nt + 1), (27)

2DA1A1 = 2γ Ms, (28)

2DA1A∗
1
= 2γ (Ns + 1). (29)

For the convenience of calculation, we define the di-
mensionless amplitude and phase fluctuations of the cavity
fields 1 and 2 as X1 = A1+A∗

1√
2

, Y1 = A1−A∗
1√

2i
, X2 = A2+A∗

2√
2

, and

Y2 = A2−A∗
2√

2i
. The corresponding noise functions are, respec-

tively, Fx1 (t ) = FA1 +F ∗
A1√

2
, Fy1 (t ) = FA1 −F ∗

A1√
2i

, Fx2 (t ) = FA2 +F ∗
A2√

2
,

and Fy2 (t ) = FA2 −F ∗
A2√

2i
. Similarly, q = B+B∗√

2
and p = B−B∗√

2i
are, respectively, the position and momentum fluctuations
of the mechanical oscillator; ξq(t ) = FB+F ∗

B√
2

and ξp(t ) =
FB−F ∗

B√
2i

are the noises related to the position and momentum.
Then, the linearized c-number Langevin equations can be

written as

q̇ = ωm p − γmq + ξq(t ), (30)

Ẋ1 = �Y1 − γ X1 + JY2 + Fx1 (t ), (31)

Ẋ2 = κX2 + �c2Y2 + JY1 + Fx2 (t ), (32)

ṗ = −ωmq − γm p + 2g1a1sX1 + ξp(t ), (33)

Ẏ1 = −�X1 − γY1 + 2g1a1sq − JX2 + Fy1 (t ), (34)

Ẏ2 = −�c2X2 + κY2 − JX1 + Fy2 (t ). (35)

Using Eqs. (26)–(35), we can obtain the nonzero c-number
correlation functions for the thermal and vacuum noises as

〈ξq(t )ξq(t ′)〉 = 2γm(nt + 1)δ(t − t ′), (36)

〈ξp(t )ξp(t ′)〉 = 2γm(nt + 1)δ(t − t ′), (37)

〈Fx1 (t )Fx1 (t ′)〉 = 2γ n+δ(t − t ′), (38)

〈Fy1 (t )Fy1 (t ′)〉 = 2γ n−δ(t − t ′), (39)

〈Fx1 (t )ξp(t ′)〉 = −g1a1s/2δ(t − t ′), (40)

〈ξq(t )Fy1 (t ′)〉 = −g1a1s/2δ(t − t ′), (41)

〈Fx1 (t )Fy1 (t ′)〉 = 2γ MI
s δ(t − t ′), (42)

where n± = Ns + 1 ± MR
s with MR

s = (Ms+M∗
s )

2 and MI
s =

(Ms−M∗
s )

2i . Further, Eqs. (30)–(35) can be written in the matrix
form,

ẋ = −K1x + �1y + fx(t ), (43)

ẏ = −K1y − �2x + fy(t ), (44)

where x, y, fx(t ), and fy(t ) are the column vector. Their
transposes are, xT = (q, X1, X2), yT = (p,Y1,Y2), fx(t )T =
[ξq(t ), Fx1 (t ), Fx2 (t )], and fy(t )T = [ξp(t ), Fy1 (t ), Fy2 (t )], re-
spectively; the matrices K1, �1, and �2 are, respectively,
given by

K1 =
⎛
⎝γm 0 0

0 γ 0
0 0 −κ

⎞
⎠, (45)

�1 =
⎛
⎝ωm 0 0

0 � J
0 J �c2

⎞
⎠, (46)

�2 =
⎛
⎝ ωm −2g1a1s 0

−2g1a1s � J
0 J �c2

⎞
⎠. (47)

III. STEADY-STATE THERMOPHONON FLUX

We focus on the study of the thermophonon transports
between the thermal bath and the squeezed vacuum bath.
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This can be evaluated by calculating the steady-state average
thermophonon flux flowing from the thermal bath into the
system in a given time duration τ , defined as

Jp = lim
τ→∞ 〈N̂p0(τ )〉/τ, (48)

where N̂p0(τ ) is the number of the thermophonons induced by
the noise acting on the momentum of the mechanical oscillator
and can be expressed as [67–69]

