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We propose a class of spectral singularities that are sensitive to the direction of excitation and arise in nonlinear
systems with broken parity symmetry. These spectral singularities are sensitive to the direction of the incident
beam and result in diverging transmission and reflection for the left (right) incident, while the transmission and
reflection of the right (left) side of the system remain finite. For the pedagogical reason, first we review the
scattering formalism in nonlinear systems using an abstract δ-function model. Then, using a parity symmetry
broken nonlinear system consisting of two δ functions, one linear and the other nonlinear, we prove the existence
of our proposed spectral singularities. Finally, we use an experimentally feasible realistic model based on coupled
disk resonators to demonstrate the spectral singularity with directional sensitivity (SSDS). Our proposed SSDS
might have applications in the design of nonlinear sensors and might provide a solution for the hole-burning
problem in pumped laser ring resonators.
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I. INTRODUCTION

While the study of complex functions has a long history,
in recent years it has attracted more attention. This is due to
their mathematically peculiar features and their applications
in optical systems. One of the unique features of complex
potentials, for instance, is the existence of different types
of singularities. Exceptional points (EPs) are among such
singularities with topological characteristics. EPs arise when
the Hamiltonian of the corresponding system becomes de-
fective and the eigenvalues and their associated eigenstates
coalesce. While direct physical identification of the excep-
tional points is difficult, their strong influence on the dynamics
can be observed [1–4]. Exceptional point singularities en-
able stop lights [5], real-entire flat bands [6], unidirectional
invisibility [7], topological energy transfer [8], enhanced sen-
sitivity [9,10], and robust zero mode at will [11], to name
a few.

Another type of singularity is spectral singularity related
to the completeness of the continuous spectrum and that can
satisfy outgoing boundary conditions [12]. In other words,
spectral singularities do not correspond to square-integrable
eigenfunctions. Within the scattering matrix formalism, such
singularities identify the lasing threshold of cavities with
gain [13,14], where the cavity gain corresponds to a neg-
ative imaginary part of the refractive index. The notion of
such spectral singularities can be extended to the semi-infinite
lattices [15], nonlinear potentials [16], and nonreciprocal cav-
ities in the presence of magnetic elements [17]. In the latest
one, the presence of a gyrotropic element together with the
broken inversion symmetry in a 1D heterostructure results
in asymmetric stationary inflection points where the group
velocity of the wave vector in one direction becomes zero,
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while in the opposite direction group velocity finds a finite
and nonzero value. The asymmetric inflection points are the
first modes that reach the lasing threshold and thus result in
a robust unidirectional lasing. Unidirectional lasing modes
have been of interest in recent years due to their potential
applications. Another approach to obtain directional emission
is based on the strong asymmetric backscattering in the vicin-
ity of an exceptional point [18]. Nonlinear coupling between
the clockwise and counterclockwise propagating waves in
an ultrahigh-Q whispering-gallery microresonator can pro-
duce a chiral emission [19]. Topological insulator lattices can
generate directional lasing at the edge of the lattice in the
presence of a gain mechanism [20]. Another type of spec-
tral singularities with unidirectional response can be obtained
from the interplay of parity-time symmetry and Fano reso-
nances [21]. In such spectral singularities, without breaking
the reciprocity, one is able to obtain a simultaneous unidi-
rectional lasing and unidirectional reflectionless mode. For
such a mode, one side reflection tends to infinity, the other
side reflection becomes zero, and the transmission coefficient
remains finite. These singularities emerge from the resonance
trapping and delay time associated with the reflected signal
residing in the gain or loss part of the parity-time symmetric
cavity [21].

In this paper, we introduce a class of spectral singularities
with sensitivity to the direction of excitation. Such spec-
tral singularities do not generate directional lasing; however,
their source of emission comes from a specific direction.
In one dimension, such spectral singularities pick up fluc-
tuation coming from one direction. Thus, lasing emission
is activated by the fluctuation from one side. Our proposed
spectral singularities appear in one-dimensional (1D) non-
linear systems with broken parity and can be expanded to
multichannel nonlinear systems with broken parity symmetry
in each channel. While we are interested in mathemati-
cally proving the existence of such spectral singularities,
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one might be able to find their application in directional
sensing and suppression of spatial hole burning in ring
lasers [22].

