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Coherent single-spin electron resonance spectroscopy manifested at an exceptional-point
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Spin-dependent charge-transfer decay in an alkali atom-doped polyacetylene is studied in terms of the
complex spectral analysis, revealing the single-spin Zeeman splitting influenced by the spin-orbit interaction.
A non-Hermitian effective Hamiltonian has been derived from the total system Hermitian Hamiltonian using
the Brillouin-Wigner-Feshbach projection method where the microscopic spin-dependent dissipation effect is
correctly incorporated in the energy-dependent self-energy. Since the present method maintains the dynamical
and chiral symmetries of the total system, we discovered two types of exceptional point (EP) singularities: The
EP surface and the EP ring are attributed to the dynamical and chiral symmetry breaking, respectively. We reveal
that the coherent single-spin electron resonance (SSESR) spectrum reflects the complex eigenenergy spectrum of
the system. We formulate the SSESR spectrum in terms of the non-linear-response function in the Liouville-space
pathway approach where we have constructed the Liouville-space basis using the complex eigenstates of the
total Hamiltonian. We calculate the one-dimensional Fourier transform (1DFT) and two-dimensional Fourier
transform (2DFT) SSESR spectra reflecting the spin-relaxation dynamics at the donor site. Whereas the 1DFT
SSESR spectrum reflects the complex eigenenergy spectrum, the 2DFT gives detailed information about the
quantum coherence in the spin-relaxation dynamics as a cross correlation between the two frequencies. We
reveal a giant response in the coherent SSESR around the EP ring singularity due to the vanishing normalization
factors at the EP ring and the resonance effect. We show this giant response is even more heavily pronounced
in the 2DFT spectrum than in the 1DFT spectrum, which illustrates that the 2DFT SSESR can become a useful
tool to observe the single-spin response of a molecule.
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I. INTRODUCTION

The conventional idea that dissipation is just a minor per-
turbation causing population decay or quantum decoherence
has been overturned in recent years. It has been recognized
that the dissipation process has a significant impact on the
quantum evolution of a state, especially when it is close to an
accidental degeneracy point, such as a diabolic point. In con-
trast to ordinary perturbation, which removes the degeneracy
in energy, dissipation gives rise to a peculiar singularity, called
the exceptional-point singularity (EP) where the eigenvalues
and the eigenstates coalesce [1–6].

Many intriguing phenomena attributed to the EP singulari-
ties have been reported, such as asymmetric mode conversion
[7], unidirectional invisibility [8], dynamical control [9,10],
higher-order phase transition with Fano resonance [11], a
large amplification of the Fano absorption spectral compo-
nent [12], amplification of lasing [13], pulse shortening [14],
asymmetric localization [15], enhanced nonlinear response to
a perturbation [16–21], and amplified spontaneous emission
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[22,23]. Since the system energy changes abruptly with a per-
turbation parameter around the EP singularity, the nonlinear
response to an external field can be dramatically enhanced.

Recently, there have been many efforts to explore various
materials exhibiting characteristic behaviors of the EP singu-
larities [4]. As the number of the internal degrees of freedom
of a subsystem increases, such as spin variables, polarizations
in electronic, and/or photonic systems, the number of parame-
ters characterizing the effective Hamiltonian increases so that
we can expect higher-dimensional manifolds of the EP sin-
gularities to occur in the multidimensional parameter space.
Recent studies have explored higher-dimensional manifold
structures of the singularities, called exceptional rings and
exceptional surfaces and associated phenomena in topological
materials and photonic systems [24–32].

Although many theoretical analyses start with a non-
Hermitian Hamiltonian as a fundamental time-evolution
generator, they have paid less attention to the dynamical origin
of the dissipation processes. Since the dissipation process
is changed according to the motion of internal degrees of
freedom of the subsystem as mentioned above, it becomes
essential to consider the microscopic dissipation mechanism
associated with each state. Meanwhile, we have developed a
theory of the complex spectral analysis [12,33–35] in which
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the origin of the dissipation has been identified as the energy
resonance in a Hermitian Hamiltonian for an open system. In
the complex spectral analysis, the microscopic dynamics are
renormalized into the non-Hermitian effective Hamiltonian
written in terms of an energy-dependent self-energy function.
As a result, the eigenvalue problem becomes nonlinear in the
sense that the effective Hamiltonian itself depends on its own
eigenvalue whereby the dissipation dynamics are reconciled
with the microscopically reversible dynamics apparent in the
original Hamiltonian.

The purpose of this paper is to propose a specific quan-
tum system that exhibits the EP singularity manifold in a
multidimensional parameter space and a method to observe
its influence in a laboratory experiment. For this purpose, we
consider an alkali atom-doped polyacetylene as a model sys-
tem and study the electronic Zeeman spectrum influenced by
the spin-dependent charge transfer decay. The charge-transfer
process from the alkali metal to the polyacetylene conduction
band has been studied mostly in terms of the induced struc-
tural changes of the interchain couplings [36–39] and soliton
formation [40–44]. Recent studies have indicated that the
spin-orbit coupling plays an important role in determining the
electronic structures even in light element materials, such as
graphene and polyacetylene [45,46]. Furthermore, the crucial
role of the spin-orbit coupling for the emergence of the EP
manifolds has been recently clarified in Weyl metals and in
photonic systems [25,26,29,30,32]. We show that the EP man-
ifolds appear in the electronic Zeeman spectrum due to the
spin-dependent charge-transfer decay through the spin-orbit
interactions where we observe an anisotropic EP ring and an
isotropic EP surface.

As our second purpose, we demonstrate that coherent
single-spin-resonance electron spectroscopy (SSESR) can
be used to observe the EP singularities. The electron spin
resonance (ESR) has been widely used to investigate the
spin-relaxation process in polyacetylene and molecular chains
[46–49]. However, conventional measurements of the ESR
have required about 1010 identical spins to obtain a good
signal-to-noise ratio. In this context, significant progress has
been made in the single-spin quantum control technique in
the past two decades [50–53]. The spatial resolution and
sensitivity of electron spin-resonance spectroscopy have now
reached atomic-scale precision owing to recent advances in
spin-polarized scanning tunneling microscopy (STM) and
magnetic sensitivity in interaction with nitrogen vacancy cen-
ters in diamond [54–57] so that the ESR signal attributed to
a microscopic target within a sample center can be distin-
guished. In this direction, we desire to find a way to further
enhance the signal intensity from a single spin.

Here we study the coherent nonlinear single-electron spin
resonance accompanied by the charge-transfer decay from
the alkali donor to the one-dimensional conduction band of
polyacetylene where we apply the pump-probe pulsed ex-
citation to obtain the nonlinear response in addition to the
static magnetic field. It has been recognized that the nonlinear
magnetic resonance spectroscopy and its multidimensional
Fourier transform spectroscopy, such as two-dimensional
Fourier transform (2DFT) NMR or ESR, is a powerful tool to
investigate the spin-relaxation process in a molecule [58–60].
We show that the EP singularity as a result of the cooperation

between the Zeeman interaction and the spin-orbit coupling is
well reflected in the coherent nonlinear 2DFT ESR spectrum.

It is known that the Liouville-space pathway approach in
terms of the non-linear-response function is a useful tool to de-
scribe the nonlinear optical spectroscopy [59]. In the present
paper, we construct a complete basis in the Liouville space to
describe the proper Liouville pathway in terms of the solutions
of the complex eigenvalue problem of the total Hamiltonian
in which the energy dependence of the self-energy is essential
[33,34,61]. We find that the time evolution following succes-
sive pulsed excitations becomes consistent with the entropy
production only when we take into account the correct ana-
lytic continuation for the Liouville states.

One of our key findings is a giant response in the 2DFT
ESR as a result of the vanishing normalization factor at the
EP singularity. This is known as the Petermann effect, which
acts in addition to the ordinary resonant enhancement from
the Purcell effect in the signal enhancement of the sponta-
neous emission [20,22,62,63]. However, we have found that
the signal enhancement becomes orders of magnitude larger in
the coherent 2DFT ESR than in the one-dimensional Fourier
transform (1DFT) ESR. To our knowledge, this is the first
study to reveal such a giant response due to the EP singularity
in a non-linear-response function.