N̂p0(τ ) =
∫ τ

0
[ξ̂p(t ) − γm p̂(t )] p̂(t )dt, (49)

with ξ̂p(t ) = i(b̂in,† − b̂in )/
√

2 and p̂ = i(b̂† − b̂)/
√

2 being
the thermal noise and the momentum of the oscillator. Clearly,
it is seen from Eq. (49) that the average of the thermophonon
number is determined by the first and second moments of
Eqs. (17)–(19). Using the ansatz Ô = Os + δÔ, the ther-
mophonon number can be written as

N̂p0(τ ) = −γm p2
sτ +

∫ τ

0
[ξ̂p(t ) − γmδ p̂(t )]δ p̂(t )dt, (50)

in terms of the steady-state value of momentum ps =
(bs − b∗

s )/(
√

2i) and its fluctuation δ p̂ = (δb̂ − δb̂
†
)/(

√
2i).

The second term in Eq. (50) is a fluctuating quantity and its
average is the same as that of the particle number, Np(τ ) =∫ τ

0 [ξp(t ) − γm p(t )]p(t )dt , defined by the c-number quadra-
ture p(t ) in Eqs. (43) and (44), which depends on the initial
conditions of the system and the noise trajectory in any par-
ticular realization. In order to evaluate the average of Np,
we introduce the probability distribution of Np, P (Np, τ ) and
the characteristic function for the thermophonon counting
field λ, Z (λ) = 〈e−λNp〉, averaging initial configurations and

different paths [70,71]. In general, for the given initial and
final configurations U0 and U in time τ with U T = (xT , yT ),
the characteristic function Z (λ,U, τ |U0) satisfies a Fokker-
Planck (FP) type of equation [70],

[∂τ − Lλ]Z (λ,U, τ |U0) = 0, (51)

where Z (λ,U, τ |U0) = 〈e−λNp〉U0,U and the initial condition
Z (λ,U, τ |U0) = δ(U − U0); Lλ is the FP operator related
to Eqs. (43) and (44), whose specific forms are not neces-
sary [69]. This is because we are interested in the restricted
characteristic function in the large-τ limit and the steady-state
distribution, which is only determined by the largest eigen-
value μ(λ) of the operator L(λ), i.e., Z (λ, τ ) ≈ eτμ(λ) [70],
and is difficult to attain by directly solving the FP equation. In
spite of this fact, by using the finite-time Fourier transforms of
Eqs. (43) and (44) and the Gaussian distribution characteris-
tics of thermal and vacuum noises, the largest eigenvalue can
be still evaluated as [70,71]

μ(λ) = − 1

4π

∫ ∞

−∞
dω ln[det(I + 2γmλτDϒn)], (52)

where D is the 6 × 6 noise matrix,

D = 1

τ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2γmn̄ 0 0 0 − g1a1s

2 0
0 2γ n+ 0 − g1a1s

2 2γ MI
s 0

0 0 0 0 0 0
0 − g1a1s

2 0 2γmn̄ 0 0
− g1a1s

2 2γ MI
s 0 0 2γ n− 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(53)

with n̄ = nt + 1, and ϒn is the coefficient matrix related to the
coefficients of Eqs. (43) and (44), i.e.,

ϒn(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−|N11|2 −N11N∗
12 −N11N∗

13 N11ϒ
∗
11 N11M∗

12 N11M∗
13

−N∗
11N12 −|N12|2 −N12N∗

13 N12ϒ
∗
11 N12M∗

12 N12M∗
13

−N∗
11N13 −N∗

12N13 −|N13|2 N13ϒ
∗
11 N13M∗

12 N13M∗
13

N∗
11ϒ11 N∗

12ϒ11 N∗
13ϒ11

M∗
11

(2γm ) − M11ϒ
∗
11 −M∗

12ϒ11 −M∗
13ϒ11

N∗
11M12 N∗

12M12 N∗
13M12 −M12ϒ

∗
11 −|M12|2 −M12M∗

13

N∗
11M13 N∗

12M13 N∗
13M13 −M13ϒ

∗
11 M∗

12M13 −|M13|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (54)

where ϒ11 = M11 − 1/(2γm), M(ω) = (K2)−1(I − �2A�1),
N (ω) = (K2)−1�2AK2, with K2(ω) = K1 + I × iω and
A(ω) = [(K2)2 + �1�2]−1; Ni j with i, j = 1, 2, 3 denotes the
element of the ith row and the jth column of matrix N and so
on.

