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Feedback-induced locking in semiconductor lasers with strong amplitude-phase coupling
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The influence of optical feedback on semiconductor lasers has been a widely studied field of research due to
fundamental interests as well as the optimization of optical data transmission and computing. Recent publications
have shown that it is possible to induce a periodic pulselike output in quantum-dot and quantum-well laser
diodes based on the locking of the external cavity modes and the relaxation oscillation frequency. We present
an in-depth analysis of this effect. We choose submonolayer quantum dots as a gain system, as these provide a
relatively strong amplitude-phase coupling, which has proven to be very beneficial for these locking effects to
occur. By introducing an alternative theoretical model, we can correctly reproduce the essential features of the
gain system and validate them by comparison to our experimental results. From this starting point we can further
explore how the staircase behavior of the oscillation frequency with increasing pump current can be influenced
by changing various laser parameters. The staircase behavior is induced by a reordering of the Hopf bifurcations
giving birth to the regular pulselike oscillations.
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I. INTRODUCTION

Semiconductor lasers have become a central component
of today’s optical data transfer due to their well-established
production and high transmission rates [1,2]. A scheme to
severely influence the dynamics of these lasers is direct optical
feedback [3]. This method, on the one hand, can be used to
stabilize the laser output [4–6] and reduce the linewidth of
the laser [7–9] or the timing jitter of a pulsed output [10–13].
On the other hand, it is a well-established approach to drive
the laser into chaotic regimes [14–18], which can be applied,
e.g., for the encoding of data [19,20] or has to be accounted
for as a detrimental effect in communication lines. Moreover,
lasers subject to feedback are also an interesting candidate to
implement computation schemes such as reservoir computing
[21–24].

Recent works on quantum-dot and quantum-well lasers
under optical feedback have shown that a locking between
the external cavity modes and the relaxation oscillation fre-
quency of the continuous-wave (cw) solution can lead to a
periodic pulselike laser output [25,26]. Similar effects have
also been observed for laser diodes with a three-dimensional
(3D) gain medium [27–32] as well as quantum-dash lasers
under optoelectronic feedback [33,34]. As the deterministic
generation mechanism of the periodic states lies within the
locking of the internal and external frequency components and
therefore requires them to be close together, these oscillations
are different from the high-frequency oscillations occurring
for short optical feedback [35], pure frequency oscillations
[31,36], or noise-driven low-frequency oscillations [37,38].
Moreover, the analysis of the locking effect suggested that
a high damping and a strong amplitude-phase coupling are
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very beneficial for the transition from cw lasing to periodic
dynamics at experimentally observable feedback strengths
[26,39]. However, the resulting oscillations mostly occur as
an unwanted effect for applications, as the resulting pulselike
oscillations are not of the quality of high-performance mode-
locked devices [40–42] or optical solitons [43,44] or rogue
waves [45].

In order to underline the generality of this feedback ef-
fect in terms of the choice of the gain medium, we utilize a
laser diode based on submonolayer quantum dots (SMLQDs)
[46,47]. These 0D localization centers have higher areal den-
sity than conventional quantum dots [1,48,49] and therefore
provide a higher gain per unit length [50]. Furthermore, these
structures exhibit a strong amplitude-phase coupling, i.e., high
α-factor, and preserve advantages such as suppressed carrier
diffusion, high gain and phase recovery, and low degradation
rates [51–56]. Submonolayer quantum dots have been suc-
cessfully implemented as a gain medium in laser diodes as
well as external cavity lasers [57–60].

In this paper we theoretically and experimentally investi-
gate a SMLQD laser diode subject to filtered optical feedback
at intermediate feedback lengths with respect to the relaxation
oscillation timescale (τ = 3.8 ns). We observe delay-induced
higher-order locking effects also found for quantum-well and
quantum-dot gain media [25,26]. This highlights that the
applied optical feedback is the driving force of the lock-
ing as it has a much greater influence than the choice of
the gain medium. We support the experimental evidence by
developing a relatively simple theoretical SML-QD model
which retains the most relevant timescales for the locking
effects, i.e., the relaxation oscillations [52], and validate it
by comparison to experimental findings. From that start-
ing point, we gain physical insight into the emergence of
the feedback-induced pulselike oscillations by a detailed
bifurcation analysis. Hence, we are able to unravel the under-
lying generation mechanism of a staircase dependence of the
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oscillation period on the pump current. Additionally, we
discuss how the relaxation oscillations can be altered to in-
fluence the staircase and furthermore discuss the role of the
amplitude-phase coupling for the occurrence of the pulselike
states in a large parameter regime. The staircase behavior
can potentially be exploited to construct a tunable pho-
tonic microwave source, which only relies on a single laser
device [34,61,62]. Furthermore, the generality and deeper
understanding of the locking effect with respect to several
parameters can be of use in applications which require a
stable continuous-wave output and optical feedback occurs as
a detrimental effect.