This article is structured as follows. In Sec. II, we will
review the scattering formalism for an abstract model, namely,
a nonlinear δ function, and calculate the spectral singularities
associated with it. In Sec. III, we will construct a system com-
posed of a linear and a nonlinear δ function with broken parity
symmetry. We construct the scattering matrix and calculate
the spectral singularities that appear in the system. Finally,
in Sec. IV, we discuss the appearance of spectral singularity
with directional sensitivity (SSDS) in a coupled disk resonator
system composed of two coupled resonators, one linear and
the other nonlinear, that are coupled to a 1D transmission line.
We will draw our conclusion in Sec. V.

II. SCATTERING FORMALISM FOR A NONLINEAR
POTENTIAL AND ITS SPECTRAL SINGULARITIES

In this section, we will briefly review the basic method for
treating the scattering properties of a nonlinear δ-function po-
tential and constructing the scattering matrix in a 1D nonlinear
problem. Furthermore, we connect the scattering matrix S to
the spectral singularities. Finally, in this section, we calculate
the spectral singularities associated with our setup. We show
that the spectral singularities in a single nonlinear δ-function
potential are reciprocal. In other words, at the spectral singu-
larity, all the reflection and transmission coefficients tend to
infinity with the same slope. This occurs because the system
preserves the parity symmetry even when it has a nonlinear
component.

Let us consider a system in which its permittivity is given
by ε(x) = n0 + [n + χ |E (x)|2]δ(x), where δ(x) is the Dirac
delta function and E is the electric field. In this permittiv-
ity, n0 is the background permittivity (we assume it is equal
to one), n = nr + ini, and χ = χr + iχi, where nr,i ∈ � and
χi,r ∈ � are the linear and nonlinear complex perturbations to
the background permittivity. Such permittivity can be realized
with very thin layers of coated materials. In this arrangement,
a time-harmonic electric field of frequency ω obeys the 1D
Helmholtz equation,

d2

dx2
E (x) + ω2

c2
ε(x)E (x) = 0. (1)

In Eq. (1), c is the speed of light in the vacuum. On the
left and right side of the δ-function potential, Eq. (1) admits
the solution E−(x) = E−

f exp(ikx) + E−
b exp(−ikx) for x � 0

and E+(x) = E+
f exp(ikx) + E+

b exp(−ikx) for x � 0, where

the wave vector k =
√

n0ω

c .
Although the problem at hand is nonlinear, one can still

use the S-matrix formalism to treat the scattering properties
of it. More precisely, the amplitudes of the ingoing and outgo-
ing propagating waves outside the scattering domain, namely,
(E−

f , E+
b ) and (E−

b , E+
f ), respectively, are related through a

nonlinear 2 × 2 scattering matrix S,

(
E−

b
E+

f

)
= S

(
E−

f
E+

b

)
. (2)

In the above formulation, the elements of the scattering matrix
are related to the transmission and reflection amplitudes for
the left and right incidents, namely,

S =
(

S11 S12

S21 S22

)
=

(
rl tr
tl rr

)
. (3)

In Eq. (3), rl (r) and tl (r) are the reflection and transmission
amplitude for the left l (right r) incident waves, respectively.
In nonreciprocal structures, the elements of the S matrix in
Eq. (3) might be different from each other. In linear systems
and in the absence of the magnetic field or spatiotemporal
modulation, reciprocity states that S12 = S21 [23].