In particular, the eigenvalue μ(λ) can be used to describe
the cumulant generating function (CGF) of the coupled os-
cillator system, which is given by G(λ) = limτ→∞ ln Z (λ)/τ
and contains information about the first-order cumulant
of thermophonon current fluctuations, such as J1(τ ) =
limτ→∞〈Np〉/τ = −∂G(λ)/∂λ|λ=0 [5,70]. Consequently, the
total average thermophonon flux Jp = limτ→∞ 〈Np0(τ )〉/τ be-
comes

Jp = −γm p2
s − ∂λμ(λ)|λ=0. (55)

Finally, the steady-state thermophonon flow is

Jp = −γm p2
s + 1

4π

∫ ∞

−∞
dω{Tr[2γmDτϒn(ω)]}. (56)

IV. RESULTS AND DISCUSSIONS

We now numerically evaluate the values of the steady-state
thermophonon flux with experimentally accessible parameters
and study the effect of the optical parameters on the flux in the
three-mode optomechanical system. In particular, we are also
interested in the reversion of the thermophonon flux by con-
trolling the gain of the active cavity and the squeezed strength
r. In order to achieve this goal, we consider that the system
works in the regime of the weak optomechanical coupling,
i.e., g1 = 7.4 × 10−5γ with γ = 2π MHz being the decay

043521-5



WU, NIE, LI, CHEN, AND LAN PHYSICAL REVIEW A 103, 043521 (2021)

0.8 0.9 1 1.1 1.2

/
m

0

2000

4000

6000

8000

J p
(H

z)

0.8 0.9 1 1.1 1.2

/
m

0

2000

4000

6000

8000

0.8 0.9 1 1.1 1.2

/
m

-5000

0

5000

10000

J p
(H

z)

0.8 0.9 1 1.1 1.2

/
m

0

5000

10000

15000 (d) J=

     / =1

(c) J=
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     / =0

FIG. 2. The thermophonon fluxes Jp are plotted as a function of
the normalized detuning δ/ωm for different values of J and κ/γ .
(a) The case of a single optical cavity with J = 0. (b)–(d) The cases
of two coupled optical cavities (J = γ and �c2 = �) with κ/γ being
0, 0.2, and 1, respectively. The other parameter values we selected
are λd = 1550 nm, L = 1 mm, m = 50 ng, ωm = 2π × 23 MHz,
γ = 2π MHz, γm = 1.63 × 10−3γ , g1 = 7.4 × 10−5γ , and r = 0.

rate of the left passive cavity. The mechanical oscillation
frequency is ωm = 2π × 23 MHz, the damping rate is γm =
1.63 × 10−3γ , and the mass is m = 50 ng. The wavelength
and the power of the driving field are, respectively, λd = 1550
nm and P = 0.001 mW. The length of the cavity is L = 1 mm.
In Fig. 2, we show the steady-state thermophonon flux Jp as
a function of the normalized detuning �/ωm in the case of a
single optical cavity with J = 0 [Fig. 2(a)], and the case of two
coupled optical cavities (J = γ and �c2 = �) with different
κ/γ ’s [Figs. 2(b)–2(d)]. In the numerical result, we also tem-
porarily remove the squeezed vacuum injection with r = 0. It
is clear from Fig. 2(a) that for a typical two-mode optome-
chanical system, the steady-state flux Jp is not a monotonous
function of the effective detuning and its maximum appears at
an optimal effective detuning, i.e., � = ωm. This is because in
the case of � ≈ ωm, the beam-splitter interaction between the
mechanical mode and the optical field, i.e., δâ†

1δb̂ + δâ1δb̂†

in the effective Hamiltonian corresponding to Eqs. (17)–(19),
is in resonance and therefore the cooling process of the me-
chanical oscillator dominates the system dynamics, which is
mediated by the quantum transitions between the states of
the system on the energy scale of the mechanical quantum
and corresponds to the most efficient energy transfer from the
mechanical oscillator to the optical mode.