II. EXPERIMENTAL SETUP AND LASER DEVICE

As their name suggests, submonolayer quantum dots are
grown by repeatedly depositing layers of a lower-band-gap
material in between a higher-band-gap material (e.g., InAs
layers on GaAs bulk) [46,47]. These layers have a thickness
below one monolayer (ML). Due to a vertically correlated
growth caused by local strain effects, 0D localization centers
form with a high areal density providing a high gain per unit
length [51–53]. The investigated SMQLD p-i-n laser diode
was grown utilizing metal organic vapor phase epitaxy. The
active section consisted of 15-fold deposition of 0.73 ML
InAs and 1.13 ML GaAs, respectively. This results in an
active section width of 8 nm, embedded in 10-nm spacers
of GaAs bulk material. A shallow etched waveguide provided
single-mode operation via gain guiding. The laser diode had
a longitudinal cavity length of 0.5 mm. The optical power
spectra were measured with a fiber-coupled optical spectrum
analyzer (Hewlett Packard 70952B) and the radio-frequency
(rf) spectra were obtained using a fiber-coupled high-speed
photodetector with a bandwidth of � fPD = 12 GHz (New
Focus 1544-A-50) read out by an electrical spectrum ana-
lyzer (Rohde & Schwarz FSC3 Spectrum Analyzer) of which
the resolution bandwidth was set to � fRBW = 1 MHz and
video bandwidth to � fRBW = 1 kHz for all measurements.
Time traces of the laser dynamics were recorded utilizing a
real-time oscilloscope with a bandwidth of � fosc = 1 GHz.
The Fabry-Pérot laser was installed in the external cavity
setup schematically shown in Fig. 1(a). By adding an etalon
with a transmission linewidth of 0.4 nm at full width at half
maximum into the feedback arm (left), it was possible to
select a single lasing mode for the feedback. The optical
spectral properties of the free-running device are displayed in
Figs. 1(b) and 1(c). A highly resolved spectrum is shown in
Fig. 1(b), with a blue line indicating the mode for which the
maximum feedback was possible. The low-resolution spectra
for different pump currents in Fig. 1(c) clearly indicate the
emergence of lasing modes of the free-running device above
the threshold of Jth = 6.4 mA.

III. THEORETICAL MODEL

In order to reproduce the dynamics of the investigated
device we develop a model based upon the phenomenological
approach carried out in [52,55], where the SMLQDs were
divided into subgroups based on their confinement energy
and their respective density of states. To arrive at the model

FIG. 1. (a) Experimental setup utilized to investigate the effect
of feedback on a SMLQD laser. An etalon in the feedback arm (left)
enables single-mode operation. The detection arm (right) includes
an electrical spectrum analyzer (ESA), an optical spectrum analyzer
(OSA), and a real-time oscilloscope (RTO). The attenuation of the
neutral density (ND) filter is determined using a photodetector (PM)
and a laser diode (LD). (b) Optical spectrum (resolution 0.08 nm)
of the free-running laser, with the investigated mode to which the
etalon was tuned marked by a vertical blue line. (c) Coarsely resolved
spectrum (resolution 2 nm) at different pump currents, indicating
the emergence of a lasing mode closely above the threshold of
Jth = 6.4 mA.

presented here, an average over the submonolayer subgroups
is performed, which is justified by the fact that the investi-
gated locking effects occur on a much longer timescale than
the diffusive coupling between the subgroups [52]. The av-
eraging also leads to the neglect of spectral hole burning,
which can be justified by the fact that in the investigated
regimes of low pump currents J < 1.5Jth, the gain increases
linearly with J and no gain saturation is observed [51,56]. The
amplitude-phase coupling, including the role of the inactive
states, is approximated by a constant large α-factor. This also
results from the lateral coupling and the size of the inactive
reservoir leading to a higher phase response compared to
conventional quantum-dots [50,55]. Another critical aspect to
take into account is the differing relaxation rates of bulk and
SMLQD states in the gain. The model describes the dynamics
of the device in terms of the complex intracavity, dimension-
less electric field E (t ) within the slowly varying envelope
approximation, the submonolayer quantum-dot occupation
probability ρ(t ), and the bulk reservoir charge-carrier density
n(t ). The resulting equations read

d

dt
E (t ) = 1

2
{g[2ρ(t ) − 1](1 − iα) − T −1

ph }E (t )

+ K

2Tph
eiCE (t − τ ) + F (t ), (1)
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TABLE I. Parameter values used for the theoretical investigation
of the SMLQD device, unless indicated otherwise.

