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Fundamental entropic processes in the theory of optical thermodynamics
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We study the statistical behavior of multimoded optical systems under equilibrium conditions. We investigate
the role of variations of the system parameters in the thermodynamic description and derive an optical analog
of the first law of thermodynamics, a generic expression for the work done to the system, and an optical
Gibbs-Duhem equation. To demonstrate these effects, we focus on the case of two-dimensional photonic lattices.
We study the conditions under which the entropy in such waveguide arrays can be considered as extensive. In
this respect, small deviations from the extensive character of the entropy give rise to stress and strain terms.
We examine how the conservation laws in such array configurations are affected by variations in the system
parameters, and furthermore, we analyze the respective thermodynamic processes (isentropic and Joule-type
expansions).
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I. INTRODUCTION

Optical systems are by nature capable of supporting a
multitude of modes with respect to their allowed degrees of
freedom. In the spatial domain, such structures include mul-
timode fibers [1], and multicore waveguide arrays [2], while
in the frequency realm these could be cavity and microcav-
ity arrangements [3]. Over the last few years, multimoded
optical systems have attracted considerable attention, both
because of their scientific interest and potential applications.
In this respect, multimode optical fibers are nowadays in-
tensely investigated, in order to substantially scale up the
information carrying capacity of communication networks
through the exploitation of the modal degrees of freedom [1].
In addition, multimoded fiber structures can be utilized in
high-power settings like spatio-temporal mode locking [4,5],
and supercontinuum generation [6–10]. In these latter studies,
a rather surprising and unexpected phenomenon was observed
in nonlinear multimode graded-index fibers—the so-called
“beam self-cleaning” effect [7,11,12]. During this process,
a highly multimode and spatially irregular beam evolves to-
wards a bell-shaped speckle-free pattern, an effect that cannot
be explained by invoking well-known nonlinear mechanisms
like that of self-focusing, stimulated Raman, and Brillouin
scattering. This issue was addressed in a work published last
year, where it was recognized that, although some kind of
nonlinearity is necessary for achieving four-wave mode mix-
ing, the actual origin of this effect is thermodynamic [13]:
During propagation, with the aid of a moderate nonlinearity,
the system reaches thermal equilibrium.

*nefrem@uoc.gr

The theoretical formalism developed in [13] provides a
self-consistent thermodynamic approach that can be applied
to a variety of multimoded nonlinear optical settings. Specif-
ically, it was shown that such systems can reach thermal
equilibrium by maximizing their entropy according to the sec-
ond law of thermodynamics. Once thermalized, the statistics
of the modal occupancies obey a Rayleigh-Jeans distribution
that is characterized by an optical temperature T and a cor-
responding chemical potential μ. An optical “pressure” P
was introduced as the conjugate variable to the number of
modes M. The conditions governing T and μ were analyzed
in [14], and in [15,16] the thermodynamic laws were derived
by employing a grand-canonical approach.

Previous research activity in this area has been primar-
ily focused on nonequilibrium kinetic formulations based on
wave turbulence [17–22]. A number of other publications has
also examined phase transitions in discrete lattices based on
local mode descriptions [23–29].

In this work, we examine how variations in the parame-
ters of a weakly nonlinear multimoded optical system affect
its thermodynamic properties. In this respect, we derive an
optical analog of the first law of thermodynamics, which de-
scribes all possible sources that cause variations in the internal
energy. We find that work can be imparted on the system
either by changing the number of modes or by changing the
specific parameters of each setting. In addition, we derive
a Gibbs-Duhem-type equation that relates the variations in
the intensive parameters. To demonstrate our predictions, we
study the case of two-dimensional photonic lattices arranged
in a rectangular geometry. Here, the role of the system param-
eters is played by the coupling coefficients. Stress and strain
terms are introduced to account for corrections due to system
asymmetries. The significance of these terms is related to the
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extensivity of the entropy, which we examine numerically.
Finally, we study two particular examples of thermodynamic
processes, namely isentropic and Joule-type expansions, and
compare the numerical results with theoretical predictions.

II. EFFECT OF VARIATION OF PARAMETERS
IN THE THERMODYNAMIC DESCRIPTION

OF MULTIMODED OPTICAL SYSTEMS

Our first step is to develop a thermodynamic formalism that
takes into account the system parameters of a multimoded
optical setting. In this respect, let us consider a multimoded
system with M modes. In modal space the wave function can
be expanded as

|�〉 =
M∑

l=1

C(l )(z)|l〉,

so that Ĥ |l〉 = ε(l )|l〉, where Ĥ is the Hamiltonian, |l〉 is the
eigenmode with index l and eigenvalue ε(l ), while C(l )(z)
is the respective amplitude that depends on the propagation
distance z. We consider optical systems that conserve the total
power,

N = 〈�|�〉 =
M∑

l=1

n(l ), (1)

as well as the internal energy,

U = 〈�|Ĥ |�〉 =
M∑

l=1

ε(l )n(l ), (2)

where n(l ) = |C(l )|2. We utilize a grand canonical ensemble
that respects these two conservation laws, with α, β being
the corresponding Lagrange multiplies [30]. The resulting
probability is given by

p = e−q−α
∑

l n(l )−β
∑

l ε(l )n(l )
,

where the q potential,

q =
M∑

l=1

log
∫ ∞

0
e−αn(l )−βε(l )n(l )

dn(l ) =
M∑

l=1

log
1

α + βε(l )
,

(3)
is related to the grand-canonical partition function Q via
q = logQ (with base e). Note that a grand-canonical formal-
ism was also utilized in [15,16]. We assume that the system
depends on the additional variables ξ = {ξ1, . . . , ξJ} that are
introduced to the partition function through the energy spec-
trum ε(l ) = ε(l )(ξ ) and thus q = q(α, β, M, ξ ). Taking the
differential of Eq. (3) we find that the average modal occu-
pation numbers satisfy a Rayleigh-Jeans distribution [13],

〈n(l )〉 = − 1

β

(
∂q

∂ε(l )

)
α,β,M,ε(l )

= 1

α + βε(l )
, (4)

as well as

〈N〉 = −
(

∂q

∂α

)
β,ε,M

=
M∑

j=1

1

α + βε(l )
, (5)

and

〈U 〉 = −
(

∂q

∂β

)
α,ε,M

=
M∑

j=1

ε(l )

α + βε(l )
, (6)

where ε = {ε(1), . . . , ε(M )}, and ε(l ) = ε \ ε(l ). From this point
on, unless stated otherwise, we are going to omit the brackets
that denote ensemble averaging. From Eq. (4), and utilizing
the two conservation laws, we derive the following equation
of state:

αN + βU = M.

Taking the differential of q and following the relevant calcu-
lations we derive

d (q + αN + βU ) = β

[
α

β
dN + dU + PdM −

J∑
j=1

Rjdξ j

]
.