In Sec. II, we present our model for the doped polyacety-
lene molecule in terms of the one-dimensional tight-binding
model where the spin-orbit coupling associated with the
charge transfer of the donor electron is taken into account as
well as the local Zeeman effect. In Sec. III, we have solved the
complex eigenvalue problem of the total system Hamiltonian
in terms of the Brillouin-Wigner-Feshbach (BWF) projection
method and obtained the complex eigenvalue spectrum in the
three-dimensional parameter space of the external magnetic
field. We find that the EP singularities appear depending on
the relative angle of the external magnetic field to the intrinsic
molecular field determined by the spin-orbit coupling. The
coherent nonlinear 2DFT ESR spectrum as well as 1DFT ESR
are formulated in terms of the Liouville-space representation
in Sec. IV where the signal intensity exhibits strong anisotropy
as the relative angle between the pump and the probe direc-
tions is changed. In addition, we find the giant response of the
signal around the EP singularity, indicating that this method
is a useful tool to observe the single electron spin-relaxation
process. We conclude in Sec. V with some discussions.

II. MODEL

We consider the spin-dependent charge-transfer decay of
a heavy alkali atom binding to the end of a polyacetylene
molecule as shown in Fig. 1 where the charge transfer occurs
from a donor impurity level to the π∗ conduction band of the
molecule. In the present paper, we take the donor site as the
origin of the Cartesian coordinate axis, i.e., rD = 0. In this
paper, we consider the low-energy Zeeman excitation so that
we neglect the effects of the π valence band and σ orbitals. We
describe the conduction band in terms of the one-dimensional
tight-biding model with spin variables under a simple Hückel
approximation.

Taking the energy origin at the center of the conduction
band, the charge-transfer Hamiltonian for a nonrelativistic
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FIG. 1. Single-spin ESR setup for a heavy alkali donor atom
binding to a one-dimensional polyacetylene. The orbital angular
momentum (L) associated with the charge transfer is aligned in the z
direction, and the external magnetic-field B(r) acts on the spin at the
donor site.

donor electron is represented by

ĤCT = εD

∑
α

ĉ†
0,α ĉ0,α +

∑
α

v(ĉ†
0,α ĉ1,α + ĉ†

1,α ĉ0,α )

− J
N∑

n=1

∑
α

(ĉ†
n+1,α ĉn,α + ĉ†

n,α ĉn+1,α ), (1)

where ĉ†
i,α (ĉi,α ) are the electron fermion operators with the

site index i and the two-spinor indices α. In ĤCT, the donor
impurity atom is located at the 0th site with the energy εD,
the nearest-neighbor transfer integral for the 1D tight-binding
model is J , the spin-independent charge transfer from the
donor to the band is represented by v, and N is the length
of the polyacetylene molecule. With use of the wave-number
representation,

ĉk,α ≡
√

2

N

N∑
n=1

sin(kn)ĉn,α, ĉ†
k,α

≡
√

2

N

N∑
n=1

sin(kn)ĉ†
n,α,

(2)
and taking the limit of infinite molecular length [12], the tight-
binding molecular Hamiltonian [the last term of Eq. (1)] is
diagonalized in the form

Ĥmol =
∑

α

∫ π

0
dk ωk ĉ†

k,α
ĉk,α, (3)

where ωk = −2J cos kd . Hereafter, we will use the distance
between the carbon atoms d � 1.3 A as a length unit. Then
the charge-transfer Hamiltonian ĤCT is rewritten as

ĤCT = εD

∑
α

ĉ†
0,α ĉ0,α +

∑
α

∫ π

0
dk vk (ĉ†

k,α
ĉ0,α + ĉ†

0,α ĉk,α ),

(4)
where vk ≡ √

2/πv sin kd . In the present paper, we take
h̄ = 1.

We consider a static local external magnetic field acting on
the donor site applied by spin-polarized STM tip, for example.
For the spin-density s(r), the Zeeman interaction Hamiltonian
in the second quantized form is given by

ĤZ(B) = −gB

∫
s(r) · B(r)d3r

= −gB

2

∑
i=x,y,z

∑
α,β

Bi(σi )α,β ĉ†
0,α ĉ0,β , (5)

where gB is the g factor, Bi is the magnetic field acting on the
donor site, and σi (i = x, y, z) are the Pauli matrices. Here-
after, we rewrite B ≡ gB|B|/2, including gB into the value of
B so that B has dimensions of energy.

In addition, we consider the Rashba-type spin-orbit inter-
action [45,46,64] associated with the charge transfer from the
impurity donor to the conduction band. The Hamiltonian is
given by

ĤSO = ξSO

∫
s(r) · [E(r) × p]d3r , (6)

where we attribute the electric-field E(r) to the charge-transfer
polarization from the donor atom to the molecular chain,
which is represented by E(r) = er/χ with the electric suscep-
tibility χ . Then the spin-orbit interaction Hamiltonian reads

ĤSO = eξSO

2χ

∫
σ̂ · (r̂ × p̂)d3r ≡ gS

∫
σ̂ · l̂ d3r

= gS

∑
i=x,y,z

li(σi )α,β ĉ†
0,α ĉ1,β + H.c., (7)

where l̂ is the orbital angular momentum operator. We have
evaluated the matrix element of the orbital angular momentum
between the ns atomic orbital of the heavy alkali donor atom
and the 2py orbital of the carbon atom at the end of the
molecule as

li = 〈0, s|l̂i|1, py〉 =
∫

d3r ϕ∗
s (r)l̂iϕpy (r − a). (8)

We neglect the small spin-orbit couplings between the carbon
2py orbitals. We find from the symmetry that

lz �= 0, lx = ly = 0, (9)

as shown in Appendix A [45,65]. In the present paper, we take
the z axis as a quantization axis with the spin-orbit coupling
parameter L ≡ gSlz in (7) as shown in Fig. 1. It is seen from (7)
that the orbital angular momentum associated with the charge
transfer plays the role of an intrinsic molecular magnetic field
acting on the two spinors, which we will call the molecular
field, L = Lẑ, where L has dimensions of energy.

The half-width of the conduction band of polyacetylene
has been estimated as 2J � 6 eV [44]. In the present paper,
we take J as the energy unit: 2J = 2. The charge-transfer
strength v, the spin-orbit coupling strength gs, the impurity
donor energy-level εD are given for a specific donor atom,
whereas the externally controllable parameter is the exter-
nal magnetic-field B. Usually these parameter values satisfy
2J 	 v � gS . In this paper, we take εD = 0, and we make
a brief comment on the effect of εD in Appendix B. Since
we focus on rapid motion of the donor electron, we neglect
the effect of the slow motion of the structural change in the
polyacetylene molecular backbone. In the next section, we
study the complex spectra of the total Hamiltonian in terms
of the external magnetic-field B-parameter space and reveal
the EP singularities in this space.

III. COMPLEX EIGENVALUE PROBLEM OF THE
HAMILTONIAN AND THE EP SINGULARITIES

In this section we solve the complex eigenvalue prob-
lem of the total Hamiltonian. We first derive the effective
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Hamiltonian in terms of the BWF projection method and
obtain the complex eigenspectrum of the Hamiltonian.

The complex eigenvalue problem of the total Hamiltonian
for parameter B reads [12,33,66]

Ĥtot (B)|φξ (B)〉 = zξ (B)|φξ (B)〉, (10a)

〈φ̃ξ (B)|Ĥtot (B) = zξ (B)〈φ̃ξ (B)|, (10b)

where the right- and the left-eigenstates |φξ (B)〉 and 〈φ̃ξ (B)|,
respectively, share the same eigenvalue zξ (B). For the current
problem, we restrict ourselves to a single-particle vector space
consisting of {|n, α〉 (n = 0, 1, . . . ; α = ±)}, where |n, α〉 ≡
c†

n,α|vac〉 and |vac〉 denotes the electron vacuum.
We will reduce the eigenvalue problem of the total Hamil-

tonian into the {|0,+〉, |0,−〉} space in terms of the projection
operators,

P̂0 = |0,+〉〈0,+| + |0,−〉〈0,−|, Q̂0 = 1 − P̂0. (11)

Taking into account (9), we have derived the effective Hamil-
tonian matrix in the P̂0 subspace as

Heff (B; z) = −
(

Bz Bx − iBy

Bx + iBy −Bz

)

+ Σ (z)

(
(v + L)2 0

0 (v − L)2

)
. (12)

The derivation of the effective Hamiltonian is shown in
Appendix C. The microscopic dissipation effect into the con-
tinuum is renormalized into Heff in terms of the self-energy
function Σ (z) given by a Cauchy integral evaluated as

Σ±(z) = 2

π

∫ π

0
dk

sin2 k

(z − ωk )±
= 1

2
(z ∓

√
z2 − 4). (13)

The self-energy has a branch cut in the region [−2:2] on the
real z axis where the sign in the integral indicates the analytic
continuation from the upper(+)- and lower(−)-half complex
z plane corresponding to the retarded and advanced Green’s
functions, respectively [33]. By the definition (13), the self-
energy is an odd function in terms of z as

Σ±(−z) = −Σ∓(z), (14)

reflecting the microscopic interaction with the continuum
[68]. As will be shown later, this relation is crucial to ensure
the symmetry (chiral symmetry) that gives rise to the EP ring
structure.