Symbol Value Symbol Value

Jth 379 × 1011 ns−1 cm−2 Jtr 223 × 1011 ns−1 cm−2

ε̄SML 0.06 eV hbulk 53.0 nm
α 5 T 300 K

nSML 3.3 × 1011 cm−2 m∗ 0.07me

τ 3.8 ns g 185 ns−1

Tph 9 ps Tρ 0.066 ns
Tn 0.5 ns R0 240 ns−1

K 0 C 0

d

dt
ρ(t ) = − 1

Tρ

ρ(t ) + R[ρeq(t, n) − ρ(t )]

− g[2ρ(t ) − 1]|E (t )|2, (2)

d

dt
n(t ) = − 1

Tn
n(t ) + J

hbulk
− 2nSML

hbulk
R[ρeq(t, n) − ρ(t )],(3)

where g is the differential gain coefficient, α the amplitude-
phase coupling coefficient, Tph the photon lifetime, K the
relative feedback strength, C the relative feedback phase, τ

the external cavity round-trip time (feedback time), F (t ) a
δ-correlated complex Gaussian Langevin noise term, Tρ the
SMLQD lifetime, hbulk the effective bulk reservoir thickness,
R the SMLQD-bulk coupling rate, J the pump current density,
Tn the bulk carrier lifetime, nSML the SMLQD area density,
and ρeq(t, n) the SMLQD quasiequilibrium occupation prob-
ability, which follows a Fermi function of which the chemical
potential depends on the charge carrier density n. Details
on the determination of the SMLQD equilibrium occupation
probability ρeq(t, n) are given in Appendix A. The SMLQD-
bulk coupling rate is modeled with a quadratic dependence on
the pump current density

R = R0

( J

Jtr

)2

, (4)

where Jtr is the transparency pump current and R0 is the
coupling rate at transparency. The quadratic dependence of
R on the pump current J models the behavior of the charge-
carrier scattering rates from the 3D bulk reservoir into the
0D SMLQD states [52,63]. The feedback term is included
as proposed by Lang and Kobayashi [64–69] and is valid
for the low feedback strength (K < 0.1) investigated in this
paper. It has to be pointed out that the laser is modeled to be
in single-mode operation and therefore the feedback is also
single mode. This is supported by the fact that by tuning the
etalon to a desired mode as indicated in Fig. 1(b), already
low feedback is sufficient to suppress the other modes (see
Appendix C).

In order to adjust the parameters relating the SMLQD
model (1)–(3) and the experimentally investigated device, we
measure the relative intensity noise (RIN) spectrum at differ-
ent pump currents without feedback (multimode operation)
as shown in Fig. 2(a). Applying the fit proposed in [70] and
indicated by black lines in Fig. 2(a), we are able to extract the
relaxation oscillation (RO) frequency of the free-running laser
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FIG. 2. (a) Relative intensity noise spectra of the free-running
laser measured at different pump currents given in the legend, with a
noise-equivalent power of 27 pW/

√
Hz. The RIN spectra were fitted

according to the routine introduced in [70,71] to extract the relax-
ation oscillation frequency at each pump current. (b) Blue circles
show the experimentally determined relaxation oscillations and the
red line shows the evolution of the relaxation oscillation frequency
with increasing pump current J (normalized to the lasing threshold
Jth) obtained by implementing the model (1)–(3) in DDE-BIFTOOL.
The parameters used are shown in Table I.

from each RIN spectrum. The resulting experimentally deter-
mined relationship of the RO frequency and the pump current
is shown by the blue circles in Fig. 2(b). Implementing the
system (1)–(3) in the path continuation software DDE-BIFTOOL

[72] makes it possible to continue the cw solution in J . We
execute this in the regime of zero feedback K = 0 and identify
the RO frequency at each pump current as the imaginary part
of the largest nontrivial (nonzero) eigenvalue. The eigenval-
ues can be found by applying a linear stability analysis for
each point of the cw solution branch. In order to adapt the
parameters used in the theoretical model to the investigated
device we adjust the parameters so that the simulated re-
laxation oscillations fit well to the experimentally obtained
values. On that account, we slightly adjust the relaxation
times and the coupling R0 obtained for a similar laser device
presented in Ref. [52]. The parameters chosen in the further
course of this paper are given in Table I, if not indicated
otherwise. We achieve good qualitative agreement between
the relaxation oscillation frequencies determined via exper-
imental (blue circles) and theoretical methods (red line) as
displayed in Fig. 2(b). We choose a high α-factor to take into
account the contribution of the inactive SMLQDs, which is
also justified by experimental findings predicting an α-factor
between 2.5 and 8 for SMLQDs [55].