(7)
In Eq. (7) we have defined

Rj =
M∑

l=1

n(l )

(
∂ε(l )

∂ξ j

)
α,β,M,ξ j

(8)

as the variable that is conjugate to ξ j . In addition the optical
pressure [13],

P = 1

β

(
∂q

∂M

)
α,β,ξ

,

is conjugate to M. We compare Eq. (7) to the first law of
thermodynamics T dS = δQ = dU − μdN − δW . From the
right-hand sides we see that the chemical potential is given by
μ = −α/β. Furthermore, similarity suggests that we define
the work done to the system as

δW = −PdM +
J∑

j=1

Rjdξ j . (9)

The first term on the right-hand side is the mathematical
equivalent to the pressure-volume work with M replacing
the volume, while the second term accounts for work due
to variations in the system parameters ξ . Comparing the
left-hand sides, we derive the following expression for the
entropy [13,15]:

S = q + αN + βU = q + M, (10)

and, in addition, we find that

β = 1

T
, α = −μ

T
. (11)

Thus the equation of state takes the form [13],

U − μN = T M. (12)

III. FIRST LAW OF THERMODYNAMICS
AND GIBBS-DUHEM EQUATION

Utilizing Eqs. (7), (10), and (11) we conclude that

dU = T dS − PdM +
J∑

j=1

Rjdξ j + μdN, (13)
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which is a manifestation of the first law of thermodynamics
for multimoded optical systems. We identify the quantities
S, M, N as extensive, and thus the conjugate variables T ,
p, μ are intensive. We separate the variables ξ into inten-
sive ξint = {ξint, j} and extensive ξext = {ξext, j} segments so
that ξ = ξint ∪ ξext. Thus, their conjugate variables Rj can
also be separated into extensive Rext = {Rext, j} and intensive
parts Rint = {Rint, j}, respectively. We denote by Jext the num-
ber of extensive variables ξext, j and by Jint the number of
intensive variables ξint, j . Taking the differential of the Leg-
endre transformation V = U − ∑

j Rext, jξint, j , and integrating
the extensive variables while keeping the intensive variables
constant we obtain the following expression for the internal
energy:

U = T S − PM + μN +
Jext∑
j=1

Rint, jξext, j . (14)

Solving Eq. (10) in terms of q we see that q = (T S +
μN − U )/T , a formula that can be combined with Eq. (14)
to express the q potential in the form,

q = PM − ∑Jext
j=1 Rint, jξext, j

T
. (15)

From Eqs. (13) and (14) we derive the Gibbs-Duhem equa-
tion,

SdT − MdP−
Jint∑
j=1

Rext, jdξint, j +
Jext∑
j=1

ξext, jdRint, j + Ndμ = 0

(16)
that provides the relationship between variations in the inten-
sive parameters.

IV. THERMODYNAMICS OF TWO-DIMENSIONAL
PHOTONIC LATTICES

A. Conservation laws

As a main example, we focus on two-dimensional photonic
lattices consisting of single-mode waveguides that form a rect-
angular lattice with dimensions M1×M2, where M = M1M2 is
the number of modes. In nodal space, we can express the wave
function as

|�〉 =
∑

m

Am(z)|m〉,

where Am(z) is the z-dependent amplitude, m = (m1, m2),
and mj = 1, . . . , Mj . The two conservation laws of the sys-
tem [31] are the total power,

N =
∑

m

|Am|2, (17)

and the Hamiltonian,

H = −
∑

m

[
A∗

m(κ1
1Am + κ2
2Am) + γ

2
|Am|4

]
, (18)

where 
1Am = Am1+1,m2 + Am1−1,m2 , and 
2Am = Am1,m2+1 +
Am1,m2−1 are the coupling operators between first neighbors
along the two transverse directions. The coupling coefficient
along the jth direction is κ j , and we consider interactions of

the Kerr type [32] with strength γ . The discrete nonlinear
Schrödinger equation,

iȦm + κ1
1Am + κ2
2Am + γ |Am|2Am = 0, (19)

where Ȧm = dAm/dz, is derived from the Hamiltonian via
Ȧm = {H, Am} with Poisson brackets {Am, A∗

m′ } = iδm,m′ , and
{Am, Am′ } = {A∗

m, A∗
m′ } = 0. For zero boundary conditions

A0,m2 = AM1+1,m2 = Am1,0 = Am1,M2+1 = 0 the lattice supports
the following eigenmodes:

|l〉 =
∑

m

(
2∏

j=1

√
2

Mj + 1
sin

mjl jπ

Mj + 1

)
|m〉, (20)

with eigenvalues,

ε(l ) = −2κ1 cos

(
l1π

M1 + 1

)
− 2κ2 cos

(
l2π

M2 + 1

)
. (21)

As we can see from Eq. (21), the system variables ξ j are the
coupling coefficients κ j which are intensive. Their conjugate
variables Rj are extensive and are then given by

Rj = −2
∑

l

n(l ) cos
2π l j

Mj + 1
= −

∑
m

A∗
m
 jAm.

We assume that the cubic nonlinearity is the only source
for mode mixing, and is relatively mild in the sense that it
does not lead to phase transitions. In such a low intensity
limit, the nonlinear contribution to the Hamiltonian is small
as compared to the linear terms. Thus, we can write

H = R1κ1 + R2κ2. (22)

When the number of modes in rectangular waveguide ar-
rays increases from M to M ′ > M, so that M ′

1 � M1 and M ′
2 �

M2, then both the power N and the energy U are conserved.
If such a process takes place, say at z = z1, then this can be
trivially shown by adding elements with zero amplitude at
z = z+

1 in the sums of Eqs. (17) and (18). However, when
M ′

1 < M1 or M ′
2 < M2 then the amount of power and energy

that is stored in the waveguides that are eliminated is lost,
resulting to a nonreversible process.

The total power does not change if the coupling coefficients
are z-dependent functions. In contrast, the Hamiltonian or the
energy given by Eq. (18) changes as a function of κ j as

dH = R1dκ1 + R2dκ2. (23)

Utilizing Eqs. (22) and (23) we also find that

κ1dR1 + κ2dR2 = 0. (24)

In Appendix C, we analyze the dependence of the conserva-
tion laws of the discrete nonlinear Schödinger equation from
the z-dependent coupling coefficients, and derive Eqs. (23)
and (24).

For one-dimensional (1D) arrangement of waveguides
(M2 = 1 leading to R2 = 0) and mild nonlinear effects, we
can ignore the nonlinear terms in the Hamiltonian and directly
integrate Eq. (23). This leads to a Hamiltonian that is propor-
tional to the coupling coefficient,

H (z)

H (0)
= κ (z)

κ (0)
. (25)
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Equation (25) can be generalized for two-dimensional lattices
when the ratio of the coupling coefficients remains constant
during propagation, κ1(z) = α1κ (z) and κ2(z) = α2κ (z).