We emphasize that the complex eigenvalues of the effective
Hamiltonian are the same as those of the total Hermitian
Hamiltonian only when we take into account the energy
dependence of the self-energy [33,61,66]. As a result, the
complex eigenvalues appear as complex-conjugate pairs, if
they exist, corresponding to the resonance and antiresonance
eigenstates, which we will call the dynamical symmetry. The
solution pairs, thus, obtained are the fundamental building
blocks to construct the Liouville space basis used in the for-
mulation of the coherent ESR spectroscopy as shown in the
next section.

It is seen that the Zeeman effect on the two-spinor at the
donor site, the first term in (12), is modified by the dis-
sipation effect of the second term. We emphasize that the
spin-orbit coupling L effectively enhances or suppresses the

FIG. 2. Eigenvalues of the effective Hamiltonian as a function of
B parallel to L when θB = 0 for v = 0.3 and L = 0.1. (a) Real part
and (b) imaginary part. The solid and dashed lines in (b) correspond
to the resonance and antiresonance state solutions in the resonant
regime, respectively. In the off-resonant regime, the solid and dashed
lines correspond to the bound and virtual bound states shown in (a).
The gray lines in (a) are guidelines for the unperturbed energies of
the two-spinors. The energy unit is taken as J = 1.

charge-transfer effect v when the spin direction is parallel or
antiparallel to the molecular field L, respectively: The charge-
transfer decay process becomes spin dependent due to the
spin-orbit coupling.

The complex eigenvalues of the effective Hamiltonian are
obtained by solving the characteristic equation,

η±(z; B) ≡ {z − Bz − (v − L)2Σ±(z)}
×{z + Bz − (v + L)2Σ±(z)} − (

B2
x + By

2
) = 0.

(15)

Squaring out the root in the self-energy, we find the char-
acteristic equation is a fourth-order polynomial equation,
yielding two complex conjugate pair solutions in the resonant
regime as mentioned above, and four real solutions in the
off-resonant regime. With use of the spherical coordinate B =
(B sin θB cos φB, B sin θB cos φB, B cos θB), one can imme-
diately see from (15) that the solutions depend only on the
polar angle θB as well as the field strength B.

First we show the results of the complex eigenvalues when
the external magnetic field is parallel to the molecular field,
i.e., B ‖ L = Lẑ, i.e., Bx = By = 0. It is immediately seen
from (12) that the two-spinor states are decoupled in this
case, and the characteristic equation (15) becomes a product
of the two independent equations associated with | + 〉 and
| − 〉 spin states. We show in Fig. 2 the complex eigenvalues of
the effective Hamiltonian as a function of the magnetic-field
strength B for θB = 0 (B ‖ L) where the real and imaginary
parts of the eigenvalues are shown in Figs. 2(a) and 2(b),
respectively. The other parameters are taken as v = 0.3 and
L = 0.1. The solutions for the different analytic continuations
of the self-energies of Σ+(z) and Σ−(z) are depicted by the
solid and dashed lines, respectively. The solutions for Σ+(z)
and Σ−(z) correspond to the resonance and antiresonance
states in the resonant regime, respectively.

As seen in Fig. 2(a), the real parts of the eigenvalues are
split by the Zeeman effect: The real part of the energy corre-
sponding to the parallel (antiparallel) spin states to B linearly
decreases (increases) with B. Although this behavior is similar
to the ordinary Zeeman effect on an isolated two-spinor, it
should be noted that the eigenstates in the present case are
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FIG. 3. Eigenvalues of the effective Hamiltonian as a function
of B parallel to L when θB = π/3 for v = 0.3 and L = 0.1. (a) Real
part and (b) imaginary part. The solid and dashed lines have the same
meaning as in Fig. 2. The energy unit is taken as J = 1.

resonance (antiresonance) states which do not belong to the
Hilbert space [33]. Indeed, the eigenstates have an imaginary
part of the eigenvalues as long as the Zeeman split energies are
in resonance with the conduction band as shown in Fig. 2(b).
As mentioned above, the charge-transfer decay couplings be-
come spin dependent due to the spin-orbit coupling so that in
this case the parallel spin state |+〉 has a larger decay rate than
the antiparallel spin state |−〉.

As B increases and the Zeeman split energies come close to
the conduction-band edge B � 2, the resonance and antires-
onance states coalesce at the EP singularity depicted by the
arrow in Fig. 2(b). As B further increases, they are split into
the bound and virtual-bound states [9,67]. The EP singulari-
ties near the band-edge B � 2 appear as a result of the energy
resonance singularity between the discrete Zeeman states and
the conduction continuum irrespective to the direction of B.

When we tilt θB away from the polar axis of L, the two-spin
states become coupled. We show the results of θB = π/3
in Fig. 3. The effect of θB is prominent in the imaginary
part of the eigenvalues; As θB increases from 0, the gap of
the imaginary parts of the complex eigenvalues of the two
resonance states or the two antiresonance states is narrowed,
whereas the values at B = 0 are unchanged. We see the EP
singularities at the band edge still remain as indicated by
the arrow. Since this EP singularity appears as a result of
the energy resonance between the discrete Zeeman states and
the conduction continuum irrespective of the polar angle θB,
the EP singularity forms an EP surface in the B space as shown
in Fig. 4(a).

As mentioned above and shown in Appendix B, the total
system Hamiltonian possesses the chiral symmetry expressed
by (B3), which holds when Bz = 0. Since the effective
Hamiltonian is derived from the total Hamiltonian and the mi-
croscopic spin-dependent charge-transfer decay is taken into
account by the energy-dependent self-energy, the effective
Hamiltonian also possesses the chiral symmetry: Owing to
(14), the effective Hamiltonian at Bz = 0 satisfies

σzĤeff (z)σz = −Ĥeff (−z), (16)

with the Pauli matrix σz. Note the correspondence with (B3),
which indicates the derived effective Hamiltonian maintains
the chiral symmetry of the total Hamiltonian.

Corresponding with (B5), it further follows from (16) that

Ĥeff (z)|ψ〉 = z|ψ〉 ⇒ Ĥeff (−z)σz|ψ〉 = −zσz|ψ〉. (17)

FIG. 4. The EP manifolds for v = 0.3 and L = 0.1. (a) EP sur-
face in the B-space. (b) Real part of the complex eigenvalues on the
Bx-By plane where the EP ring appears at |B| = BEP,−. Note B has a
dimension of energy with an energy unit of J = 1.

This relation ensures the appearance of pairs of solutions
with opposite signs in addition to the complex-conjugate pair
solutions due to the dynamical symmetry as mentioned just
below (14). As a result of the combination of the dynamical
symmetry and the chiral symmetry, the complex eigenvalues
are obtained as a set of four solutions in the form

resonance

{
z1 = α − iβ,

z̄1 = −α − iβ,
antiresonance

{
z∗

1 = α + iβ,

z̄∗
1 = −α + iβ,

(18)

with α, β > 0. Here we denote the upper bar and asterisk
as taking the opposite sign of the real and imaginary parts,
respectively, i.e., −z = z̄∗. The advantage of our theory is
that we can deal with the two different types of symmetry
breaking, the dynamical symmetry, and the chiral symmetry
breaking in a unified manner. The effective Hamiltonian main-
tains the symmetry of the original Hamiltonian by correctly
taking into account the energy dependence of the self-energy.

The characteristic equation is then given by

{(v − L)2 − 1}{(v + L)2 − 1}z4

+[4(v2 + L2)2 − 2(v2 − L2)2(v2 + L2 + 1)

−B2{(v2 − L2)2 − 2(v2 + L2 − 1)}]z2

+{B2 + (v2 − L2)2}2 = 0, (19)

where the quartic polynomial equation in z reduces to a
quadratic polynomial equation of z2. This form is the same
as studied in the context of parametric amplification in the
dynamical Casimir system [68,69] where it was shown that
the symplectic symmetry of the system is crucial to cause the
EP singularity.

