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An exceptional point (EP) is a singularity in non-Hermitian systems which exhibits exotic functionalities
such as high sensitivity to external perturbations and fine selectivity of a laser mode arising due to the abrupt
transition in the eigenvalue spectra. To achieve an EP, both the real and imaginary parts of two or several
eigenfrequencies should coincide. Perturbations that appeared at the fabrication stage usually lift the degeneracy,
and it impedes the experimental observation of EPs. In this work, we reveal that a Kerr-type nonlinearity can
compensate for an initial distortion in resonant frequencies that is hardly avoidable in practice using the example
of a pair of coupled ring resonators. We analyze the behavior of the eigenvalues and mode amplitudes in the
vicinity of the second- and third-order EPs as a function of excitation amplitude. This work can help to improve
the characteristics of the systems that support EPs, broadening their application to the domain of nonlinear
photonics.
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I. INTRODUCTION

Eigenfunctions and eigenvalues are the main characteris-
tics of resonant systems (in acoustics, quantum mechanics,
optics, etc.). At specific conditions, both the real and imag-
inary parts of some eigenvalues of a non-Hermitian system
can degenerate, resulting in the appearance of so-called ex-
ceptional points (EPs). It is important to highlight that at an
EP, eigenvalues and corresponding eigenvectors degenerate
simultaneously. The abrupt phase transitions around this point
in photonic systems lead to exotic functionalities such as
unidirectional invisibility, laser mode selectivity, and sensi-
tivity enhancement [1,2]. A more pronounced enhancement
of sensitivity can be observed in the vicinity of high-
order EPs when several complex eigenfrequencies degenerate
[3].

In recent years, EPs in PT -symmetric systems have at-
tracted great attention as these systems can naturally host
EPs. Hermitianness ensures that the Hamiltonian has real
eigenenergies. However, as shown in Ref. [4], PT -symmetric
systems can also have entirely real eigenvalues even though
they are non-Hermitian. However, beyond a critical condi-
tion, its eigenvalues become complex (broken PT symmetry),
where this critical point has properties of the exceptional
point. Under parity transformation P̂, both momentum and
spatial variables would be reversed (p → −p, r → −r), and
time-reversal transformation T̂ leads to the reverse of mo-
mentum and time variables, while spatial terms would be
unchanged (p → −p, i → −i, r → r). One calls a system
PT symmetric when the commutation relation between the
Hamiltonian and P̂T̂ operator, [Ĥ , P̂T̂ ] = 0, is fulfilled. As a
result, the potential of a one-dimensional [1D; r = (x, 0, 0)],
PT -symmetric system obeys V(x) = V∗(−x), which imposes
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gain and loss conditions on the coupled-resonator systems
[5]. Although the PT -symmetry approach was introduced in
quantum mechanics, optics and photonics have been revealed
as a suitable platform for the realization of such systems. In
Ref. [6], a PT -symmetric system was realized in a 1D inho-
mogeneous medium, where the wave equation is written as
a Schrödinger-like equation and the potential in the Hamilto-
nian is related to the complex refractive index. The refractive
index is distributed in a way that n(x) = n∗(−x) (a necessary
condition for a PT -symmetric system); therefore, its real and
imaginary parts should be even and odd functions of x, respec-
tively. The system contains a ridge optical waveguide, where
one half of it provides gain and the other half provides loss.
The loss is controlled by the width of an additional strip layer
made of Cr in the second half. The PT -symmetric system
in Ref. [7] consists of two coupled microtoroidal whispering
gallery mode resonators, which are coupled to a different
fiber-taper coupler. The gain in the first resonator is achieved
by Er3+ doping, while the other resonator is passive (no-
gain medium). Furthermore, the coexistence of nonlinearity
and non-Hermiticity, in both optical systems and quantum
mechanics, introduces another platform to investigate the EP
and its functionalities such as unidirectionality and sensing
[8–19]. We note that eigenvalues of Hermitian systems are
entirely real, and the eigenmodes at the degenerate points
are orthogonal. Therefore, these degenerate points cannot be
considered an EP. Exceptional points can also be realized
in non-Hermitian systems without gain and loss, therefore
without parity-time symmetry, such as in coupled-resonator
optical waveguides [20].