However, when the coupling coefficients κ1(z) and κ2(z)
vary independently during propagation, closed form expres-
sions can only be obtained under the additional assumption
of thermal equilibrium. In this case, both R1 and R2 should
have equal contribution to the Hamiltonian. Physically, this is
a condition that warranties that there is no preferable direction
in the wave patterns that are generated. For example, stripe
soliton solutions whose intensity is maximum along the ver-
tical line j1 = constant have a strong directional anisotropy
|R2| � |R1|. Such a behavior is not expected in thermal equi-
librium. From Eq. (24) and R = R1 = R2 we conclude that R
remains constant. Integrating Eq. (23) we find that the energy
changes during propagation according to

H (z)

H (0)
= κ1(z) + κ2(z)

κ1(0) + κ2(0)
. (26)

B. Stress, strain, and extensivity

Note that for waveguide arrays the q potential does not
depend directly on the number of modes M, as we as-
sumed in our analysis, but rather, on the dimensions of
the lattice along each direction M1 and M2. Then since
q = q(α, β, κ1, κ2, M1, M2), following calculations similar to
those of Secs. II and III, we find that the first law of thermo-
dynamics can be written as

dU = T dS + σ1M2dM1 + σ2M1dM2

+μdN + R1dκ1 + R2dκ2. (27)

In Eq. (27)

σ j = − 1

β

1

M3− j

(
∂q

∂Mj

)
α,β,κ,M3− j

(28)

are the stress terms, whereas MjdM3− j are, the conjugate to
the stresses, strain terms. Since the variables Mj are discrete
we can use a difference scheme to express the partial deriva-
tive of q with respect to Mj such as(

∂q

∂Mj

)
α,β,κ,M3− j

= q(α, β, κ, Mj + 1, M3− j )

− q(α, β, κ, Mj, M3− j ).

In the above expression, note that Mj affects q through both
the number of terms that appear in the sum and the function
ε(l )(M1, M2) [see Eq. (3)].

Equation (27) does not explicitly contain the pressure.
However, the pressure can be defined as minus the average
of the stress terms σ j , or

P = −σ1 + σ2

2
. (29)

In addition, we define the stress anisotropy as

τ = σ1 − σ2

2
. (30)

As a result, utilizing Eqs. (29) and (30) the first law of ther-
modynamics [Eq. (27)] can take the, perhaps, more familiar

form,

dU = T dS − PdM + τ (M2dM1 − M1dM2)

+ μdN + R1dκ1 + R2dκ2. (31)

Interestingly, when κ1 = κ2 along with M1 = M2 then the q
potential depends only on M, q = q(M ), and τ = 0, meaning
that the stress is the same along both directions σ1 = σ2. Thus,
we can examine the importance of τ by studying how well the
entropy S = q(M1, M2) + M can be approximated by S(M ).
More importantly, we will also be able to answer the question
about whether and when the entropy can be considered as ex-
tensive [S(λU, λN, λM ) = λS(U, N, M )]. From Eq. (10) we
see that the entropy is extensive if and only if the q potential
is extensive.

Let us first restrict ourselves to the one-dimensional case
and assume that (U ′, M ′, N ′) = λ(U, M, N ). We group the
energy levels into cells denoted by Ci. Assuming that the ith
cell contains the energy levels in the range [εi,l , εi,r], then the
multiplicity of levels gi, is given by

gi = M + 1

π

[
arccos

(
−εi,r

2κ

)
− arccos

(
−εi,l

2κ

)]
. (32)

In cell Ci the average energy εi, and average power ni are given
by

gini =
∑

ε(l )∈Ci

n(l ), giniεi =
∑

ε(l )∈Ci

n(l )ε(l ).

From Eq. (32), we clearly see that for M � 1 the level multi-
plicity gi is proportional to M, or g′

i = λgi. From the equation
N ′ = λN we find that

∑
i gi(n′

i − ni ) = 0 or n′
i = ni. In ad-

dition, from the condition U ′ = λU we obtain
∑

i gini(ε′
i −

εi ) = 0 and thus ε′
i = εi. Substituting this latter equation to

n′
i = ni results to T ′/(εi − μ′) = T/(εi − μ), an expression

that is satisfied when μ′ = μ and T ′ = T . As a result both

TABLE I. Temperature T , chemical potential μ, and entropy per
mode number S/M as a function of the number of modes M = M1 for
one-dimensional waveguide arrays (M2 = 1) with κ = 1. The power
per mode number and energy per mode number are N/M = 1/50,
U/M = −3/800.

κ = 1 N
M = 1

50 , U
M = − 3

800

M1 M2 T μ S/M

2 1 0.103 −5.33 −2.930
5 1 0.169 −8.63 −2.923
10 1 0.190 −9.70 −2.922
20 1 0.201 −10.23 −2.921
25 1 0.203 −10.33 −2.921
50 1 0.207 −10.55 −2.921
100 1 0.209 −10.65 −2.921
200 1 0.210 −10.70 −2.921
400 1 0.211 −10.73 −2.921
800 1 0.211 −10.74 −2.921
1600 1 0.211 −10.75 −2.921
3200 1 0.211 −10.76 −2.921
6400 1 0.211 −10.76 −2.921
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FIG. 1. Numerical results of isentropic processes that take place when the strength of the coupling coefficients changes during propagation
in two-dimensional waveguide arrays. In both cases shown in the two rows, the array consists of 20×20 waveguides and initially the coupling
coefficients are κ1(0) = κ2(0) = 1. The eigenmodes, lying in the range −2 � ε(l ) � −1, are equally excited with a uniformly distributed
random phase, N = 36, and U = −53.39. In (a)–(c) the coupling coefficients κ1(z) = κ2(z) = κ (z) smoothly increase to reach the value
κ (z f ) = 2 via a sigmoid (tanh) function. In (d)–(f) κ1(z) increases during propagation up to κ1(z f ) = 2 via the same sigmoid (tanh) function,
while κ2(z) = 1. In the first and second column, we see the power distribution of the eigenmodes as a function of the eigenvalue before and
after the process, respectively, while in the third column we depict the internal energy as a function of the propagation distance. Variations in
the values of κ j modify the internal energy according to Eq. (26).

the q potential,

q =
∑

i

gi log

(
T

εi − μ

)
,

and the entropy are extensive. Our numerical results presented
in Appendix B are in agreement with these finding (see, for
example, Table I). Let us briefly mention that in our simula-
tions, even for moderate values of M, the temperature T , the
chemical potential μ, and the entropy per mode number S/M
remain almost constant.