In the reciprocal systems and at the real frequencies, spec-
tral singularities have been identified as the poles of the
scattering matrix which are equivalent to the blowup of the
transmission and reflection amplitudes. This defines the lasing
points in which for no in-going field there is an outgoing field
solution in Eq. (2). Generally, for an open scattering system
with no embedded gain medium, the poles of the scattering
matrix occur at complex frequencies with a negative imag-
inary part. By introducing gain in the system, the absolute
value of the imaginary part of such frequencies decreases
until reaching the lasing threshold where one of the poles
reaches the real axes. The real part of the frequency of this
pole describes the frequency of the first lasing mode. In some
systems, such as ring lasers, several modes can reach the
lasing threshold at the same time, the so-called multimode
lasing, which is an undesired phenomenon as it distributes
gain power between several modes and reduces the lasing
power at the desired mode.

Recently, new spectral singularities have been introduced
which result in a unidirectional lasing mode. Specifically, in
the presence of reciprocity, at these spectral singularities only
one reflection, namely, one of the diagonal terms of the S
matrix in Eq. (3), tends to infinity and the other elements of
the S matrix remain finite [21]. In the nonreciprocal system
and in the presence of a magnetic field, it has been shown
that such spectral singularities result in the infinite transmis-
sion and reflection in one side of the structure. In this case,
only one row of the S matrix in Eq. (3) tends to infinity,
while the other row remains finite, which is equivalent to
having either left transmission coefficient Tl = |tl |2 → ∞ and
right reflection coefficient Rr = |rr |2 → ∞ or right transmis-
sion coefficient Tr = |tr |2 → ∞ and left reflection coefficient
Rl = |rl |2 → ∞ [17].

The spectral singularities that we are looking for here
have different characteristics from the aforementioned ones or
the conventional spectral singularities[24,25]. Specifically,
while at these spectral singularities only specific elements of
the scattering matrix in Eq. (3) tend to infinity, they do not
cause any directional lasing. At these singularities, only one
reflection coefficient Rl (r) and one transmission coefficient
Tl (r) tend to infinity, while the other reflection coefficient
Rr(l ) and transmission coefficient Tr(l ) remain finite. In other
words, one column of the scattering matrix S in Eq. (3) tends
to infinity, while the other column remains finite. Thus, one
can claim that these spectral singularities are sensitive to the
direction of incident fluctuations. In Sec. III, we show that a
parity broken nonlinear scattering system enables us to realize
such spectral singularities with directional sensitivity (SSDS).
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Let us go back to the parity symmetric single nonlinear δ-
function problem. The transmission and reflection amplitudes
for left and right incident waves can be obtained from the
boundary conditions

E+
b = 0 and E−

f = 0, (4)

respectively, and are defined as

tl ≡ E+
f

E−
f
, rl ≡ E−

b

E−
f
,

tr ≡ E−
b

E+
b
, rr ≡ E+

f

E+
b
.

(5)

For the left incident field, continuity of the field at the δ-
function potential, namely,

E−(x)|x=0 = E+(x)|x=0, (6)

and the discontinuity of it at x = 0, namely,

dE+

dx

∣∣∣∣
x=0

− dE−

dx

∣∣∣∣
x=0

= −k2[n + χ |E+(0)|2]E+(0), (7)

provide us with two conditions to find E−
f and E−

b as a func-
tion of E+

f (here, we normalize it to one) for the left incident
beam. Notice that inserting the first boundary condition of
Eq. (4) into Eq. (7) reduces it to

dE+

dx

∣∣∣∣
x=0

− dE−

dx

∣∣∣∣
x=0

= −k2(n + χ )E+(0), (8)

which means that in this specific case, nonlinearity acts simi-
lar to a linear potential and the field intensity does not play any
role even if the potential at hand is nonlinear. This is a peculiar
feature of the δ function and does not hold with nonlinear slab
potentials. Solving Eqs. (6) and (8) simultaneously results in
the transmission, S21 ≡ tl , and reflection, S11 ≡ rl , amplitudes
for the left incident wave,

tl = 2i

k(n + χ ) + 2i
, rl = − k(n + χ )

k(n + χ ) + 2i
. (9)

For the right incident field, Eq. (6) remains the same, while
Eq. (8) modifies to

dE+

dx

∣∣∣∣
x=0

− dE−

dx

∣∣∣∣
x=0

= −k2(n + χ )E−(0), (10)

where we have used the second boundary condition given in
Eq. (4). Normalizing the E−

b to one and following similar steps
as the left incident wave results in the transmission S12 ≡ tr
and reflection S22 ≡ rr amplitudes for the right incident wave,
and by comparing them with their corresponding left incident,
ones shows that

tr = tl , rr = rl . (11)

Equation (11) is a known result where a nonlinear medium
with parity symmetry does not lead to any asymmetric trans-
port [26]. Using Eqs. (3), (9) and (11), we can construct the
scattering matrix S.