The EP singularities are determined by solving the discrim-
inant equation of (19),

D(B; v, L) = B4 + 4(v2 + L2 − 1)B2 + 16v2L2 = 0, (20)

which gives the EP singularities at B = BEP,±, where

(BEP,±)2 = 2{(1 − v2 − L2)

±
√

(1 − v2 − L2)2 − 4v2L2} > 0 . (21)

Taking into account that 2J = 2 	 v � L, we approxi-
mately obtain BEP,− � 2vL and BEP,+ � 2. We note that the
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FIG. 5. Eigenvalues of the effective Hamiltonian as a function
of B perpendicular to L when θB = π/2 (Bz = 0) for v = 0.3 and
L = 0.1. (a) Real part and (b) imaginary part. The gray lines in (a) are
guidelines for the unperturbed energies. The spectra of the real and
imaginary parts are shown in the expanded horizontal scale in (c) and
(d), respectively. The arrows indicate BEP,+ in (b) and BEP,− in (c) and
(d). The energy unit is taken as J = 1.

appearances of the two EP singularities have different origins:
BEP,+ is due to the resonance singularity at which the discrete
Zeeman levels are in resonance with the conduction band so
that its emergence does not depend on the orientation of the
external magnetic field. On the other hand, the emergence
of BEP,− relies on the orthogonal orientation of the external
magnetic field to the direction of the orbital angular momen-
tum satisfying the chiral symmetry under the condition of
the resonance and antiresonance splittings shown in Eq. (18).
In this sense, we will call BEP,+ and BEP,− the dynamical
symmetry-breaking and the chiral symmetry-breaking points.
Since the chiral symmetry-breaking point BEP,− appears only
on the Bz = 0 plane, it forms an EP ring structure, whereas
BEP,+ corresponds to the EP surface.

We show in Fig. 5 the complex eigenvalues of the effective
Hamiltonian at Bz = 0 where the real and imaginary parts
are depicted in (a) and (b), respectively. The arrow in (b)
indicates the dynamical symmetry-breaking point at BEP,+.
We show the real and imaginary parts in Figs. 5(c) and 5(d),
respectively, in the expanded scale around BEP,− where the
arrows indicate the chiral symmetry-breaking points. Since
this EP singularity appears only at Bz = 0, we see the EP ring
structure on the Bx-By plane as shown in Fig. 4(b).

Here we compare our results with a phenomenological
parity-time (PT) Hamiltonian model which has been used
to study the exceptional rings and surfaces [25,26,29,30,32].
In the phenomenological PT model, the dissipation term is
represented by an imaginary constant, such as iγ . Indeed,
when we approximate Σ (z) by −i in (13), then the effective
Hamiltonian is approximated by

Ĥeff (B) � −i(v2 + L2) −
(

Bz − 2ivL Bx − iBy

Bx + iBy −Bz + 2ivL

)
.

(22)

For Bz = 0,

Ĥeff (B) = −i(v2 + L2) + ĤPT(B), (23)

where ĤPT(B) is a phenomenological PT-symmetric Hamilto-
nian,

ĤPT(B) =
( −2ivL Bx − iBy

Bx + iBy 2ivL

)
. (24)

The eigenvalues are given by

zPT,± = −i(v2 + L2) ±
√(

B2
x + B2

y

) − 4v2L2. (25)

Therefore, this phenomenological treatment can also predict
the emergence of the EP ring at BPT,EP,− = 2vL for the Bz = 0
case. However, the phenomenological model gives only the
resonance eigenstates but not the antiresonance eigenstates
that are also necessary to construct the Liouville-space basis
in the calculation of the SSESR. On the other hand, in the
present paper, we have obtained a set of four solutions (18) by
taking into account the energy-dependent self-energy.

IV. NONLINEAR COHERENT SSESR SPECTRUM
IN THE LIOUVILLE SPACE

The EP singularities revealed in the preceding section
significantly influence the ultrafast single-spin resonance
spectroscopy. We consider the pump-probe single-spin free
induction decay for the present system. In the pump-probe
process, an electron with spin parallel to the external static
magnetic-field B is transferred from the STM tip to the donor
site by the pump electric field. The interaction with the pump
field is described by

V̂ (t ) = E∗(t )|S, B+〉〈0, B+| + E (t )|0, B+〉〈S, B+|, (26)

where |S, B+〉 denotes an electronic state with the spin parallel
to the external magnetic field at the STM tip, and E (t ) [E∗(t )]
denotes the electric pump-pulse field.

After some delay time t1, we introduce the probe mi-
crowave magnetic field to induce the transition between the
Zeeman split states. The interaction of the electronic spin and
the probe magnetic-field B1(r, t ) which is localized on the
donor site is given by

Ŵ (t ) = −gB

∫
ŝ(r) · B1(r, t )d3r. (27)

The probe magnetic impulsive pulse for the free induction
decay is represented by

B1(rD, t ) = B1(rD, t − t1) + B∗
1 (rD, t − t1), (28)

where B1(r, t ) and B∗
1 (r, t ) are the fields which are assumed

to be localized at the donor site.
We measure the induced spin polarization at the donor site

in terms of the Liouville-space representation [59,70–75]. The
third-order induced spin polarization is given by

s(rD, t ) = (−i)3
∫ t

t0

dτ3

∫ τ3

t0

dτ2

∫ τ2

t0

dτ1〈〈ŝ(rD)|e−iLtot (t−τ3 )

× W (τ3)e−iLtot (τ3−τ2 )V (τ2)e−iLtot (τ2−τ1 )

× V (τ1)e−iLtot (τ1−t0 )|ρ(0)〉〉, (29)
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FIG. 6. Double-sided Feynman diagrams for the coherent ESR
spectroscopy. The wavy line indicates the interaction with the pump
excitation pulse, and the arrow indicates the interaction with the
probe magnetic pulse field.

where Ltot is the Liouvillian superoperator in the Liouville
space defined by Ltot· ≡ [Ĥtot, ·], and |ρ(0)〉〉 is the initial-

state density operator at an initial time t0,

|ρ(0)〉〉 = |S, B+; S, B+〉〉. (30)

In (29), the curly operators denote the superoperators cor-
responding to the Hilbert space operators. It is essential to
describe the coherent spectroscopy in terms of the Liouville-
space representation in order to register the correct decay
processes [34,61]. We have shown in Fig. 6 the double-sided
Feynman diagram corresponding to the Liouville-space path-
way of (32).

In the present paper, we consider the impulsive pulses of
the electric pump and magnetic probe fields as

E (t ), E∗(t ),B1(rD, t ),B∗
1 (rD, t ) ∝ δ(t ). (31)

We represent (29) in terms of the Liouville-space basis defined
by (D3) where we have utilized the complex eigenstates of the
total Hamiltonian defined by (10). The explicit representation
of the complex eigenstates of the total Hamiltonian are given
in Appendix C. Applying (D6) to (29), we have obtained the
induced spin-polarization component as

si(rD, t ) � (−i)3
∑

ξ,ξ ′,ξ ′′
e−i�ξ ′′ ,ξ ′ (t−t1 )e−i�ξ,ξ ′ t1〈〈ŝi(rD)|φξ ′′ ; φξ ′ 〉〉〈〈φ̃ξ ′′ ; φ̃ξ ′ |W (t1)|φξ ; φξ ′ 〉〉〈〈φ̃ξ ; φ̃ξ ′ |0, B+; 0, B+〉〉, (32)

where ξ, ξ ′, ξ ′′ denote the discrete resonance eigenstates �ξ,ξ ′ = zξ − z∗
ξ ′ and we neglect the contributions from the continuous

states, assuming weak couplings of v and L.
With use of (D3), we obtain the non-linear-response function for si(rD, t ) to the probe field component B1, j as

Fi, j (t2, t1) = 4gB

∑
ξ,ξ ′,ξ ′′

Im[e−i�ξ ′′ ,ξ ′ t2 e−i�ξ,ξ ′ t1〈0, B+|φ̃ξ ′ 〉〈φξ ′ |ŝi(rD)|φξ ′′ 〉〈φ̃ξ ′′ |ŝ j (rD)|φξ 〉〈φ̃ξ |0, B+〉], (33)

where t2 ≡ t − t1. By the two-dimensional Fourier transformation, we obtain the 2DFT SSESR spectrum in the frequency domain
as