For two transverse directions, we rely on numerics which
show that, besides some limiting cases, the entropy is quasiex-
tensive, i.e., while not being truly extensive, for a wide range
of parameters the deviations from extensivity are small. In
all our simulations, we limit ourselves to the case U < 0
(and thus T > 0). However, taking advantage of the bijective
mapping between (N,U, T, μ) and (N,−U,−T,−μ), our
results can also be applied for U > 0 and thus T < 0 (see
Appendix A for details). Specifically, we vary M1 and M2

while keeping M constant and, subsequently, we change the
value of M and follow the same procedure. Deviations from
the extensive nature of the entropy start to take place as we
approach the one-dimensional limit, where the size of the
array along one direction is small. Such deviations decrease as
we increase the power or decrease the energy. Anisotropy in
the coupling coefficients can also mildly affect the extensivity

of the entropy. As we have shown, such variations from the ex-
tensive character of the entropy, give rise to stress anisotropy
τ which, in general, is small. In Tables II–V we depict S/M,
T and μ as a function of the lattice dimensions M1 and M2 for
different values of the coupling coefficients κ1 and κ2.

C. Thermodynamic processes

We are going to investigate the processes that arise due
to variations in the parameters in waveguide arrays both
theoretically and numerically. In our simulations, a part of
the spectrum is initially excited with equal amplitude and
uniformly distributed phase, but is allowed to reach thermal
equilibrium before the process take place. Ensemble averag-
ing is obtained by averaging in z,

〈n(l )〉 = 1

z2 − z1

∫ z2

z1

n(l )(z)dz.

For simplicity, in our simulations we consider lattices of com-
parable dimensions M1 and M2. Thus effects due to stress
anisotropy are small and are ignored for the rest of this work.

Let us first study processes, which take place when
the coupling coefficients change during propagation in
two-dimensional rectangular lattices. Such processes were ex-
amined in the one-dimensional case in [13] and were found
to be isentropic and useful in achieving optical refrigeration.
Since the number of modes and the power remain constant,

043517-5



EFREMIDIS AND CHRISTODOULIDES PHYSICAL REVIEW A 103, 043517 (2021)

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

T=0.247

Initial
Numerical
Theory

-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

T=0.108

Numerical
Theory

0 5 10

104

-56

-54

-52

-50

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

T=0.247

Initial
Numerical
Theory

-4 -2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

T=0.121

Numerical
Theory

0 5 10

104

-56

-54

-52

-50

(a) (b) (c)

(d) (e) (f)

FIG. 2. Numerical-results of Joule-type expansions associated with an increase in the number of modes in two-dimensional waveguide
arrays. The figure arrangement and initial parameters are the same as in Fig. 1. In the first row, the number of modes increases during
propagation up to M1 = M2 = 30, so that at every propagation distance the lattice remains square. In the second row, only the dimension of
the lattice along the first direction increases during propagation up to M1 = 40. In both examples the number of waveguides is determined by
a sigmoid (tanh) function rounded to the closest integer.

the first law of thermodynamics given by Eq. (31) takes the
form dU = T dS + R1dκ1 + R2dκ2. Combining the previous
equation with Eq. (23) we find that dS = 0. Thus, variations in
the coupling coefficients in two-dimensional lattices conserve
the entropy as well as the q potential. This procedure can be
extended in the case of lattices with higher dimensionality, to
show that they are also isentropic.

Let us first consider the case where the coupling coeffi-
cients along the two directions are identical κ1(z) = κ2(z) =
κ (z) and smoothly change from κ (0) = κ to κ (z f ) = κ ′ =
aκ , where z f is the simulation distance. Since the energies
scale linearly with κ (z) we have (ε(l ) )′ = aε(l ), and utilizing
the conservation of power N = N ′, we find that T ′ = aT
and μ′ = aμ. During this process the pressure changes to
P′ = aP. As for the energy, integrating dU = dW = R1dκ1 +
R2dκ2 = Udκ/κ , we obtain that U ′ = aU . This latter equa-
tion is in agreement with Eq. (25), which was derived using
the Hamiltonian structure of the lattice. In Figs. 1(a)–1(c) we
see numerical results in the case where κ1(z) = κ2(z) = κ (z)
with κ (0) = 1 and κ (z f ) = 2. The power modal occupancies
shown in Figs. 1(a) and 1(b) are in excellent agreement with
the numerical results before and after the process. Finally in
Fig. 1(c) we see the variation of the internal energy of the
array as a function of the propagation distance.

In the more general case where both coupling coefficients
vary independently during propagation, we have shown that
under thermal equilibrium Eq. (26), that relates the energy to
the coupling coefficients, is satisfied. In our simulations, (i)
the system is allowed to reach thermal equilibrium before the

process takes place, (ii) during the process the variations of
the coupling coefficients are slow enough so that the system
remains close to thermal equilibrium. An example is shown in
Figs. 1(d)–1(f), where κ1 increases during propagation while
κ2 remains constant. The comparison between theory and nu-
merics is very good both in the power distributions, as well as
in the comparison of Eq. (26) with the variation in the values
of the internal energy.

We also examine the process during which the number of
waveguides increases from M to M ′ = aM (a > 1). Such a
process can be considered as the equivalent of Joule expan-
sion (or free expansion) for photonic lattices. We separate the
energy levels into cells Ci and follow an analysis similar to
the one utilized in Sec. IV B. In particular, since both N and
U are conserved, we find that, after the process takes place,
the multiplicity of energy levels in cell Ci increases by a factor
of a or g′

i = agi. Following the calculations it can be shown
that the chemical potential μ remains invariant, while both
the temperature T ′ = T/a and the average power per mode
n′

i = ni/a in cell Ci decrease by a factor of a. The q potential
after the process becomes

q′ =
∑

i

g′
i log n′

i = aq − aM log a,

from which we can compute the entropy S′ = aS − aM log a
and the pressure P′M ′ = PM − MT log a. The first law of
thermodynamics leads to the differential T dS = PdM while
the Gibbs-Duhem equation results to SdT = MdP. Note that
for such processes T S − MP = U − μN = T M is a constant.

043517-6



FUNDAMENTAL ENTROPIC PROCESSES IN THE THEORY … PHYSICAL REVIEW A 103, 043517 (2021)

Thus, as the number of waveguides increases, the temperature
decreases in a fashion that is inversely proportional to the
number of waveguides T ∝ 1/M.