As mentioned earlier, the poles of this scattering ma-
trix at real frequencies identify the spectral singularities or
the lasing modes. From Eqs. (9) and (11), we observe that
the spectral singularities occur for pure imaginary values of
n and χ and are given by k = − 2

ni+χi
. Furthermore, with

our choice of coordinate to have the outgoing fields, wave

vector k must be a positive variable and thus ni + χi < 0,
meaning that although the δ function can contain partial
loss either in its linear ni > 0 or nonlinear part χi > 0, it
must provide a net gain coming from its nonlinear χi < 0
or linear ni < 0 part. This conclusion proves our previous
discussion where we mentioned that one needs to incorpo-
rate a sufficiently strong gain medium to reach the lasing
threshold.

III. SPECTRAL SINGULARITIES WITH DIRECTIONAL
SENSITIVITY

Armed with the method of calculating the spectral sin-
gularities given in Sec. II, in this section we calculate the
spectral singularity associated with a parity symmetry bro-
ken nonlinear system. To demonstrate the existence of the
spectral singularities with directional sensitivity, we con-
sider a system in which its permittivity is given by ε(x) =
n0 + n1δ(x + a) + [n2 + χ |E (x)|2]δ(x − a). In this permittiv-
ity, n1 = n1r + in1i, n2 = n2r + in2i, and χ = χr + iχi, where
n1r , n2r , n1i, n2i, and χi,r ∈ � are the linear and nonlinear
complex perturbations to the background permittivity. The
first δ function, which is given by the perturbed refractive
index n1, is placed at x = −a, and the second one, with am-
plitude n2 + χ |E (x)|2, is placed at x = a.

Similar to the previous scattering problem, a time-
harmonic electric field of frequency ω obeys the 1D
Helmholtz equation which is given in Eq. (1) with the fol-
lowing general solution:

E−(x) = E−
f exp(ikx) + E−

b exp(−ikx), x � −a,

Em(x) = Em
f exp(ikx) + Em

b exp(−ikx), −a � x � a,

E+(x) = E+
f exp(ikx) + E+

b exp(−ikx), x � a,

with the wave vector k =
√

n0ω

c > 0.
Following similar steps as the one discussed in Sec. II,

first we calculate the scattering properties of the medium
for the left incident field. In this case, we assume E+

f = 1,

E+
b = 0. Using the continuity of the field and discontinuity

of its derivative at x = a and x = −a, one can show that
Em

f = 1 − 1
2 ik(n2 + χ ), Em

b = 1
2 ike2iak (n2 + χ ) and the trans-

mission and reflection amplitudes for a left incident beam are
given by

tl = 4

k2n1ζη − 2ik(n1 + η) + 4
,

rl = e−2iak[kn1(kη + 2i) − ke4iak (kn1 − 2i)η]

k2n1ζη − 2ik(n1 + η) + 4
. (12)

In the above equations, the new parameters are defined as ζ ≡
exp(4iak) − 1 and η = n2 + χ .