χi, j (ω2, ω1) ≡ 4gB

∑
ξ,ξ ′,ξ ′′

Im

[∫ ∞

0
dt2

∫ ∞

0
dt1eiω2t2+iω1t1 e−i�ξ ′′ ,ξ ′ t2−i�ξ,ξ ′ t1〈0, B+|φ̃ξ ′ 〉〈φξ ′ |ŝi(rD)|φξ ′′ 〉〈φ̃ξ ′′ |ŝ j (rD)|φξ 〉〈φ̃ξ |0, B+〉

]

= −4gB

∑
ξ,ξ ′,ξ ′′

Im

[
1

ω2 − �ξ ′′,ξ ′

1

ω1 − �ξ,ξ ′
〈0, B+|φ̃ξ ′ 〉〈φξ ′ |ŝi(rD)|φξ ′′ 〉〈φ̃ξ ′′ |ŝ j (rD)|φξ 〉〈φ̃ξ |0, B+〉

]
(34a)

≡ −4gB

∑
ξ,ξ ′,ξ ′′

Im
[
χ

(ξ,ξ ′,ξ ′′ )
i, j (ω2, ω1)

]
, (34b)

where the spectrum of ω1 indicates the spin-polarization coherence with the pump process, whereas that of ω2 indicates the
induced polarization by the probe pulse. The selection rule for the allowed transition under the far-off resonant case is given by

〈0, B+|ŝi(rD)ŝ j (rD)|0, B+〉 =
{ i

2 〈0, B+|ŝk (rD)|0, B+〉εi jk,

δi, j,
(35)

where εi jk is the Levy-Civita symbol. It is seen from (34) that the quantum coherence between the resonance states is reflected
in the cross correlation of ω1 and ω2 in the 2DFT SSESR spectrum [58,60].

We have derived the explicit form of the discrete eigenstates of the total Hamiltonian in terms of the projection method given
by (C11) and (C12) as

|φξ 〉 = 1

N 1/2
ξ

[{
|0,+〉 + (v + L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,+〉
}

+ Bx + iBy

Bz + (v − L)2Σ+(zξ ) − zξ

{
|0,−〉 + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,−〉
}]

, (36a)
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〈φ̃ξ | = 1

N 1/2
ξ

[{
〈0,+| + (v + L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,+|
}

+ Bx − iBy

Bz + (v − L)2Σ+(zξ ) − zξ

{
〈0,−| + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,−|
}]

, (36b)

where the normalization factor is given by

Nξ =
(

1 − (v + L)2 d

dz
Σ+(zξ )

)
+

(
1 − (v − L)2 d

dz
Σ+(zξ )

)
zξ + Bz − (v + L)2Σ+(zξ )

zξ − Bz − (v − L)2Σ+(zξ )
. (37)

With use of the explicit forms of the transition matrix elements given in (C19), we find that each term of the two-dimensional
Fourier transform spectrum is proportional to the product of the normalization factors,

χ
(ξ,ξ ′,ξ ′′ )
i, j (ω2, ω1) ∝ 1

NξNξ ′′N ∗
ξ ′

1

ω2 − �ξ ′′,ξ ′

1

ω1 − �ξ,ξ ′
. (38)

The first factors (the normalization constants) represent the Peterman effect, and the second and third resonance factors (the
propagators) represent the Purcell effect [20,22].

We have also calculated the 1DFT for the sudden excitation of the probe pulse at t1 = 0 [60], which reads

Si, j (ω2) = 4gB

∑
ξ ′,ξ ′′

Re

[
1

ω2 − �ξ ′′,ξ ′
〈0, B+|φ̃ξ ′ 〉〈φξ ′ |ŝi(rD)|φξ ′′ 〉〈φ̃ξ ′′ |ŝ j (rD)|0, B+〉

]
(39)

≡ 4gB

∑
ξ ′,ξ ′′

Re
[
S (ξ ′,ξ ′′ )

i, j (ω2)
]
. (40)

Each term of S (ξ ′,ξ ′′ )
i, j is also composed of a normalization

factor and a resonance enhancement factor as

S (ξ ′,ξ ′′ )
i, j (ω2) ∝ 1

N ∗
ξ ′Nξ ′′

1

ω2 − �ξ ′′,ξ ′
. (41)

It is seen from comparison of (38) and (41) that the
2DFT spectrum is relatively more enhanced than the 1DFT
spectrum.

We show in Fig. 7 the 1DFT SSESR spectrum when the
external magnetic field is directed parallel to the molecular
field: (a) Bz = 0.5, (b) Bz = 0.1, and (c) Bz = 0.02, whereas
Bx = By = 0. In this case, since the spin states are decoupled
into the up- and down-spin subspaces, it is easy to evaluate the
1DFT SSESR spectrum. Here we evaluate the Sx,x component
shown in Fig. 7(a) in the resonance pole approximation as

Sx,x(ω2) = 4gB|〈0, B+|φ̃+〉|2Re

[ 〈φ+|ŝx|φ−〉〈φ̃−|ŝx|φ+〉
ω2 − �φ−,φ+

]
(42a)

� 4gB
ω2 − 2Bz

(ω2 − 2Bz )2 + 4γ 2(v2 + L2)2
, (42b)

with γ defined by

γ ≡ |Im Σ (Bz )| = 1
2

√
4 − B2

z . (43)

In (42a), we have used �φ−,φ+ � 2Bz + 2iγ (v2 + L2),
〈φ+|ŝx|φ−〉 � 〈φ̃−|ŝx|φ+〉 � 1, and |〈0, B+|φ̃+〉|2 � 1 as eval-
uated in (C19), which are good approximations for Bz � 2.
Therefore, the Sx,x component is represented by a dispersion-
type function with the node at ω2 = 2Bz and the width of
2γ (v2 + L2). As shown in the top row of Fig. 7 as Bz de-
creases, the node position of Sx,x shifts from (a) ω2 � 1.0, (b)
0.2, to (c) 0.04, which corresponds to the decrease in the sep-

aration of the real parts of the eigenvalues shown in Fig. 2(a).
On the other hand, the spectral width of Sx,x becomes slightly
broadened, reflecting the very slight increase in the separation
of the imaginary part of the eigenvalues in Fig. 2(b).

Similarly, the Sy,x component is given by

Sy,x(ω2) = 4gB|〈0, B+|φ̃+〉|2Re

[ 〈φ+|ŝy|φ−〉〈φ−|ŝx|φ+〉
ω2 − �φ−,φ+

]
(44a)

� −8gB
2γ (v2 + L2)

(ω2 − 2B)2 + 4γ 2(v2 + L2)2
, (44b)

i.e., a negative Lorentzian with the peak at ω2 = 2B and the
width 2γ (v2 + L2) where we have used 〈φ+|ŝy|φ−〉 � i in
(44a). As shown in the middle row of Fig. 7, the negative shift
of the peak position and the slight increase in the width also
correspond to the changes in the real and imaginary parts of
the eigenvalues in Figs. 2(a) and 2(b), respectively. The Sz,z

component is also given by the dispersion-type function with
the node at ω2 = 0 and the width of 2γ (v + L)2 as

Sz,z(ω2) = 4gB|〈0, B+|φ̃+〉|2Re

[ 〈φ+|ŝz|φ+〉〈φ+|ŝz|φ+〉
ω2 − �φ+,φ+

]
(45a)

� 4gB
ω2

ω2
2 + 4γ 2(v + L)4

. (45b)

as shown in the bottom row of Fig. 7, where we have used
〈φ+|ŝz|φ+〉 � 1 and �φ+,φ+ � −2iγ (v + L)2 in (45a). Due to
the symmetry, the other components of Sx,z, Sy,z, Sz,x, and
Sy,z vanish. We show the 2DFT SSESR spectrum in Fig. 8
for the same conditions. The cross correlation between ω1

and ω2 provides us with detailed information about the spin
relaxation at the impurity site.
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FIG. 7. The 1DFT SSESR spectrum Si, j (ω2)/gB for (a) Bz = 0.5 and (b) Bz = 0.1, and (c) Bz = 0.02, where Bx = By = 0. The parameters
are taken as v = 0.3 and L = 0.1. The spectral components Sx,x, Sy,x , and Sz,z are shown in the top, middle, and bottom rows, respectively.
The horizontal axis denotes the frequency of ω2 with a unit of J .