In Fig. 2 we depict numerical results for such Joule-type
expansions. In the first simulation shown in Figs. 2(a)–2(c)
the number of modes along each direction mutually increases
during propagation so that M1(z) = M2(z) using a sigmoid
tanh function with rounding to the closest integer. In Figs. 2(a)
and 2(b), we compare the theoretical with the numerical power
modal occupancies before and after the process. In Fig. 2(c),
we note there is a small amount of decrease in the internal en-
ergy during the process. This happens because as the number
of modes increases, the power is spread into more waveguides,
which reduces the intensity of light and thus the absolute value
of the nonlinear term of the Hamiltonian. In Figs. 2(d)–2(f)
we see similar results, but now the number of waveguides
increases only along the first direction.

As already mentioned, such a process is nonreversible. If,
during propagation, we decrease the number of waveguides
(a < 1), then both the power and the energy stored in these
waveguides is lost. Thus the results obtained in this section
hold only in the case of expansion.

V. CONCLUSIONS

In conclusion, we have worked along the direction of gen-
erating a complete thermodynamic theory of nonlinear optics.
In particular, we have introduced the optical analogs of the
first law of thermodynamics, the work done to the system,
stress and strain terms to account for anisotropy, analyzed the
role of the system parameters, and examined different types
of processes (isentropic and Joule-type expansions). Besides
photonic lattices, which is the particular system where we

apply our theory, our results can also be utilized in a variety of
multimoded optical system, such as optical fibers and coupled
microresonators, as well as in different physical settings such
as Bose-Einstein condensates.

APPENDIX A: RELATIONS BETWEEN
THE THERMODYNAMIC PARAMETERS

IN WAVEGUIDE ARRAYS

In our simulations in waveguide arrays we focus on
the case of negative internal energies U that give rise to
positive temperatures T . Using coupled mode theory for two-
dimensional rectangular waveguide arrays, the eigenmodes |l〉
and eigenvalues ε(l ) are given by Eqs. (20) and (21), where Mj

is the length of the lattice and κ j is the coupling coefficient
in the jth direction, M = M1M2 is the number of supported
modes, and l = (l1, l2). We note that the eigenvalues have the
symmetry,

ε(M1−l1+1,M2−l2+1) = −ε(l1,l2 ), (A1)

or, using vector notation ε(Mv−l+c) = −ε(l ), where Mv =
(M1, M2), and c = (1, 1). Furthermore, the energies lie in the
range [ε(1,1), ε(M1,M2 )] with

−2(κ1 + κ2) < ε(1,1) < 0 < ε(M1,M2 ) < 2(κ1 + κ2).

The eigenenergies have the limiting values ε(1,1) →
−2(κ1 + κ2) and ε(M1,M2 ) → 2(κ1 + κ2) when both M1

and M2 go to infinity. Since the power occupation numbers

n(l ) = T

ε(l ) − μ
(A2)

are all positive, selecting a positive temperature T > 0 result
to μ < ε(1,1) < 0. Thus, we note that lower energies have
higher occupation numbers. The two conserved quantities are

TABLE II. Temperature T , chemical potential μ, and entropy per mode number S/M as a function of the number of waveguides along
each direction M1, M2 for two-dimensional rectangular waveguide arrays with κ1 = κ2 = 1. The power per mode number and energy per
mode number are N/M = 1/400, U/M = −3/800 in columns 3–5, N/M = 1/50, U/M = −3/800 in columns 6–8, N/M = 1/400, U/M =
−1/1600 in columns 9–11, and N/M = 1/50, U/M = −1/1600 in columns 12–14.

κ1 = κ2 = 1 N
M = 1

400 , U
M = − 3

800
N
M = 1

50 , U
M = − 3

800
N
M = 1

400 , U
M = − 1

1600
N
M = 1

50 , U
M = − 1

1600

M1 M2 T μ S/M T μ S/M T μ S/M T μ S/M

100 1 0.0014 −2.08 −5.827 0.209 −10.65 −2.921 0.019 −8.05 −5.007 0.401 −35.67 −3.488

50 2 0.0045 −3.31 −5.379 0.316 −16.00 −2.918 0.030 −12.12 −5.002 0.599 −53.34 −3.488

25 4 0.0061 −3.92 −5.306 0.366 −18.47 −2.917 0.034 −13.99 −5.001 0.693 −61.63 −3.488

20 5 0.0063 −4.01 −5.297 0.374 −18.90 −2.917 0.035 −14.31 −5.000 0.709 −63.07 −3.488

10 10 0.0065 −4.10 −5.288 0.385 −19.44 −2.917 0.036 −14.72 −5.000 0.729 −64.87 −3.488

400 1 0.0015 −2.08 −5.820 0.211 −10.73 −2.921 0.020 −8.11 −5.007 0.404 −35.94 −3.488

200 2 0.0046 −3.33 −5.375 0.319 −16.15 −2.918 0.030 −12.24 −5.002 0.606 −53.88 −3.488

100 4 0.0061 −3.95 −5.301 0.372 −18.79 −2.917 0.035 −14.23 −5.000 0.705 −62.71 −3.488

50 8 0.0066 −4.16 −5.281 0.397 −20.02 −2.917 0.037 −15.15 −5.000 0.751 −66.85 −3.488

25 16 0.0068 −4.22 −5.274 0.406 −20.48 −2.917 0.038 −15.49 −5.000 0.769 −68.38 −3.488

20 20 0.0068 −4.22 −5.274 0.406 −20.50 −2.917 0.038 −15.51 −5.000 0.770 −68.47 −3.488

1600 1 0.0015 −2.08 −5.819 0.211 −10.75 −2.921 0.020 −8.12 −5.007 0.404 −36.01 −3.488

800 2 0.0046 −3.33 −5.375 0.320 −16.19 −2.918 0.030 −12.27 −5.002 0.607 −54.02 −3.488

400 4 0.0062 −3.96 −5.300 0.374 −18.87 −2.917 0.035 −14.29 −5.000 0.708 −62.98 −3.488

200 8 0.0067 −4.17 −5.279 0.400 −20.18 −2.917 0.038 −15.27 −5.000 0.758 −67.39 −3.488

100 16 0.0069 −4.24 −5.271 0.412 −20.80 −2.917 0.039 −15.73 −5.000 0.781 −69.46 −3.488

50 32 0.0069 −4.27 −5.268 0.417 −21.02 −2.917 0.039 −15.90 −4.999 0.789 −70.22 −3.488

40 40 0.0069 −4.27 −5.268 0.417 −21.03 −2.917 0.039 −15.91 −4.999 0.790 −70.27 −3.488
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TABLE III. Temperature T , chemical potential μ, and entropy per mode number S/M as a function of the number of waveguides along
each direction M1, M2 for two-dimensional rectangular waveguide arrays with κ1 = 1, κ2 = 2. The power per mode number and energy per
mode number are N/M = 1/400, U/M = −3/800 in columns 3–5, N/M = 1/50, U/M = −3/800, in columns 6–8, N/M = 1/400, U/M =
−1/1600 in columns 9–11, and N/M = 1/50, U/M = −1/1600 in columns 12–14.