IV. EMERGENCE OF PERIODIC OSCILLATIONS

When introducing single-mode feedback to the SMLQD
laser device we find that above a critical feedback strength
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FIG. 3. (a)–(f) Experimentally measured time series and cor-
responding normalized rf spectra at a pump current of J/Jth =
1.4, 1.4, 1.25 from left to right. (g)–(l) Simulated data that qualita-
tively reproduce the experimentally obtained time series and spectra,
with pump currents of J/Jth = 1.09, 1.11, 1.11 from left to right. All
other parameters are as given in Table I. The minimum intensity has
been subtracted as an offset.

the cw dynamics switches to a periodic orbit characterized by
a pulselike laser output, as shown in real-time oscilloscope
traces of the laser intensity I = |E |2 in Figs. 3(a) and 3(b).
The measurements were taken at increasing feedback rates
of κ = 3.2 and 4.1 ns−1, where κ is the effective feedback
rate calculated from the differences in the laser P-I curve
of the laser device under feedback and in freerunning oper-
ation (see Appendix B). It is possible to identify a transition
from a pulselike regular periodic orbit to a more irregular or
chaotic behavior at increasing feedback strength. This is also
supported by the corresponding rf spectra shown in Figs. 3(d)–
3(f). At low frequencies ( f < 1.5 GHz) we clearly obtain
mode peaks several magnitudes above the background. These
modes are separated by approximately 1/τ = 0.26 GHz, i.e.,
the inverse of the feedback time (τ = 3.8 ns). At higher
feedback strengths the peak power of the modes decreases
drastically relative to the background [see Fig. 3(e)]. This
evolution continues when increasing the feedback strength
even further, as shown in the rf spectrum in Fig. 3(f) obtained
at κ = 7.3 ns−1, which corresponds to the chaotic time series

in Fig. 3(c). The transition of the dynamics with increasing
feedback strength can qualitatively be reproduced utilizing the
introduced SMLQD laser model. At low feedback strength
we find regular pulselike solutions, which are characterized
by strong locking peaks at the dominant frequencies in the
rf spectrum as indicated in Figs. 3(g) and 3(j). With increas-
ing feedback strength the locking is less pronounced [see
Fig. 3(l)] and we therefore find chaotic solutions as shown
by the time series in Fig. 3(i).

This phase-locking effect, in which the phases of exter-
nal cavity modes (ECMs) and the relaxation oscillation lock,
was analogously found when investigating quantum-dot and
quantum-well lasers [25,26] as well as optoelectronic feed-
back [33,34]. Our findings also support the claim that a high
damping, also typical for SMLQD lasers [52], is beneficial for
this locking effect to occur at intermediate feedback strengths
without generating chaotic dynamics [26,73]. Furthermore,
experimental and theoretical findings as well as this work
suggest an intermediate feedback length of 1 ns < τ < 10 ns
close to the relaxation oscillation period being advantageous
for this type of locking effects [25,26,30,32,74]. For a more
in-depth analysis of the underlying dynamical transitions we
continuously decrease the feedback rate starting from the
maximum achievable value and measure the rf spectra of
the laser output at each feedback strength. The result of the
experimentally obtained data for different pump currents is
indicated in the 2D plots in Figs. 4(a)–4(c), with the color
code indicating the spectral power. One can note narrow lock-
ing peaks several magnitudes above the background in an
intermediate region of feedback strengths between κ = 1.5
and 4 ns−1, which indicates the presence of regular periodic
orbits in this regime. At higher feedback strengths, the back-
ground increases and the peaks broaden, suggesting chaotic
dynamics. With increasing pump currents from Fig. 4(a) to
Fig. 4(c), the onset of the chaotic dynamics shifts to higher
feedback strengths. Applying the theoretical model, we can
also predict this feedback effect, as the calculated spectra
show the same behavior [Figs. 4(d)–4(f)]. At low feedback
(0.01 < K < 0.05) sharp and well-separated peaks of the os-
cillatory modes can be found. However, when increasing the
feedback strengths, the modes smear out and chaotic behav-
ior emerges, with the boundary between periodic orbits and
chaotic dynamics slightly shifting to higher K with increasing
pump current.