To calculate the transmission and reflection amplitude
of the right incident field, on the other hand, we assume
that E−

f = 0, E−
b = 1. By imposing the boundary condi-

tions at each δ function, namely, the continuity of the
field and discontinuity of its derivative at x = ±a, we
find that Em

f = 1
2 ikn1e2iak , Em

b = 1 − ikn1
2 . Consequently, the

transmission and reflection amplitude for a right incident
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beam are given by

tr = 16e4iak

k3χ |n1|2ζ 2(4i − kn1ζ ) + 2e4iak[k2n1ζ (2n2 + 4χ + ik2n1χζ ) + 2k2χn∗
1 − 4ik(n1 + n2) − 4ikχ + 8] − 4k2χn∗

1

,

rr = k2χζ 2|n1|2(4i − kn1ζ ) + 4e4iak (kχn∗
1 − kn1η − 2iη) + 4n1e8iak[kn2 − 2ik2n1χ sin2(2ak) + 2kχ − 2i] − 4kχn∗

1

kχe2iakζn∗
1(kn1ζ − 2i)2 + 2e6iak{n1[−ik2n1χζ 2 − 2ke4iak (η + χ ) + 2k(η + χ ) + 4i] + 4iη − 8k−1} , (13)

where ∗ stands for the complex conjugate.
It is clear that rl 	= rr and tl 	= tr , where the first appears

due to the broken parity symmetry and the second occurs
due to the coexistence of the nonlinearity and broken parity
symmetry [26].

As discussed before, to identify the spectral singularities,
we are interested in the zeros of the denominators in Eqs. (12)
and (13). Depending on the type of the spectral singularity
that we are searching for, we must look for zeros in one
or more transmission and reflection amplitudes that occur at
the same wave vector for the same parameters, χ, n1, and n2.
For example, in the conventional spectral singularities, the
denominators in Eqs. (12) and (13) must become zero [24].
For unidirectional spectral singularities, we would like to
have a divergence only in rl and possibly in tr , or in rr

and possibly in tl [21]. On the other hand, for SSDS, one
needs to have only rl and tl , or rr and tr , tend to infinity.
Thus, to have an SSDS, one needs to make sure that the
denominators in rl and tl are different from rr and tr . This
allows us to search for the zeros of either of them. As we see,
here the broken parity and nonlinearity allow us to have such
a possibility. More precisely, the denominators in Eqs. (12)
are not the same as the denominators in Eqs. (13), which
make it possible to search for the poles of the scattering
matrix S such that only one column remains finite while the
other column diverges, and thus the system finds itself at the
SSDS mode.

In general, finding an analytical solution for an SSDS
of the above system is not possible. However, one can find
the SSDS points for the left and right incident fields nu-
merically. In an attempt to find the SSDS for the left and
right incident field, let us assume that a = π

4k	 , where k	

is the wave vector for which the SSDS mode occurs. This
choice does not affect the physics of the problem and it
only saves us from doing difficult numerical tasks. For the
left incident field, the zeros of the denominators in Eq. (12)
occur at

k	 = ± 4√
6n1η − η2 − n2

1 ± i(n1 + η)
. (14)

For arbitrary values of n1, n2, χ , the wave vectors in Eq. (14)
are complex. However, the SSDS wave vectors must be posi-
tive and real in order to identify a lasing point. Thus, if there
exist n1, n2, and χ such that the k	 in Eq. (14) is real, then we
can only accept the positive solution. As an example, let us
assume that n1 = 2 + iγ , n2 = 3 + iγ , and χ = 3. A numer-
ical search shows that when a = 2.7207 for γ = −3.4641,
the SSDS wave vector for the left incident field becomes real
with value k	 = 0.288 675. As a result, we expect to have a
divergence in the left transmission and left reflection, while

the right transmission and right reflection remain finite. In
Fig. 1(a), we have plotted the transmissions and reflections
for the above δ functions. In agreement with our analytical
and numerical predictions, the left transmission and reflec-
tion amplitudes diverge at k	 = 0.288 675, while the tr and
rr remain finite. The right transmission and reflection show
a strong amplification at k0 ≈ 0.3 > k	, which is different
from a diverging behavior. The difference between the wave
vectors associated with the right amplification and left SSDS,
�k ≡ |k0 − k	|, is proportional to χ and tends to zero when
the nonlinearity coefficient χ decreases to zero. It is known
that at the spectral singularity, the phase must obtain a π shift
[21]. Figure 1(b) depicts the phase of the transmission and
reflection amplitudes. We see that π jump occurs at the k	 for
the phases of the left transmission φtl and left reflection φrl ,
while the curves associated with the right reflection φrr and
transmission φtr are smooth curves.