κ1 = 1, κ2 = 2 N
M = 1

400 , U
M = − 3

800
N
M = 1

50 , U
M = − 3

800
N
M = 1

400 , U
M = − 1

1600
N
M = 1

50 , U
M = − 1

1600

M1 M2 T μ S/M T μ S/M T μ S/M T μ S/M

400 1 0.001 −2.08 −5.820 0.211 −10.73 −2.921 0.020 −8.11 −5.007 0.404 −35.94 −3.488

200 2 0.009 −5.25 −5.184 0.639 −32.12 −2.915 0.060 −24.19 −4.997 1.213 −107.87 −3.488

100 4 0.014 −6.91 −5.131 0.852 −42.76 −2.914 0.080 −32.19 −4.995 1.616 −143.70 −3.488

50 8 0.015 −7.53 −5.116 0.956 −47.98 −2.914 0.090 −36.10 −4.995 1.814 −161.34 −3.488

40 10 0.015 −7.64 −5.114 0.976 −48.99 −2.914 0.092 −36.86 −4.995 1.853 −164.76 −3.488

20 20 0.016 −7.83 −5.110 1.013 −50.85 −2.914 0.095 −38.25 −4.995 1.924 −171.06 −3.488

10 40 0.016 −7.86 −5.109 1.024 −51.38 −2.914 0.096 −38.64 −4.995 1.944 −172.85 −3.488

5 80 0.016 −7.74 −5.111 1.013 −50.84 −2.914 0.095 −38.23 −4.995 1.924 −171.05 −3.488

4 100 0.015 −7.66 −5.112 1.004 −50.41 −2.914 0.094 −37.91 −4.995 1.907 −169.61 −3.488

2 200 0.014 −7.17 −5.120 0.955 −47.94 −2.914 0.089 −36.04 −4.995 1.814 −161.32 −3.488

1 400 0.011 −6.07 −5.143 0.849 −42.65 −2.914 0.079 −32.05 −4.995 1.616 −143.67 −3.488

1600 1 0.001 −2.08 −5.819 0.211 −10.75 −2.921 0.020 −8.12 −5.007 0.404 −36.01 −3.488

800 2 0.009 −5.26 −5.184 0.640 −32.16 −2.915 0.060 −24.22 −4.997 1.214 −108.01 −3.488

320 5 0.014 −7.19 −5.124 0.896 −44.97 −2.914 0.084 −33.84 −4.995 1.700 −151.15 −3.488

160 10 0.015 −7.67 −5.113 0.980 −49.19 −2.914 0.092 −37.01 −4.995 1.860 −165.43 −3.488

80 20 0.016 −7.89 −5.109 1.021 −51.26 −2.914 0.096 −38.55 −4.995 1.939 −172.41 −3.488

40 40 0.016 −7.98 −5.107 1.040 −52.19 −2.914 0.097 −39.25 −4.995 1.974 −175.55 −3.488

20 80 0.016 −8.00 −5.107 1.045 −52.45 −2.914 0.098 −39.44 −4.995 1.984 −176.45 −3.488

10 160 0.016 −7.94 −5.107 1.040 −52.18 −2.914 0.097 −39.24 −4.995 1.974 −175.55 −3.488

5 320 0.016 −7.78 −5.110 1.021 −51.24 −2.914 0.096 −38.53 −4.995 1.939 −172.40 −3.488

2 800 0.014 −7.19 −5.120 0.958 −48.10 −2.914 0.090 −36.16 −4.995 1.820 −161.86 −3.488

1 1600 0.011 −6.08 −5.143 0.851 −42.73 −2.914 0.080 −32.11 −4.995 1.619 −143.94 −3.488

the total or internal energy [Eq. (2)] and the total power
[Eq. (1)]. Utilizing Eq. (A1) can express the internal energy
as

U =
∑

l−

ε(l )
[
n(l ) − n(Mv−l+c)

]
, (A3)

where the summation is over the indices with negative ener-
gies l− = {l : ε(l ) < 0}. Since the lower energies have higher
occupation numbers and ε(l ) < 0 < ε(Mv−l+c) we find that
n(l ) > n(M−l+1), and thus the internal energy is negative
U < 0.

We consider a system in thermal equilibrium with T > 0,
μ < 0, U < 0, power N , and power occupation numbers n(l ).
We would like to find the thermodynamic parameters of a
system with the same energy levels and occupation numbers
that satisfy

(n(l ) )′ = n(Mv−l+c). (A4)

Starting from Eq. (A2) and utilizing Eqs. (A1) and (A4) we
conclude that

(n(l ) )′ = T ′

ε(l ) − μ′ ,

where T ′ = −T and μ′ = −μ. In addition, from Eq. (2) we
obtain U ′ = −U . Both the q potential q = ∑M

l=1 log n(l ) and
the entropy S = q + M remain invariant (q′ = q and S′ = S)
while the pressure P = qM/T changes sign (P′ = −P). Thus,
for the system with occupation numbers given by Eq. (A4) we
have U ′ = −U > 0, T ′ = −T < 0, μ′ = −μ> 0, and P′ = −P.

The relation between the signs of T and U is also obvious
from the definition of the temperature 1/T = (∂S/∂U )M,N,κ ,
by noting that the number of microstates (and thus the en-
tropy) is maximized in the middle of the band where U = 0.

The results presented here are not limited to rectangular
arrangements of waveguides but can be applied to photonic
lattices with different geometries, or even different classes
of multimoded optical systems, as long as the energy spec-
trum satisfies a bijective relation between opposite energies
(ε and −ε).

APPENDIX B: EXTENSIVE CHARACTER
OF THE ENTROPY: NUMERICAL RESULTS

In two-dimensional waveguide arrays, the entropy depends
on the lattice dimensions (M1 and M2) rather than the number
of modes M = M1M2. A question that naturally arises is, up to
what degree, we can consider the entropy as an extensive func-
tion of U , M, N , or S(λU, λM, λN ) = λS(U, M, N ). Here,
we are going to examine numerically the variations in the
entropy per number of modes SM = S/M, for different values
of (M1, M2) and different coupling coefficients (κ1, κ2). We
restrict ourselves to T > 0 (or equivalently U < 0). These
results can be trivially generalized for negative temperatures
(or positive internal energies) by applying the transformations
of Appendix A. The numerical results presented in this Ap-
pendix are obtained by numerically solving Eqs. (5) and (6),
where U and N are related through Eq. (12), and the eigenval-
ues are given by Eq. (21). The process is described in [14].
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TABLE IV. Temperature T , chemical potential μ, and entropy per mode number S/M as a function of the number of waveguides along
each direction M1, M2 for two-dimensional rectangular waveguide arrays with κ1 = 1, κ2 = 4. The power per mode number and energy per
mode number are N/M = 1/400, U/M = −3/800 in columns 3–5, N/M = 1/50, U/M = −3/800, in columns 6–8, N/M = 1/400, U/M =
−1/1600 in columns 9–11, and N/M = 1/50, U/M = −1/1600 in columns 12–14.