When an additional optical cavity without the gain and
loss is coupled to the passive cavity, i.e., J = γ and κ/γ =
0 in Fig. 2(b), the dependence of the flux on the effective
detuning is changed significantly. For example, we can see
from Fig. 2(b) that the peak of the flux is split and therefore
there always exists a dip in thermophonon transport which is
obtained as � = ωm. That is, in the presence of the coupled
cavity, the flux profile at � = ωm reverses from the peak to
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/ =-0.5

/ =-2.0

FIG. 3. The thermophonon fluxes Jp are plotted as a function of
the normalized detuning �/ωm with different values of the loss rate
κ when the coupled cavity is also passive. The coupling strength J
is fixed as J = γ and the other parameter values are the same as in
Fig. 2.

the dip. Physically, this originates from the increase of the
interference channels between the states, in contrast to the
case with only optomechanical coupling, which can suppress
the cooling process of the mechanical oscillator and there-
fore weaken the energy exchange from the thermal bath to
the vacuum one. In particular, when the coupled cavity is a
gain cavity, i.e., κ/γ = 0.2, from Fig. 2(c) we find that the
dip becomes negative so that the energy transport from the
coupled system to the thermal bath becomes possible. This
means that in this case, the heating effect of the mechanical
oscillator will exceed its cooling one when the heating process
of the mechanical oscillator dominates the system dynamics.
In general, when a gain system is coupled to the passive cavity,
the energy is driven to flow from the coupled system with
gain to the dissipation thermal environment. However, when
the gain of the coupled cavity increases further, i.e., the case
of the balanced gain and loss with κ/γ = 1, we see from
Fig. 2(d) that the flux profile with a single peak reappears and
the steady-state flux always flows from the thermal bath to
the coupled system. Furthermore, from Figs. 2(a) and 2(d),
we can see that the maximum of the steady-state flux in the
case of the balanced gain and loss is much larger than that
of the case with only optomechanical coupling and therefore
the additional gain cavity can drive the thermal energy to be
exchanged more quickly due to the field localization effect in
the gain cavity [25]. We stress that the present coupled system
works in the PT -symmetric phase and therefore is always
stable. These results indicate that the noise current value and
its direction in the optomechanical system can be maneuvered
by coupling a mechanical oscillator to the dimer system with
a gain cavity.

We can study the effect of κ/γ on the thermophonon flux
by considering that the additionally coupled cavity is passive,
i.e., κ/γ < 0. In Fig. 3, we show the steady-state flux Jp as
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FIG. 4. The thermophonon fluxes Jp are plotted as a function
of the normalized detuning �/ωm with different values of the
squeezed strength r for the case of the (a) passive-passive cavity and
(b) passive-active cavity. The coupling strength J = γ , the squeezed
phase θ = π/2, and the other parameter values are the same as in
Fig. 2.

a function of �/ωm with different values of κ/γ � 0. We
can see that the depth of the dip gradually becomes shallow
with increasing the loss rate κ . In addition, increasing the loss
always leads to the suppression of both the sideband peaks of
the flux and, finally, the flux profile changes from two peaks
to one. Consequently, in the resonant regime of � ≈ ωm,
the bath of the second passive optical cavity plays a more
and more important role as an additional channel of energy
dissipation. In contrast, in the sideband regimes of � = ωm,
increasing the decay of the coupled cavity will decline the
steady-state flux flowing from the thermal bath to the vacuum
baths. It is noted that for the passive-passive coupled system,
the steady-state fluxes are always positive with different κ’s
because the baths of the optical fields are dissipative so that
the effective temperature of the optical mode is less than the
temperature of the thermal bath.

We also discuss in detail the effect of the squeezed pa-
rameter r on the steady-state flux, as shown in Fig. 4. We
fix the gain or loss of the second cavity, i.e., κ/γ = 0.3
[Fig. 4(a)] and κ/γ = −0.3 [Fig. 4(b)], and gradually change
the values of the parameter r from 0 to 3. In Fig. 4(a), it is
shown that when the left passive cavity is coupled to a loss
cavity, increasing the values of r not only declines the peaks
of the positive flux, but also increases the depth of the dip
at � = ωm. This is because when the squeezed parameter r
increases, the increasing noise correlation enhances the effec-
tive temperature of the optical mode in the passive cavity and
therefore weakens the nonequilibrium characteristics between
the thermal bath and the squeezed vacuum bath, so that the
steady-state flux decreases with the increasing r. In particular,
when the squeezed strength r is relatively large, i.e., r = 3, the
nonequilibrium characteristic between the thermal bath and
the squeezed vacuum bath is reversed so that the steady-state
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FIG. 5. The thermophonon fluxes Jp are plotted as a function of
the normalized detuning �/ωm with different values of the driving
power P for the case of the (a) passive-passive cavity and (b) passive-
active cavity. The squeezed strength r = 1.5 and the other parameter
values are the same as in Fig. 4.