Unfortunately, there is no close form for the right SSDS
wave vector. However, one can still numerically locate those
wave vectors that diverge the amplitudes given in Eq. (13).
For example, when the two δ functions are apart by a
distance equal to a = 4.645 03 and n1 = 2 − 2.957 12i, n2 =
3 − 2.957 12i, and χ = 3, the SSDS wave vector for the

FIG. 1. Left spectral singularity with directional singularity.
(a) Transmission and reflection curves vs wave vector k associated
with a system composed of two δ functions, one linear with per-
mittivity n1 = 2 − 3.4641i placed at x = −2.7207 (in units of k−1)
and the other with n2 = 3 − 3.4641i and χ = 3 placed at x = 2.7207
(in units of k−1). Left transmission and left reflection are diverging
at k ≈ 0.288 675, while transmission and reflection for the right
incident beam remain finite. (b) The phase associated with the ti, ri,
i = l, r. At the SSDS, a π shift occurs for the left reflection (red �)
and transmission (black •), while the right reflection and transmis-
sion curves are smooth.
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FIG. 2. Right spectral singularity with directional singularity.
(a),(b) Similar to the one presented in Fig. 1, with δ functions placed
at x ≈ ±2.32 with n1 = 2 − 2.95712i, n2 = 3 − 2.95712i, and
χ = 3. Here the SSDS occurs for right transmission and reflection.

right incident field becomes k	 = 0.338 167. This numeri-
cal prediction is in agreement with our calculated ti and ri,
with i = l, r, and their corresponding phases in Figs. 2(a)
and 2(b).

IV. SPECTRAL SINGULARITY WITH DIRECTIONAL
SENSITIVITY IN COUPLED MICRORESONATORS

In the previous section, we used an abstract model to show
the existence of SSDS modes. In this section, we identify the
SSDS modes in an experimentally feasible system, namely, an
array of coupled disk resonators depicted schematically in the
upper inset of Fig. 3. The array is composed of two distinct
disk resonators, one with a linear resonance frequency and
the other with a nonlinear resonance frequency, embedded
in an array of coupled disk resonators playing the role of
the transmission line. In this system, each disk supports two
degenerate modes: a clockwise a+ and a counterclockwise
a−. Using the coupled mode theory, we express the dynam-
ics of the total field amplitudes, 
 = a+ + a−, in each disk
[27,28],

i
̇n = −
n−1 − 
n+1 + ωc
n (|n| � 2),

i
̇n = −δn±1,2
n±1 − δn,±1
± + ωc
n (n = ±1),

i
̇+ = −
1 − 
_ + (ω+ + χ |
+|2)
+,

i
̇_ = −
−1 − 
+ + ω_
_,

(15)

where we used Kronecker δ notation

δi, j =
{

1 if i = j
0 if i 	= j.

(16)

Furthermore, 
n, and 
± are the total field amplitudes at
the disk n, and nonlinear (linear) cavity with subindex +(−),
respectively. The n � 1 refers to disks after the nonlinear disk
with resonance ω+, and n � −1 refers to disks before the
disk with resonance ω− . Note that we have assumed all the
couplings are equal (normalized to one) and the nonlinear disk

FIG. 3. (a) Transmission and reflection coefficients of the cou-
pled disk resonators depicted in the upper inset. The resonance
frequency of the disks at the transmission line is ωc = 0, the
resonance frequency of the linear (blue) disk with gain is ω_ =
0.503 461i, while the linear part of the resonance frequency of the
nonlinear disk is ω+ = 2ω_ and its Kerr coefficient is χ = 1. Right
transmission and right reflection are diverging at k	 = 0.754 559 (in
units of couplings), indicating the existence of a right SSDS mode.
(b) The corresponding phases. We observe the π phase shift at the
spectral singularity (green � and blue �).

has a Kerr-type nonlinearity. The resonance frequency of the
disks in the chain is denoted by ωc, which we assume is equal
to zero without loss of generality. Moreover, the resonance
of the nonlinear disk is (ω+ + χ |
+|2), while the resonance
of the linear disk with field amplitude φ− is given by ω−.
The chain supports the dispersion relation ω = −2 cos(k),
with −π � k � π . In the elastic scattering process for which

 = ψe−iωt , the stationary modal amplitudes of the system
have the asymptotic behavior ψn = Fleik(n+1) + Ble−ik(n+1)

for n � −1 and ψn = Freik(n−1) + Bre−ik(n−1) for n � 1,
respectively.