κ1 = 1, κ2 = 4 N
M = 1

400 , U
M = − 3

800
N
M = 1

50 , U
M = − 3

800
N
M = 1

400 , U
M = − 1

1600
N
M = 1

50 , U
M = − 1

1600

M1 M2 T μ S/M T μ S/M T μ S/M T μ S/M

400 1 0.001 −2.08 −5.820 0.211 −10.73 −2.921 0.020 −8.11 −5.007 0.404 −35.94 −3.488

200 2 0.028 −12.62 −5.056 1.917 −96.02 −2.913 0.180 −72.06 −4.993 3.643 −323.84 −3.487

100 4 0.042 −18.47 −5.035 2.770 −138.70 −2.913 0.260 −104.11 −4.993 5.261 −467.68 −3.487

50 8 0.049 −21.08 −5.029 3.195 −159.92 −2.913 0.299 −120.02 −4.993 6.067 −539.32 −3.487

40 10 0.050 −21.59 −5.028 3.279 −164.13 −2.913 0.307 −123.18 −4.992 6.227 −553.54 −3.487

20 20 0.053 −22.58 −5.027 3.444 −172.40 −2.913 0.323 −129.37 −4.992 6.541 −581.44 −3.487

10 40 0.054 −23.01 −5.026 3.519 −176.12 −2.913 0.330 −132.17 −4.992 6.682 −594.04 −3.487

5 80 0.054 −23.11 −5.026 3.540 −177.19 −2.913 0.332 −132.96 −4.992 6.723 −597.64 −3.487

4 100 0.054 −23.08 −5.026 3.538 −177.08 −2.913 0.332 −132.88 −4.992 6.719 −597.28 −3.487

2 200 0.053 −22.79 −5.026 3.501 −175.26 −2.913 0.328 −131.51 −4.992 6.650 −591.15 −3.487

1 400 0.051 −22.03 −5.027 3.403 −170.33 −2.913 0.319 −127.81 −4.992 6.463 −574.59 −3.487

1600 1 0.001 −2.08 −5.819 0.211 −10.75 −2.921 0.020 −8.12 −5.007 0.404 −36.01 −3.488

800 2 0.028 −12.63 −5.056 1.917 −96.06 −2.913 0.180 −72.09 −4.993 3.644 −323.98 −3.487

320 5 0.045 −19.54 −5.033 2.942 −147.31 −2.913 0.276 −110.56 −4.993 5.588 −496.73 −3.487

160 10 0.050 −21.62 −5.028 3.283 −164.33 −2.913 0.308 −123.33 −4.992 6.234 −554.21 −3.487

80 20 0.053 −22.63 −5.027 3.452 −172.80 −2.913 0.324 −129.67 −4.992 6.556 −582.79 −3.487

40 40 0.054 −23.13 −5.026 3.535 −176.93 −2.913 0.331 −132.77 −4.992 6.713 −596.74 −3.487

20 80 0.055 −23.34 −5.025 3.572 −178.79 −2.913 0.335 −134.17 −4.992 6.784 −603.04 −3.487

10 160 0.055 −23.39 −5.025 3.583 −179.32 −2.913 0.336 −134.56 −4.992 6.804 −604.84 −3.487

5 320 0.055 −23.30 −5.025 3.572 −178.79 −2.913 0.335 −134.16 −4.992 6.784 −603.04 −3.487

2 800 0.053 −22.86 −5.026 3.514 −175.90 −2.913 0.329 −131.99 −4.992 6.674 −593.31 −3.487

1 1600 0.051 −22.07 −5.027 3.409 −170.65 −2.913 0.319 −128.05 −4.992 6.476 −575.67 −3.487

In the one-dimensional case (M2 = 1, M = M1), the nu-
merical results shown in Table I confirm our theoretical
predictions of Sec. IV B that such lattices are extensive. Even
in the case of very small M, such as M = 5 or even M = 2
(where thermodynamic theory does not apply), only very
small deviations in the entropy per mode number are ob-
served.

In Table II the coupling coefficients are selected to be
the same in both directions κ1 = κ2 = 1. The four different
cases shown in the columns correspond to the four different
combinations of low or high power with low or high energy.
In the rows we vary M1 and M2 while keeping their product
M = M1M2 constant and then follow the same procedure for
different values of M. We start to observe small deviations in
SM as we approach the one-dimensional limit. The low-power
and high-energy case exhibits the largest fluctuations. How-
ever, as we increase the power or decrease the energy these
deviations become minimal even close to the one-dimensional
limit. We select the reference value for the entropy from the
simulation with the largest number of modes with M1 = M2,
or Sref = S(

√
Mmax,

√
Mmax). We define the percentage varia-

tion in the entropy from the reference value as

Var(M1, M2) = 100
|S(M1, M2) − Sref |

|Sref | .

For example, in Table II the reference value is S(40, 40) and,
in the low-power and high-energy case Var(400, 4) = 0.6%,
in the high-power high-energy case Var(400, 4) = 0.0179%,
in the low-power low-energy case Var(400, 4) = 0.0185%,

and finally in the high-power high-energy case Var(400, 4) =
0.0013%. Deviations from extensivity give rise to stress and
strain corrections.

In Tables III and IV, we present results for anisotropic
coupling coefficients κ1 
= κ2. Specifically, in Table III κ1 = 1
and κ2 = 2, while in Table IV κ1 = 1 and κ2 = 4. The selected
values of the power and the energy are the same as in Table II.
Increasing the coupling coefficient along one direction pro-
motes coupling, which reflects to increased temperatures. One
might expect that increasing the coupling anisotropy is going
to result to larger deviations from the extensive character
of the entropy. However, we do not observe any noticeable
changes in S/M as we vary M1 and M2 in comparison to
Table II.

In Table V we select κ1 = 1 and κ2 = 0.8 while the rest of
the parameters remain the same. We observe more noticeable
changes in SM , especially close to the 1D limit. However,
these coupling coefficients lead to temperatures very close to
zero (condensation limit) especially in the low power and high
energy case and require special treatment.