By performing further sweeps of the feedback rate while
measuring the rf spectra for different pump currents we can
also get a broader overview of the dynamics in the 2D (J, κ )
plane. We distinguish the different dynamical regimes accord-
ing to their rf spectra and cross-check with the measured time
series of the laser output. The result is presented in Fig. 5.
We find that for all pump currents the device turns from cw
dynamics to a periodic output state. As described before, the
laser destabilizes into a chaotic state at higher feedback rates
(gray areas in Fig. 5). The transition to chaos, either mediated
by a period-doubling cascade or quasiperiodic transition, is a
well-known feedback effect [32,73,75], whereas the locking
behavior at intermediate feedback strengths is the same effect
found for quantum-dot, quantum-well, or 3D bulk laser diodes
under optical feedback [25–27,29,31,34,39].
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FIG. 4. (a)–(c) Experimentally obtained rf spectra at different
feedback rates κ (see Appendix B). The normalized spectral power is
given by the color code. The pump current was increased from top to
bottom according to J/Jth = 1.33, 1.41, 1.48. (d)–(f) The rf spectra
generated by direct numerical integration of the SMLQD model at
different feedback strengths K , with increasing pump currents from
top to bottom J/Jth = 1.19, 1.26, 1.32. The spectral power of the
experimental data was multiplied by 103 for better comparability. All
other parameters are as given in Table I.

cw

FIG. 5. Experimentally obtained map of the laser dynamics in
the (J, κ ) plane. The dynamical regimes are distinguished according
to the rf spectra: Continuous-wave dynamics (cw) is characterized
by a low-rf signal, periodic dynamics is characterized clear locking
peaks with a low background [Fig. 3(d)], and chaotic or quasiperi-
odic (QP) dynamics refers to broadened spectral peaks and a high
background [Fig. 3(f)].
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FIG. 6. One-dimensional bifurcation diagram showing the max-
imum intensity as a function of the feedback strength K for (a) the
continuous-wave ECM solutions and (b) the cw solution (cyan) and
periodic orbits (green). Thick (thin) lines denote stable (unstable)
dynamics. The three periodic orbits in (b) are born in subsequent
Hopf bifurcations H1–3 along the cw branch and can be distinguished
according to the oscillation period of the born solutions, separated by
integer multiples of the inverse feedback time n/τ = 0.26 GHz. The
torus bifurcations T1–3 are marked by the colored circles. (c) Dynam-
ics obtained performing a direct numerical integration (upsweep),
showing the unique intensity maxima found in 200 external cavity
round-trips at each K . Chaotic or quasiperiodic regimes are indicated
in gray. All parameters are as in Table I and J/Jth = 1.19.

V. BIFURCATION ANALYSIS

In order to understand the generation mechanisms of the
different dynamical regimes, we investigate the role of the
gain g, the pump current J , and the α-factor by performing
direct numerical integrations as well as path continuation
utilizing DDE-BIFTOOL [72]. We find that at the low feedback
strengths investigated already a high number of ECMs are sta-
ble, as indicated by the 1D bifurcation diagrams displaying the
intensity of the ECMs as a function of the feedback strength
in Fig. 6(a). This behavior is expected from various anal-
yses of the Lang-Kobayashi-type feedback implementation
[64,66,76]. The stability of several ECMs at these feedback
strengths suggests a high influence of the feedback on the laser
dynamics. Hence, when continuing the cw solution of the soli-
tary laser, we find that after several ECMs have become stable
(K > 0.015) subsequent Hopf bifurcations appear, leading to
a pulselike laser output [see green branches in Fig. 6(b)].
Compared to the case of standard laser diodes [30,39,74], the
Hopf bifurcations appear very close after one another on the
cw branch and the stable periodic orbits are not connected
to the ECMs or born from bifurcations along them. There-
fore, this behavior is similar to the case of optoelectronic
feedback [34]. However, periodic orbits born from the Hopf
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bifurcations along the ECMs also exist. These turn unstable
very close to the bifurcation point in the investigated parame-
ter regime.

The frequency of the periodic orbits born in the Hopf
bifurcations along the cw branch is separated by the inverse
of the feedback time 1/τ = 0.26 GHz. However, these bifur-
cations do not necessarily appear ordered with respect to the
frequency as an increase in pump current leads to a reorder-
ing of the Hopf bifurcations along the cw branch, which is
discussed in the subsequent section. We also investigate the
direct numerical integration of the system sweeping up the
feedback strength, i.e., increasing the feedback strength in
small steps and using the dynamics of the previous step as the
initial condition of the next to emulate the experiment. The
result is shown in Fig. 6(c). In between the periodic orbits
with different frequency, a quasiperiodic or chaotic regime
is stable, resulting from the T1 torus bifurcation of the first
periodic orbit. However, this regime destabilizes at slightly
higher feedback strength (K ≈ 0.022) and the system stabi-
lizes on the second regular periodic orbit, as expected from
the path continuation in Fig. 6(b). As for laser diodes with 3D
gain material, a route to chaos can be seen at higher feedback
strength [27,75].