flux becomes negative. In this case, the energy will flow from
the squeezed vacuum bath to the mechanical thermal one,
which can be seen as a result of the transfer of squeezing from
light to mechanical oscillator [26]. Similarly, in Fig. 4(b), we
can see that when the left passive cavity is coupled to the
cavity with a small gain, i.e., κ/γ = 0.3, the energy flux at
� = ωm always flows from the squeezed vacuum bath to the
thermal one and increases with the increasing r.

In Fig. 5, we show the steady-state thermophonon flux Jp

as a function of the normalized detuning �/ωm with different
driving power P. In Fig. 5(a), we can observe that in the case
of the passive-passive coupled cavity, the steady-state flux
always increases with increasing P. Clearly, the lager driv-
ing power P enhances the effective optomechanical coupling
between the mechanical oscillator and the optical mode and
therefore widens the channel of the energy transfer between
them. As a result, the larger flux can be attained. Similarly,
when the passive-active coupled cavity is considered, we can
see from Fig. 5(b) that the two peaks of the flux and the depth
of the central dip become gradually shallow with decreasing
P. Therefore, the amplitude of the steady-state thermophonon
flux between the thermal bath and the vacuum one can be
easily controlled by adjusting the driving power.

Apart from the gain ratio, the squeezing strength, and the
driving power, we also investigate the effect of the tunneling
strength J on the flux shape of the three-mode optomechan-
ical system. In Fig. 6, we plot the steady-state flux as a
function of the normalized detuning �/ωm with different
tunneling strengths J . It is clearly shown that in the pres-
ence of the coupled cavity with gain [Figs. 6(a)–6(d)] and
loss [Figs. 6(e)–6(h)], the peak of the flux can be split and
the separation of the split peaks increases gradually with
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FIG. 6. The thermophonon fluxes Jp are plotted as a function of
the normalized detuning �/ωm with different values of the tunneling
strength J for the case of the (a)–(d) passive-active cavity and (e),(f)
passive-passive cavity. The squeezed strength r = 1.5 and the other
parameter values are the same as in Fig. 4.

increasing tunneling strength J . This is because when the
tunneling strength between the coupled cavity system is in-
creased, the interference effects between the states of the
coupled system are enhanced significantly, which leads to the
position of the optimal flux moving outside. In particular,
when the coupled cavity is active, i.e., κ/γ = 1, and the
tunneling strengths J are large enough, i.e., J = 1.5γ , from
Figs. 6(c) and 6(d), we find that the thermophonon flux can
also be negative so that the energy is transferred from the
coupled system to the thermal bath. We stress that the present
three-mode optomechanical system with gain always works
in the PT -symmetric regime. The results suggest that the flux

profile at �/ωm can be conveniently modified by adjusting
the tunneling strength between the adjacent optical cavities,
which is easily controlled by varying the distance between the
optical cavity.

V. CONCLUSIONS

In conclusion, we propose a three-mode coupled optome-
chanical system consisting of two coupled optical cavities and
a mechanical oscillator to investigate the thermophonon trans-
ports between the coupled system and the thermal bath of the
mechanical oscillator. We first derive the general expression
of the steady-state thermophonon flux in the system by using
the cumulant generating function approach. Then, we inves-
tigate the change of the energy transports in the three-mode
system by changing the gain or loss of the coupled cavity, the
strength of the squeezed vacuum, the driving power, and the
tunneling strength between the adjacent cavities. It is clearly
seen that due to destructive interferences among the excitation
paths of two single-mode cavities, the steady-state flux profile
changes from one peak to two. Further, the amplitude and
direction of the steady-state flux can be flexibly controlled
by changing the gain and the tunneling strength of the active
cavity. In particular, the squeezed vacuum can significantly
change the nonequilibrium characteristics between the ther-
mal bath and the squeezed vacuum bath, which will reverse
the thermophonon flux from positive to negative. These results
present interesting transfer properties of the thermophonon
in an optomechanical system coupled to dissipative environ-
ments, which provides a potential application in effectively
manipulating the propagation of the thermophonon with more
handles.
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