As shown in Figs. 3 and 5, the spin states are coupled
through the spin-orbit interaction when the external magnetic
field is tilted away from the polar axis of L. The change in the
spin states is reflected in the 2DFT SSESR as an anisotropy
in terms of the relative angle between the probe field and
the detection direction. We show in Fig. 9 the 2DFT SSESR
spectrum when the external magnetic field is perpendicular
to the molecular field: (a) Bx = 0.5, (b) Bx = 0.1, and (c)
Bx = 0.02 for By = Bz = 0 where the first–fourth rows are
χy,x, χz,x, χx,y, and χx,z components, respectively. This figure
corresponds to the case of Fig. 5. Although these spectral
components are forbidden by the selection rule for the far-off-
resonant case (35), they become allowed by the introduction
of the spin-orbit coupling whose effect becomes prominent
due to the resonance factor. The cross correlation between ω1

and ω2 provides detailed information on the spin-relaxation
process at the donor site.

Lastly, we show the most striking feature due to the pres-
ence of the EP ring, the giant response from the single-spin
resonance. For the illustration, we show in Fig. 10 the Sz,x

component of the 1DFT SSESR for various values of Bx as we
cross the EP ring singularity, corresponding to Figs. 5(c) and
5(d). As the value of Bx decreases from (l) to (i), the negative
peak position shifts to the lower-frequency side. This peak
position reflects the real Zeeman splitting as 2Bx as shown in
Fig. 5(c). As Bx further decreases and comes close to the BEP,−
singularity, the signal amplitude becomes large and positive as
seen in (f). When Bx crosses over BEP,−, the sign of the signal
flips whereas keeping the large signal amplitude as shown
in (e). Then as Bx decreases, the signal amplitude becomes

small with a dispersion-type function with a node at Bx = 0
as shown in (d) to (a).

The giant response at the EP ring singularity is much
more pronounced in the 2DFT SSESR spectrum. We show
in Fig. 11 the 2DFT SSESR spectral components at Bx =
0.063 27 corresponding to Fig. 10(e). We find a huge signal
amplitude in the spectrum, due to the enhancement from the
normalization constant and the resonance factor as mentioned
in (38). This giant response of the SSESR at the EP singularity
may be very useful for observing the single-spin resonance,
which is very weak under ordinary conditions. Therefore, this
method can potentially provide a powerful tool to observe the
spin-relaxation process with an atomic scale precision.

V. CONCLUDING REMARKS

We have studied the complex eigenenergy structure as-
sociated with the charge-transfer decay of an alkali-doped
polyacetylene molecule under an external static magnetic
field. Starting with the Hermitian Hamiltonian of the total
system, we have derived the non-Hermitian effective Hamil-
tonian where the microscopic spin-dependent decay processes
are incorporated in terms of the energy-dependent self-energy.
The dynamical and chiral symmetries of the total Hamiltonian
are maintained in the effective Hamiltonian.

We have found that the spin-orbit interaction influences the
Zeeman splitting of the spin states at the donor site in the
charge-transfer decay. As a result, the complex eigenenergy
structure exhibits a strong anisotropy in the external magnetic
field: The EP singularity due to the chiral symmetry breaking
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FIG. 8. The 2DFT SSESR spectrum for (a)Bz = 0.5, (b) Bz = 0.1, and (c) Bz = 0.02, where Bx = By = 0. The parameter values are the
same as in Fig. 7. The spectral components of χx,x, χy,x , and χz,z are shown in the top, middle, and bottom views, respectively, where the
spectral intensities are depicted by the color indicators of (χi, j/gB) (a.u.). The horizontal and vertical axes denote the frequency of ω1 and ω2

in an energy unit of J = 1, respectively.

appears when the magnetic field is perpendicular to the molec-
ular field and forms an EP ring. By contrast, the EP singularity
due to the dynamical symmetry breaking appears irrespective
of the field direction yielding an EP surface.

We have revealed that the coherent single-spin-resonance
spectrum is a powerful tool to observe the complex eigenen-
ergy spectrum of the system with atomic precision by using
its sensitivity to the directions of the probe and detection
pulses. For the formulation of the SSESR, we have utilized the
non-linear-response function in the Liouville-space pathway
approach where we have constructed the Liouville-space basis
in terms of the complex eigenstates of the total Hamilto-
nian. We emphasize the importance of the energy dependence
of the self-energy in the Liouville-space formalism. In the
Liouville-space formalism, we need to take into account pairs
of resonance and antiresonance states with complex conju-
gate eigenvalues so that the Liouville basis is consistent with

the second law of thermodynamics, i.e., entropy production
[33,34,61]. The present method properly deals with the dy-
namical symmetry of the total Hermitian Hamiltonian in the
effective Hamiltonian by taking into account the energy de-
pendence of the self-energy.

We have demonstrated that the 1DFT and 2DFT SSESR
spectra probe the spin-relaxation dynamics at the donor site.
Whereas the 1DFT SSESR spectrum reflects the complex
eigenenergy spectrum, the 2DFT gives detailed information
on the quantum coherence in the spin-relaxation dynamics as
a cross correlation between the two frequencies. We found
a giant response in the coherent SSESR around the EP ring
singularity due to the vanishing normalization factors at the
EP ring and the resonance effect. We have discovered that
the giant response is much larger in magnitude in the 2DFT
spectrum than in the 1DFT spectrum. Therefore, the 2DFT
SSESR spectroscopy becomes a promising tool to observe the
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FIG. 9. The 2DFT SSESR spectrum for (a) Bx = 0.5, (b) Bx = 0.1, and (c) Bx = 0.02, where Bz = By = 0 for the same parameters as
in Fig. 5, where the spectral intensities are depicted by the color indicators of (χi, j/gB) (a.u.). The horizontal and vertical axes denote the
frequency of ω1 and ω2 in an energy unit of J = 1, respectively. The first–fourth rows are χy,x, χz,x, χx,y, and χx,z components, respectively,
which are only allowed by the introduction of the spin-orbit coupling.

single-spin response in a molecule in contrast to the ordinary
linear response, such as absorption or spontaneous emission
spectroscopies [22,23].

Several issues remain to be explored further. In this pa-
per, we have focused on the spin-polarized charge-transfer

decay in a polyacetylene molecule due to the spin-orbit cou-
pling. The charge transfer in polyacetylene has also been
investigated in terms of the soliton or polaron formation
accompanied by the structural deformation [44]. Although
we do not take into account the dynamical change in the
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FIG. 10. The Sz,x/gB component of the 1DFT SSESR around the EP ring singularity, which occurs at Bx = BEP,− = 0.063 2808. The
double line between (e) and (f) indicates the edge of the EP ring. The horizontal axis denotes the frequency of ω2 with a unit of J .

molecular structure in this paper because it is considered to
be much slower than the electronic motion, it would be worth
considering the influence of the soliton or polaron motion on
the single-spin-resonance spectroscopy.

We have revealed in Sec. III the appearance of the two
EP singularities: EP surface and EP ring. If the spin-orbit
interaction is large or the conduction bandwidth is small, it
can be shown that the EP ring and EP surface will merge.
It would be interesting to study the response at the merged
singularities where non-Markovian effects might be enhanced
[9,76].

For the detailed study very close to the EP, it would
be better to use a basis that takes into account the pseu-
doeigenstate representations [5]. Otherwise the resonant and
antiresonant state representations may increase numerical er-
ror very close to the EP singularity because the coalesced state
at an EP is self-orthogonal and cannot be normalized. Re-
cently, Hashimoto and Kanki et al. have invented the extended
Jordan block basis which is continuously connected to the
Jordan block exactly at the exceptional point. The extended

Jordan block basis provides a useful way to describe the ob-
servable quantities continuously across the exceptional point
[77–80]. This representation may remove some difficulties
in calculating the ESR spectrum close to the EP singularity.
Moreover, an interesting aspect in the Liouville space repre-
sentation is the order of the EP singularity. Since, as shown
in (D3), the eigenstate of the Liouvillian is given by a dyadic
product of the eigenstates of the Hamiltonian which tend to
the coalesced states of the Hamiltonian at an EP, there are four
eigenstates of the Liouvillian coalescing at the EP, leading to
the EP4 singularity in the Liouville space. This fourth-order
pole structure may be reflected at the EP ring singularity.
Detailed analysis of this EP4 will be performed in the future.