APPENDIX C: CONSERVATION LAWS OF THE DISCRETE
NONLINEAR SCHRÖDINGER EQUATION WITH

z-DEPENDENT COUPLING COEFFICIENTS

We consider the discrete nonlinear Schrödinger equa-
tion with two transverse directions, z-dependent coupling
coefficients, and cubic nonlinearity,

iu̇m + κ1(z)
1um + κ2(z)
2um + γ |um|2um = 0, (C1)
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TABLE V. Temperature T , chemical potential μ, and entropy per mode number S/M as a function of the number of waveguides along
each direction M1, M2 for two-dimensional rectangular waveguide arrays with κ1 = 1, κ2 = 0.8. The power per mode number and energy per
mode number are N/M = 1/400, U/M = −3/800 in columns 3–5, N/M = 1/50, U/M = −3/800, in columns 6–8, N/M = 1/400, U/M =
−1/1600 in columns 9–11, and N/M = 1/50, U/M = −1/1600 in columns 12–14.

κ1 = 1, κ2 = 0.8 N
M = 1

400 , U
M = − 3

800
N
M = 1

50 , U
M = − 3

800
N
M = 1

400 , U
M = − 1

1600
N
M = 1

50 , U
M = − 1

1600

M1 M2 T μ S/M T μ S/M T μ S/M T μ S/M

400 1 0.001 −2.08 −5.820 0.211 −10.73 −2.921 0.020 −8.11 −5.007 0.404 −35.94 −3.488

200 2 0.004 −3.03 −5.438 0.281 −14.22 −2.919 0.026 −10.77 −5.003 0.533 −47.40 −3.488

100 4 0.005 −3.51 −5.363 0.314 −15.90 −2.918 0.030 −12.05 −5.002 0.595 −52.98 −3.488

50 8 0.005 −3.67 −5.342 0.329 −16.65 −2.918 0.031 −12.62 −5.002 0.624 −55.51 −3.488

40 10 0.005 −3.69 −5.339 0.332 −16.77 −2.918 0.031 −12.71 −5.002 0.628 −55.90 −3.488

20 20 0.006 −3.71 −5.337 0.333 −16.85 −2.918 0.031 −12.77 −5.001 0.631 −56.16 −3.488

10 40 0.005 −3.67 −5.343 0.326 −16.49 −2.918 0.031 −12.50 −5.002 0.617 −54.93 −3.488

5 80 0.005 −3.53 −5.365 0.306 −15.51 −2.918 0.029 −11.77 −5.002 0.580 −51.62 −3.488

4 100 0.005 −3.43 −5.380 0.296 −14.99 −2.918 0.028 −11.38 −5.003 0.561 −49.88 −3.488

2 200 0.003 −2.78 −5.510 0.243 −12.34 −2.920 0.023 −9.38 −5.005 0.460 −40.99 −3.488

1 400 0.000 −1.60 −7.108 0.134 −6.90 −2.926 0.012 −5.23 −5.016 0.258 −23.01 −3.489

1600 1 0.001 −2.08 −5.819 0.211 −10.75 −2.921 0.020 −8.12 −5.007 0.404 −36.01 −3.488

800 2 0.004 −3.04 −5.437 0.281 −14.26 −2.919 0.026 −10.80 −5.003 0.534 −47.53 −3.488

320 5 0.005 −3.59 −5.352 0.323 −16.32 −2.918 0.030 −12.37 −5.002 0.611 −54.39 −3.488

160 10 0.006 −3.70 −5.336 0.336 −16.97 −2.918 0.032 −12.86 −5.001 0.636 −56.58 −3.488

80 20 0.006 −3.74 −5.330 0.341 −17.25 −2.918 0.032 −13.07 −5.001 0.646 −57.51 −3.488

40 40 0.006 −3.75 −5.329 0.342 −17.28 −2.918 0.032 −13.10 −5.001 0.648 −57.63 −3.488

20 80 0.006 −3.73 −5.332 0.338 −17.10 −2.918 0.032 −12.96 −5.001 0.641 −57.02 −3.488

10 160 0.005 −3.69 −5.341 0.329 −16.62 −2.918 0.031 −12.60 −5.002 0.622 −55.37 −3.488

5 320 0.005 −3.54 −5.363 0.308 −15.57 −2.918 0.029 −11.82 −5.002 0.583 −51.84 −3.488

2 800 0.003 −2.78 −5.509 0.244 −12.36 −2.920 0.023 −9.40 −5.005 0.461 −41.07 −3.488

1 1600 0.000 −1.60 −7.104 0.135 −6.92 −2.926 0.012 −5.24 −5.016 0.259 −23.05 −3.489

where m = (m1, m2), m1 = 1, . . . , M1, and m2 = 1, . . . , M2.
Multiplying with u∗

m we obtain

iu∗
mu̇m + κ1(z)u∗

m
1um + κ2(z)u∗
m
2um + γ |um|4 = 0.

Complex conjugating the above equation, assuming that the
coupling coefficients are real, and subtracting the two equa-
tions we obtain

i
d

dz
|um|2 + κ1(z)(u∗

m
1um − um
1u∗
m)

+ κ2(z)(u∗
m
2um − um
2u∗

m) = 0.

Taking the sum over m we get

i
d

dz
N +

∑
m

κ1(z)(u∗
m
1um − um
1u∗

m)

+
∑

m

κ2(z)(u∗
m
2um − um
2u∗

m) = 0,

where

N =
∑

m

|um|2

is the total power. For zero boundary conditions uM1+1,m2 =
u0,m2 = um1,M2+1 = um1,0 = 0 we have∑

m

u∗
m
 jum =

∑
m

um
 ju
∗
m, j = 1, 2,

and thus Ṅ = 0 meaning that N remains constant.

To find how the Hamiltonian varies when the coupling
coefficients are z dependent, we multiply Eq. (C1) with u̇∗

m
and thus

i|u̇m|2 + u̇∗
mκ1(z)
1um + u̇∗

mκ2(z)
2um

+ γ |um|2umu̇∗
m = 0.

Complex conjugating the above equation and adding the two
expressions we obtain

u̇∗
mκ1(z)
1um + u̇mκ1(z)
1u∗

m

+ u̇∗
mκ2(z)
2um + u̇mκ2(z)
2u∗

m + γ

2

d|um|4
dz

= 0.

Summing over m leads to

d

dz

∑
m

[
κ1u∗

m
1um + κ2u∗
m
2um + γ

2
|um|4

]

=
∑

m

[κ̇1
1umu∗
m + κ̇2
2umu∗

m].

Defining by

Rj =
∑

m

u∗
m
 jum, j = 1, 2, HNL = γ

2

∑
m

|um|4,

and

H = R1κ1 + R2κ2 + HNL, (C2)
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we derive

dH

dz
= dκ1

dz
H1 + dκ2

dz
H2.

Multiplying with dz we find that the variations to the value
of the Hamiltonian are proportional to the variations in the

coupling coefficients,

dH = R1dκ1 + R2dκ2. (C3)

By taking the differential of Eq. (C2) and subtracting Eq. (C3)
we derive

κ1dR1 + κ2dR2 = 0. (C4)
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