For the left incident field where Br = 0 and Fr = 1, it is
easy to show that

tl = e3ik − e5iq

1 + eik (ω_ + β ) + e2ik (βω_ − 1)
,

rl = −e3ik[ω_ + eik (ω_ + eik )β]

1 + eik (ω_ + β ) + e2ik (βω_ − 1)
,

(17)

and the left SSDS mode wave vector is given by

k	 = −i ln

( −2

ω_ + β ± √
(β − ω_)2 + 4

)
, (18)

where β = χ + ω+. Assuming Bl = 1 and Fl = 0, the
right transmission and right reflection can also be
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calculated as

tr = e3ik − e5ik

χω_
∗(1 + eikω_)2 + e3ikχω2

_ + eik (ω_ + β ) + e2ik[ω_(2χ + ω+) − 1] + 1
,

rr = e4ik{1 − e−ik (1 + eikω_)[χ |ω_|2 + 2e−ikχRe(ω_) + i sin(k)(2χω_ + 1) + cos(k) + β]}
eik (2χ |ω_|2 + ω_ + β ) + e2ik{ω_[χ (|ω_|2 + 2) + ω+] − 1} − iχ Im(ω_) + e3ikχω2

_ + χRe(ω_) + 1
.

(19)

In Eq. (19), Re(ω_) and Im(ω_) are the real and imag-
inary parts of the ω_, respectively. The wave vector for a
right SSDS has a very long closed form and thus we do not
report it here. Similar to the nonlinear δ-function system, one
can numerically search for ω± and χ such that they make
the k	, associated with a left SSDS [given in Eq. (18)] or
right SSDS (not shown here), positive and real. For instance,
the left SSDS occurs at k	 = 0.950 497 (normalized to the
units of the couplings) when χ = 1, ω_ = 0.641 322i, and
ω+ = 2ω_, while the right SSDS occurs at k	 = 0.754 559
when χ = 1, ω_ = 0.503 461i, and ω+ = 2ω_. Thus, for this
system, the singularity mode (lasing threshold) appears first
for the right fluctuations as a right SSDS is triggered by lower
gain value. After that point, the system becomes nonlinear
and our treatment is no longer valid. Thus, k	 = 0.950 497
is not a physical solution. In Fig. 3, we reported the trans-
missions and reflections and their corresponding phases for
χ = 1, ω_ = 0.503 461, and ω+ = 2ω_.

V. CONCLUSION

In conclusion, we have developed a scattering matrix for-
malism for nonlinear systems, and then, using an abstract
model of two δ functions, one nonlinear and one linear, we
have shown that a nonlinear system with broken parity sym-
metry can have peculiar spectral singularities with sensitivity
to the direction of excitation, the so-called SSDS. We dis-
cussed the possibility of getting left or right SSDS depending

on the distance between the two δ functions. Furthermore, we
found the right SSDS in an experimentally feasible system,
namely, coupled disk resonators. While we have used a parity
symmetry broken system to show the existence of SSDS, such
singularities might be found with any broken symmetry that
changes �k → −�k and in the presence of any kind of nonlinear
process. The nonlinear process might occur due to the exis-
tence of a nonlinear material or using external driving, the
so-called temporal modulation. While we discussed the SSDS
in 1D systems, by using a similar method one can possibly
extend the same notion to higher dimensions or systems with
several emission channels. In higher dimensions, one should
carefully define the directions. Our proposed spectral singu-
larity might have applications in directional sensing and might
be considered as a solution for hole-burning problems in
laser cavities.
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