In the present paper, we have adopted the impulsive pulse
limit in the SSESR spectrum to examine the effect of the EP
singularity. Meanwhile, recent advances in the pulse control
technique with the use of phase-locked laser pulse, such as
carrier-envelope-phase control [81], can enable us to study the
single-spin-relaxation process in more detail, such as quantum
decoherence as well as population decay.
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FIG. 11. The 2DFT SSESR spectrum at Bx = 0.063 27 � BEP,− where the spectral intensities are depicted by the color indicators of
(χi, j/gB) (a.u.). The horizontal and vertical axes denote the frequency of ω1 and ω2 in an energy unit of J = 1, respectively.

For the SSESR calculation, we have used the time-
dependent perturbation method in terms of the probe magnetic
pulse field, assuming a weak probe field intensity. However,
this treatment could be reexamined close to the EP singularity
because the interaction energy with the probe pulse becomes
very large even though the field intensity is weak. For the
strong time-dependent external field, the Floquet method
could be applied to the present system in the Liouville space
[82–84].

Lastly, we comment on some applications of the present
methods. In the present paper, we have demonstrated that
the spin-dependent dissipation effect is crucial to the giant
response of the single-spin ESR in mesoscopic materials.
Replacing the impurity atom with a quantum dot, we may
apply the present model to the electron transfer through a
single quantum dot under the external magnetic field [50].
We can also expect that the giant nonlinear response is useful
to control the spin-dependent electronic transport through a
quantum dot used as a qubit in quantum information technol-
ogy. Therefore, the present results can provide new insight to
the research field of spintronics [85].
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APPENDIX A: MATRIX ELEMENTS OF THE ORBITAL
ANGULAR MOMENTUM BETWEEN THE ATOMIC

ORBITALS

In this Appendix, we evaluate the matrix elements of the
orbital angular momentum between the ns orbital of the heavy
alkali donor atom and the 2py orbital of the carbon atom at the
end of the molecule. The matrix elements are given by

li ≡ 〈0, s|l̂i|1, py〉 =
∫

d3r ϕ∗
s (r)l̂iϕy(r − a), (A1)

where we locate the ns donor atomic orbital ϕz at the origin,
and the 2py carbon atomic orbital ϕy is centered at r = a as

043513-13



YUJIN DUNHAM et al. PHYSICAL REVIEW A 103, 043513 (2021)

shown in Fig. 1. The wave functions are given by

ϕy(r) = R21(r){Y1,1(θ, φ) + Y1,−1(θ, φ)}, (A2)

Y1,1(θ, φ) + Y1,−1(θ, φ) =
√

3

8π
sin θ sin φ, (A3)

and the alkali atom ns orbital as

ϕs(r) = ϕs(r) = 1√
4π

Rns(r)e−r . (A4)

Substituting (A2) into (A1), we have after simple calculation,

lz =
√

3

4π

∫
d3r ϕ∗

s

(
r)e−iap̂x

1

i
(a sin2 θ sin2 φ

∂

∂r
R21(r)

+ a
cos2 θ sin2 φ − cos2 φ

r
R21(r) − R21(r) sin θ cos φ

)
.

(A5)

Similarly, we obtain for l̂x and l̂y elements as

lx =
√

3

π

∫
d3r ϕ∗

s (r + a)R21(r) cos θ, (A6)

ly =
√

3

4π
a

∫
d3r ϕ∗

s (r + a)
1

i
sin θ cos θ sin φ

×
(

∂

∂r
R21(r) − 1

r
R21(r)

)
. (A7)

Substituting (A4) into (A5)–(A7), and executing the solid
angle integral, we find

lz = 3

16

√
3

2
πa

∫
dr r2Rns(r + a)e−(r+a) 1

i

∂

∂r
R21(r), (A8)

whereas

lx = ly = 0. (A9)

The radial integral can be performed once the radial wave
function of the atomic orbitals is given.

APPENDIX B: CHIRAL SYMMETRY
OF THE TOTAL HAMILTONIAN

In this Appendix we show the chiral symmetry of the
total system Hamiltonian in the B-parameter space. For this
purpose, we represent the total Hamiltonian in terms of the
alternate site basis which is aligned as

{|0,+〉, |1,−〉, |2,+〉, . . . , |0,−〉, |1,+〉, |2,−〉}. (B1)

The total Hamiltonian is represented by

Ĥtot =

|0,+〉 |1,−〉 |2,+〉 · · · |0,−〉 |1,+〉 |2,−〉 · · ·
〈0,+| εD − Bz 0 0 · · · −Bx + iBy v + L 0 · · ·
〈1,−| 0 0 0 · · · v − L 0 −J · · ·
〈2,+| 0 0 0 · · · 0 −J 0 · · ·

...
...

...
...

...
...

...
...

...

〈0,−| −Bx − iBy v − L 0 · · · εD + Bz 0 0 · · ·
〈1,+| v + L 0 −J · · · 0 0 0 · · ·
〈2,−| 0 −J 0 · · · 0 0 0 · · ·

. (B2)

For εD = 0, we see that the total Hamiltonian satisfies a chiral
symmetry [86] when Bz = 0,

σzĤtotσz = −Ĥtot, (B3)

where σz is an infinite-dimensional matrix for alternate site
basis,

σz ≡
(

I 0
0 −I

)
. (B4)

It follows from (B3) that

Ĥtot|ψ〉 = z|ψ〉 , (B5a)

⇒ σzĤtotσ̄zσ̄z|ψ〉 = zσz|ψ〉, (B5b)

⇒ Ĥtotσ̄z|ψ〉 = −zσ̄z|ψ〉 , (B5c)

which suggests that the eigenvalues of the total Hamiltonian
are obtained as a pair of z and −z at Bz = 0. We note that
when εD �= 0 or Bz �= 0, the chiral symmetry is not satisfied
so that the EP ring does not appear. We have shown that the

total Hamiltonian has a property that it exhibits the chiral sym-
metry at the special chiral configuration in the B space, i.e., at
Bz = 0.

APPENDIX C: COMPLEX EIGENVALUE PROBLEM
OF THE TOTAL HAMILTONIAN

In this Appendix, we derive the effective Hamiltonian in
terms of the BWF projection method. We consider the projec-
tion operator onto the two-spinor at the donor site given by

P̂0 ≡
∑
α=±

|0, α〉〈0, α|, (C1)

and its complement,

Q̂0 ≡ 1 − P̂0 =
∑
α=±

∫
dk|k, α〉〈k, α|. (C2)
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Acting these projection operators on (10) from the left, we have

P̂0ĤtotP̂0|φξ 〉 + P̂0ĤtotQ̂0|φξ 〉 = zξ P̂0|φξ 〉, (C3a)

Q̂0ĤtotP̂0|φξ 〉 + Q̂0ĤtotQ̂0|φξ 〉 = zξ Q̂0|φξ 〉. (C3b)

The effective Hamiltonian is given by

Ĥeff (B; z) = P̂0ĤtotP̂0 + P̂0ĤtotQ̂0
1

z − Q̂0ĤtotQ̂0
Q̂0ĤtotP̂0. (C4)

Evaluating this for the present model gives Eq. (12).
Then the complex eigenvalue problem of the effective Hamiltonian reads

Ĥeff (B; z)P̂0|φξ 〉 = zξ P̂0|φξ 〉, 〈φ̃ξ |P̂0Ĥeff (B; z) = zξ 〈φ̃ξ |P̂0. (C5)

The explicit form of the eigenvalue problem then reads(−Bz + (v + L)2Σ+(zξ ) −Bx + iBy

−Bx − iBy Bz + (v − L)2Σ+(zξ )

)(〈0,+|φξ 〉
〈0,−|φξ 〉

)
= zξ

(〈0,+|φξ 〉
〈0,−|φξ 〉

)
(C6)

for the right eigenstates, and(〈φ̃ξ |0,+〉
〈φ̃ξ |0,−〉

)T (−Bz + (v + L)2Σ+(zξ ) −Bx + iBy

−Bx − iBy Bz + (v − L)2Σ+(zξ )

)
= zξ

(〈φ̃ξ |0,+〉
〈φ̃ξ |0,−〉

)T

(C7)

for the left eigenstates. From these eigenvalue problems, we see the relations,

〈0,−|φξ 〉
〈0,+|φξ 〉 = Bx + iBy

Bz + (v − L)2Σ+(zξ ) − zξ

, (C8a)

〈φ̃ξ |0,−〉
〈φ̃ξ |0,+〉 = Bx − iBy

Bz + (v − L)2Σ+(zξ ) − zξ

, (C8b)

which leads to

〈φ̃ξ |0,−〉〈0,−|φξ 〉
〈φ̃ξ |0,+〉〈0,+|φξ 〉

= B2
x + B2

y

(Bz + (v − L)2Σ+(zξ ) − zξ )2
. (C9)

The eigenstates of the total Hamiltonian are obtained by adding the Q̂0 component as

|φξ 〉 = P̂0|φξ 〉 + Q̂0|φξ 〉 = P̂0|φξ 〉 + 1

zξ − Q̂0ĤtotQ̂0
Q̂0ĤtotP̂0|φξ 〉. (C10)

In the present system, we have obtained

|φξ 〉 = 〈0,+|φξ 〉
{

|0,+〉 + (v + L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,+〉
}

+ 〈0,−|φξ 〉
{

|0,−〉 + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,−〉
}

(C11)

for the discrete right eigenstate with the complex eigenvalue of zξ . Similarly, the discrete left eigenstates are obtained as

〈φ̃ξ |=〈φ̃ξ |0,+〉
{

〈0,+|+(v+L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,+|
}

+ 〈φ̃ξ |0,−〉
{

〈0,−| + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,−|
}

.