In order to reproduce the experimental results shown in
Fig. 5 and get deeper insight into the dynamics, we also
perform numerical scans of the dynamics in the (J, K ) plane.
The results are presented in Fig. 7, where different dynamics
can be distinguished according to the color code as before.
Generally, we can reproduce the experimentally observed in-
fluence of the feedback. At the investigated pump currents,
the laser first transitions from the cw state to a periodic regime
and then turns to a chaotic output at higher feedback strengths.
Moreover, we find that the general bifurcation scenario related
to a variation in feedback strength is not drastically changed
when altering the pump current. The pump current for which
the 1D bifurcation diagram is shown in Fig. 6(b) is indicated
by the vertical black dotted line in Fig. 7(a). However, the first
periodic orbit [green areas in Fig. 7(a)] stabilizing from the cw
solution (light blue) changes as the Hopf bifurcations along
the cw branch swap their positions [H1, red lines in Fig. 7(a)],
when the pump current is altered. Hence, periodic orbits (POs)
with different frequencies stabilize at different pump values,
which is indicated by the varied shading of the periodic orbit
regimes (green). As mentioned before, the frequencies of the
POs differ by integer multiples of the inverse feedback time.
We note that the periodic orbits stabilizing first at lower pump
currents stabilize second at slightly higher pump currents, as
indicated by the outstretched green areas at higher feedback
strengths. The shift of the transition point between cw lasing
and pulsed or chaotic behavior to higher feedback strengths
with increasing pump current was also found for other Lang-
Kobayashi-type feedback systems [73].

The torus bifurcations which destabilize the first periodic
regime when increasing the feedback strength K [see torus
T1 in Fig. 6(b)] are indicated as dashed lines in Fig. 7(b).
They are born at the intersection points of two Hopf lines
[see blue circles in Fig. 7(a)]. One of the intersecting Hopf
bifurcations is giving birth to the periodic orbit destabilized
by the T1 torus bifurcation. The other Hopf line is related
to the Hopf bifurcation point existing closest to the lasing

(a)

(b)

(c)

(d)

Hopf

FIG. 7. Two-dimensional bifurcation diagrams in the (J, K ) pa-
rameter plane, with the different dynamics distinguished by the color
code. The green shading of the regular periodic solutions (pulsed)
refers to the different oscillation frequencies. The red areas describe
pulsed dynamics which is slightly irregular, similar to the time series
shown in Fig. 3(h). (a)–(c) Upsweep in the feedback strength and
(d) downsweep. The red lines in (a) are the Hopf bifurcation lines
corresponding to the first Hopf bifurcation H1 along the cw branch
(see Fig. 5) found at different pump currents. The crossing points
(HH, blue circles top left) of these Hopf lines give birth to the torus
lines (dashed lines) shown in (b), representing the upper stability
boundary T1 of the first periodic orbit PO1, as shown exemplarily for
J/Jth = 1.19 in Fig. 6(b). The dashed lines in (c) and (d) represent the
upper and lower stability boundaries of the second periodic solution
PO2, i.e., the tori T2 and T3 in Fig. 6(b). All parameters are as in
Table I.

threshold and has the fundamental ECM frequency. The T1

bifurcations in turn give birth to quasiperiodic solutions (gray
areas) in between the regular periodic orbits (green areas
between 0.125 < K < 0.038). At higher feedback strength
these quasiperiodic regimes become unstable and a second
regular periodic orbit stabilizes. The stability boundary of
these periodic orbits is given by two torus bifurcations as indi-
cated by T2 and T3 in Fig. 6(b). The bifurcation lines of these
torus bifurcations are shown as red and yellow dashed lines
in Figs. 7(d) and 7(c), respectively. In order to numerically
unravel the lower stability boundary (T2) a downsweep was
computed in Fig. 7(d). This is necessary as the intermediate
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FIG. 8. (a) Relaxation oscillation frequency (blue line) and fre-
quency of the periodic orbit (red circles) generated by the first Hopf
bifurcation H1 along the cw branch (cf. Fig. 6) as a function of the
pump current and normalized to the feedback frequency fFB = 1/τ .
(b)–(d) Real and imaginary parts of the eigenvalue along the cw
solution for increasing feedback strengths, with (d) showing the Hopf
point. The eigenvalues corresponding to the relaxation oscillation
frequency are marked in blue. The pump current is set to J/Jth =
1.04, as marked by the vertical black line in (a). All parameters are
as in Table I.

quasiperiodic regime emerges directly from the first periodic
orbit in T1 and therefore the system directly stabilizes onto
it in the upsweeps shown in Figs. 7(a)–7(c). The difference
in the sweeps also unravels the multistability between the
quasiperiodic and periodic states.