(C12)

The normalization factors are determined by the biorthonormality between the right and the left eigenstates as

〈φ̃ξ |φξ ′ 〉 = δξ,ξ ′ . (C13)

The normalization condition requires

1 = 〈φ̃ξ |φξ 〉 = 〈φ̃ξ |0,+〉〈0,+|φξ 〉
{(

1 − (v + L)2 d

dz
Σ+(z)

∣∣∣∣
z=zξ

)
+ 〈φ̃ξ |0,−〉〈0,−|φξ 〉

〈φ̃ξ |0,+〉〈0,+|φξ 〉

(
1 − (v − L)2 d

dz
Σ+(z)

∣∣∣∣
z=zξ

)}
.

(C14)
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Substituting (C9) into (C14), we obtain the normalization factor as

Nξ ≡ (〈φ̃ξ |0,+〉〈0,+|φξ 〉)−1 =
({

1 − (v + L)2 d

dz
Σ+(zξ )

})
+

(
1 − (v − L)2 d

dz
Σ+(zξ )

) (
B2

x + B2
y

)
[Bz + (v − L)2Σ+(zξ ) − zξ ]2

(C15a)

=
({

1 − (v + L)2 d

dz
Σ+(zξ )

})
+

(
1 − (v − L)2 d

dz
Σ+(zξ )

)
zξ + Bz − (v + L)2Σ+(zξ )

zξ − Bz − (v − L)2Σ+(zξ )
. (C15b)

which is the same as (37). Taking

〈φ̃ξ |0,+〉 = 〈0,+|φξ 〉 = N−1/2
ξ , (C16)

the right and left eigenstates for the resonance states are represented by

|φξ 〉 = 1

N 1/2
ξ

[{
|0,+〉 + (v + L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,+〉
}

+ Bx + iBy

Bz + (v − L)2Σ+(zξ ) − zξ

×
{

|0,−〉 + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

|k,−〉
}]

, (C17a)

〈φ̃ξ | = 1

N 1/2
ξ

[{
〈0,+| + (v + L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,+|
}

+ Bx − iBy

Bz + (v − L)2Σ+(zξ ) − zξ

×
{

〈0,−| + (v − L)

√
2

π

∫ π

0
dk

sin k

(z − ωk )+zξ

〈k,−|
}

(C17b)

It should be noted that since the exceptional point is given by the simultaneous solution of the equations,

η+(zξ ) = 0,
d

dz
η+(z) = 0, (C18)

where η+(z) = 0 is the characteristic equation given in (15), Nξ = 0 at the exceptional point. This indicates that the we cannot
normalize the two independent resonance states at the exceptional point [5,77,78,80].

With use of the explicit form of the eigenstates of the total Hamiltonian, the transition matrix elements in the spectrum are
evaluated as

〈φ̃ξ |0, B+〉 = 1

N 1/2
ξ

{
〈0,+|0, B+〉 + 〈0,−|0, B+〉 Bx − iBy

Bz + (v − L)2Σ+(zξ ) − zξ

}
, (C19a)

〈φ̃ξ ′′ |ŝ j |φξ 〉 = 1

N 1/2
ξ ′′

1

N 1/2
ξ

{
〈0,+|ŝ j |0,+〉 + 〈0,+|ŝ j |0,−〉 Bx + iBy

Bz + (v − L)2Σ+(zξ ) − zξ

+〈0,+|ŝ j |0,−〉 Bx − iBy

Bz + (v − L)2Σ+(zξ ′′ ) − zξ ′′

+〈0,−|ŝ j |0,−〉 B2
x + B2

y

(Bz + (v − L)2Σ+(zξ ′′ ) − zξ ′′ )(Bz + (v − L)2Σ+(zξ ) − zξ )

}
, (C19b)

〈φξ ′ |ŝi|φξ ′′ 〉 = 1

N ∗1/2
ξ ′

1

N 1/2
ξ ′′

{
〈0,+|ŝi|0,+〉 + 〈0,+|ŝi|0,−〉 Bx + iBy

Bz + (v − L)2Σ+(zξ ′′ ) − zξ ′′

+〈0,+|ŝi|0,−〉 Bx − iBy

Bz + (v − L)2Σ−(z∗
ξ ′ ) − z∗

ξ ′

+〈0,−|ŝi|0,−〉 B2
x + B2

y

(Bz + (v − L)2Σ+(zξ ′′ ) − zξ ′′ )(Bz + (v − L)2Σ−(z∗
ξ ′ ) − z∗

ξ ′ )

}
, (C19c)

〈0, B+|φ̃ξ ′ 〉 = 1

N ∗1/2
ξ ′

{
〈0, B+|0,+〉 + 〈0, B+|0,−〉 Bx + iBy

Bz + (v − L)2Σ−(z∗
ξ ′ ) − z∗

ξ ′

}
. (C19d)
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APPENDIX D: ANALYTIC CONTINUATION
FOR THE LIOUVILLE PATHWAYS

In this section, we note the direction of the analytic contin-
uation of the Liouville pathway in the double-sided Feynman
diagram where we choose the pathway which is decaying in
the future. Now we consider the transition probability from
state |a〉 to |b〉 as

Pba(t ) = |〈b|e−iĤt |a〉|2. (D1)

In terms of the Liouville pathway representation, we write this
as

Pba(t ) = 〈〈b; b|e−iLt |a; a〉〉. (D2)

We choose the analytic continuation so that the probability
decays for the future. Therefore, we take the Liouville basis
given by [34]

|φξ ; φξ ′ 〉〉 ≡ |φξ 〉〈φξ ′ |, 〈〈φ̃ξ ; φ̃ξ ′ | ≡ |φ̃ξ ′ 〉〈φ̃ξ |, (D3)

where 〈φξ ′ | and 〈φ̃ξ | are Hermitian conjugates of |φξ ′ 〉 and
|φ̃ξ 〉, respectively. Whereas |φξ 〉 and 〈φ̃ξ | are the right- and the

left-complex eigenstates of the Hamiltonian, and the Liouville
bases are the complex eigenstates of the Liouvillian,

L|φξ ; φξ ′ 〉〉 = �ξ,ξ ′ |φξ ; φξ ′ 〉〉, 〈〈φ̃ξ ; φ̃ξ ′ |L = �ξ,ξ ′ 〈〈φ̃ξ ; φ̃ξ ′ |,
(D4)

where

�ξ,ξ ′ = zξ − z∗
ξ ′ . (D5)

This basis satisfies the bicompleteness and the biorthonormal-
ity in the Liouville space as

1=
∑
ξ,ξ ′

|φξ ; φξ ′ 〉〉〈〈φ̃ξ ; φ̃ξ ′ |, 〈〈φ̃ξ ; φ̃ξ ′ |φξ ′′ ; φξ ′′′ 〉〉 = δξ,ξ ′′δξ ′,ξ ′′′ .

(D6)
Substituting (D6) into (D2) we find

Pba(t ) =
∑
ξ,ξ ′

e−i(zξ −z∗
ξ ′ )t 〈b|φξ 〉〈φξ ′ |b〉〈φ̃ξ |a〉〈a|φ̃ξ ′ 〉, (D7)

which decays with the rate Im(zξ − z∗
ξ ′ ) from the contri-

butions of the resonance and antiresonance eigenstates, as
required.
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