VI. STAIRCASE PERIOD CHANGES

In the following, we investigate the frequency of the first
stable periodic orbit and its relation to the relaxation oscilla-
tion frequency. We therefore find the frequency of the periodic
orbit at the first Hopf point in K at increasing pump currents
and also determine the relaxation oscillation frequency for
the respective pump current. The periodic orbit’s frequency is
indicated by red circles in Fig. 8(a), whereas the dependence
of the RO frequency is given by the blue line. We obtain the
results by extracting the eigenvalue spectrum of the cw steady
state, applying a linear stability analysis using DDE-BIFTOOL.
The imaginary part of the nontrivial eigenvalues λ existing at
K = 0 corresponds to the relaxation oscillation frequency via
the relation fRO = Im(λ)/2π , whereas the imaginary part of
the eigenvalue pair crossing the imaginary axis at KHopf relates
to the Hopf frequency. The eigenvalue spectrum is displayed
in Figs. 8(b)–8(d) for three feedback strengths at the pump
current indicated by the black line in Fig. 8(a). The eigenvalue
pair corresponding to the RO frequency is marked in blue.

The RO frequency shows a square root dependence [see
Fig. 8(a)] on the pump current, whereas the frequency of
the periodic orbit follows a staircase behavior in which the
frequency always increases in steps of the feedback or ex-
ternal cavity frequency fFB. Hence, we can deduce that the
eigenvalue pair with the frequency closest to the RO leads to
the stabilization of the periodic orbit via a Hopf bifurcation.
This is also supported by the eigenvalues in Figs. 8(b)–8(d),
where the eigenvalue pair with an imaginary part closest to the

(a)

(b)

FIG. 9. (a) Two-dimensional bifurcation diagrams in the (J, K )
parameter plane, with the different dynamics distinguished by the
color code as in Fig. 7, but for a lower gain g = 150. (b) Two-
dimensional bifurcation diagrams in the (α, K ) parameter plane. The
solid line marks the bifurcation line of the first Hopf bifurcation
H1 and the dashed lines correspond to the torus bifurcations T1–3

as displayed in Fig. 6(b) (1D cut at α = 5). The pump current is
J/Jth = 1.19; all other parameters are as in Table I.

ROs (blue circles) crosses the imaginary axis first. Due to the
coupling between the bulk reservoir and the SMLQD states,
the investigated device inhibits a high damping, which was
argued to be a key property necessary for the locked periodic
orbits to occur [26]. Hence, the presented explanation of the
stepwise frequency change also applies to the staircase sce-
nario found in the measurements obtained using a quantum-
dot device in [26]. One can also understand the discussed
locking effect in terms of a destabilization of the cw lasing.
Above a critical feedback strength the excess depletion of
the gain resulting from the feedback intensity cannot be com-
pensated and therefore the cw state destabilizes to a periodic
orbit. With increasing pump current the relaxation oscillation
frequency shifts to higher values and therefore higher periods
are favored, as shown before. As the RO frequency is strongly
influenced by the gain factor g, the latter also influences the
locking frequency. This is supported by the 2D bifurcation
diagram in the (J, K ) plane in Fig. 9(a) calculated with a
reduced g. Here the areas of single periodic orbits stretch over
a higher relative pump current and the transitions to higher
oscillation frequencies are shifted to higher pump currents.
The reason for that lies within a slower increase of the RO fre-
quency with increasing pump current, due to the reduced gain.

The investigations of laser diodes with quantum-dot,
quantum-well, or bulk gain all show that a high α-factor
is very beneficial for the locking oscillations to occur
[25,26,30,31,39]. We obtain similar findings as the bifurca-
tion diagram in the (α, K ) plane [Fig. 9(b)] shows that the
periodic orbits are completely lost for feedback levels K <

0.05 if the α-factor is reduced below α < 2. This results
from the Hopf bifurcation H1 and the torus bifurcation T1,
enclosing the stable region of periodic locked orbits, strongly
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shifting to high feedback strengths with decreasing α-factor.
Furthermore, these bifurcations approach each other as α is
scaled down and hence reduce the region of stable periodic
orbits. At this point we highlight that a high α is required
by the theoretical model to correctly model the properties
of the SMLQD gain system. Additionally, we note that the
second regime of regular periodic pulselike dynamics turns to
an irregular behavior at decreasing α values, as indicated in
Fig. 9(b). Similar results were also acquired for the stability
boundaries of the ECMs of a bulk laser diode investigated in
[39], supporting that the feedback has a more dominant effect
on the locking as compared to the gain material.

VII. CONCLUSION

We have presented an experimental and theoretical investi-
gation of a semiconductor laser with strong amplitude-phase
coupling subject to optical feedback at an intermediate feed-
back length of τ = 3.8 ns, using submonolayer quantum dots
as the active medium. We presented a theoretical model for
a SMLQD laser diode subject to optical feedback, which cor-
rectly describes the damping and relaxation oscillations by the
coupling of the bulk reservoir and SMLQD states. To ensure
the usage of realistic SMLQD laser parameters, we started
from the values found on similar samples in our previous
works [52,55] and only slightly altered these values in the
course of correctly reproducing the relaxation oscillations of
the experimentally investigated device. Utilizing this model,
we were able to reproduce an experimentally obtained phase-
locking effect at intermediate feedback strengths, which leads
to a periodic pulselike laser output. This also allowed us to
complement our experimental findings by a theory exploring
the stepwise frequency change of the periodic orbits with
increasing pump current. Specifically, our results showed that
the step size is always related to the inverse feedback time
and is induced by the eigenvalue pair closest to the relaxation
oscillation frequency stabilizing the respective periodic orbit.
This can be generalized to previous experiments on quantum-
dot and quantum-well lasers [25,26], as the high damping of
the devices seems to be the most important requirement for the
locking effect, which is predominantly induced by the feed-
back. A comparison of our findings to the existing literature
also suggested that a high α-factor and intermediate feedback
lengths 1 ns < τ < 10 ns close to the relaxation oscillation
frequency seem to be beneficial for these type of oscillations
to occur. Furthermore, we performed an in-depth bifurcation
analysis showing that torus bifurcations lead to a stabilization
of further periodic branches at higher feedback strengths and
the intermediate transition to a quasiperiodic laser output.
The generalization of the underlying feedback effect with a
stepwise change in period can be of interest for the future
development of tunable photonic microwave sources that only
rely on a simple form of energy efficient feedback [34,61,62].
Additionally, our findings give further insight into the optimal
operation points of SMLQD lasers, if optical feedback cannot
be prevented and comes as a destabilizing effect.
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FIG. 10. (a) Experimentally obtained optical spectrum of the
SMLQD device at a feedback rate of κ = 12.5 ns−1. (b) Optical
spectra of the SMLQD device at different feedback rates; the spectral
power is given by the color code.

APPENDIX A: MODELING THE EQUILIBRIUM
DISTRIBUTION

The SMLQD equilibrium occupation probability ρeq(t, n)
is determined by a quasi-Fermi distribution

ρeq(t, n) =
[

exp

(
ε̄SML − EF(t, n)

kBT

)
+ 1

]−1

, (A1)

where ε̄SML is the mean SMLQD confinement energy
with respect to the bulk reservoir band edge, m∗ is the
effective mass, T is the lattice temperature, and EF is the
quasiequilibrium Fermi level, which is determined via the
Padé approximation [77]:

EF(t, n) =kBT (ln[ñ(t )] + A1ñ(t )

+ {K1 ln[1 + K2ñ(t )] − K1K2ñ(t )}), (A2)

with ñ(t ) = n(t )/nC, where the effective density of states nC

is given by

nC = 2

(
m∗kBT

2π h̄2

)3/2

. (A3)

The coefficients are A1 = 1/
√

8, A2 = −4.950 09 × 10−3,
K1 = 4.7, and K2 = √

2|A2|/K1, taken from [77].

APPENDIX B: MAXIMUM FEEDBACK RATE

In order to give a measure of the effective feedback rate κ ,
we calculate the maximum effective feedback rate κmax for the
investigated etalon mode as

κmax = 1 − RGaAs

τLD

Eph

e0

[( δI

δP

)
EC

−
( δI

δP

)
LD

]
, (B1)

where RGaAs = 0.33 is the reflectively of the GaAs facet,
Eph = 1.16 eV is the photon energy, τLD = 12 ps is the round-
trip time of the laser diode, e0 is the electron charge, and
( δI
δP )LD,EC refers to the fitted linear slope of the P-I laser curve

of the free-running laser diode (LD) and the laser under max-
imum feedback (EC). By utilizing the attenuation resulting
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from the double pass of the neutral density filter β (in dB), we
determine the effective feedback rate as follows:

κ = κmax10β/10. (B2)

APPENDIX C: MODE SELECTION

Including an etalon in the feedback cavity allows us to
select single laser modes for the optical feedback as indicated

in Fig. 1(b). This induces a stable single-mode operation of
the SMLQD laser device at the chosen mode, starting at
low feedback rates. This is indicated in Fig. 10: Fig. 10(a)
shows an experimentally determined spectrum at a feedback
rate of κ = 12.5 ns−1 and Fig. 10(b) displays the evolution
of the optical spectrum while changing the feedback rate. In
both images a side-mode compression is clearly visible when
comparing the spectrum to the one of the free-running laser in
Fig. 1(b).
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