One of the main applications of EP-based systems is their
responsivity (abrupt changes in their response around an EP
versus a small perturbation) and sensitivity. Transmission
spectra of a resonator, perturbed by a nanoparticle, show a
splitting at the resonant frequency. This splitting is even larger
in the resonator tuned to an EP [21]. This high responsivity
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can also be inferred from the eigenvalues of resonating
systems. For instance, for a coupled resonator in the EP con-
ditions, if we depict eigenvalues versus a parameter such as
resonant detuning, ω1 − ω2 = 2ε, the eigenvalues degenerate
at ε = 0. Small variation around ε = 0 lifts the degeneracy
since the eigenvalues have a sharp slope in the vicinity of ε =
0. This perturbation can undesirably arise from fabrication
imperfections. Therefore, to achieve the EP regime—a com-
plete coincidence of the real and imaginary parts of resonant
frequencies of two modes—precise control of geometrical
and material parameters is necessary. However, unavoidable
imperfections arising at the fabrication stage can impede
reaching the EP regime. For example, the mismatch between
the sizes of two coupled resonators or sidewall roughnesses
leads to spectral detuning. This detuning can be compensated
by photothermal heating such as a laser beam, which can act
as both an excitation and heating source [3,7,22,23]. Here,
we show that Kerr nonlinearity can also be incorporated to
compensate for the possible spectral detuning; therefore, it
does not need a heating scheme. In addition, even for a large
value of contrast between the Kerr coefficients, the location of
an EP would be tuned correspondingly. Moreover, compared
to the heating procedure, Kerr nonlinearity is much faster. We
propose Kerr nonlinearity as a fast low-profile configuration
not only to overcome the difficulties associated with achieving
the EP regime but to provide the possibility of creating an
EP in a coupled resonator with two different resonances and
eigenfrequencies. We note that, instead of Kerr nonlinearity,
one may investigate phase transitions in the coupled res-
onators in the presence of saturable gain and loss nonlinearity
[24,25].

Another challenge of EP-based sensors is related to the
quantum noise arising from the fluctuation of the input sig-
nal and their non-Hermiticity, which can limit their precision
[26,27]. However, [28] showed that, parametrically, the per-
formance of the signal-to-noise ratio in EP sensors and their
sensitivity can be enhanced. Furthermore, [29] studied the
impact of a fluctuating Hamiltonian on the performance of
EP-based sensors and proposed nonlinear effects such as gain
saturation and adding uniform dissipation to the sensor and
quantum-enhanced measurement [30] to improve their per-
formance. Our work, which includes the nonlinear coefficient
and field intensity in the Hamiltonian, can provide a suitable
platform to investigate the sensitivity of EP-based sensors in
the presence of quantum noise.

We consider the simplest example of the system support-
ing second- and third-order EPs and show that including
Kerr nonlinearity can compensate initial spectral detuning.
We develop a numerical method and solve the associated
nonlinear eigenvalue problem. We demonstrate that by in-
corporating unequal nonlinear coefficients in the coupled
resonators, the position of the EP can be tuned in the
parameter space, and its location depends on the contrast
between the nonlinear coefficients. It also gives us the op-
portunity to create the EP in coupled cavities with different
resonant frequencies, where the difference between resonant
frequencies can be compensated by nonlinearity containing
unequal Kerr coefficients. Therefore, it provides an additional
degree of freedom to control the phase transitions in the
system.

Input wave

FIG. 1. Optical ring resonators with different Kerr materials cou-
pled to a straight waveguide.

II. SECOND-ORDER EXCEPTIONAL POINT

An exceptional point can be observed theoretically and
experimentally in a system containing gain and loss. The
system can be, for example, a coupled pair of resonators in
which one of the resonators contains gain and the other one
has loss or two energy levels with loss [7,8]. The evolution of
field amplitude of a coupled pair of resonators with complex
frequencies �1 and �2 can be described by the eigenvalue
problem:

(
ε + g1|a|2 − 2iδ υ

υ −ε + g2|b|2
)(

a

b

)
= μ

(
a

b

)
. (1)

This matrix equation describes such a system where the first
equation corresponds to the loss, while the second equation is
considered gain.

In Eq. (1), if we consider the complex resonant fre-
quency of the resonators �1 = ω1 − iγ1 = ε − 2iδ and �2 =
ω2 − iγ2 = −ε, we can write �1 − �2 = (ω1 − ω2) − i(γ1 −
γ2) = 2ε − i2δ. Therefore, 2ε and 2δ are the differences be-
tween the (real) resonant frequencies and loss of resonators, υ
is the coupling rate between the resonators, μ is the eigenvalue
of the coupled system, a and b are the field amplitudes, and
g1 and g2 are the Kerr nonlinear coefficients of the first and
second resonators with loss and gain, respectively. This form
of the matrix equation can be used for the description of dif-
ferent systems from quantum mechanics, with the nonlinear
Schrödinger equation applied to a two-level system with loss
[16,31], to photonics, with the coupled mode theory approach
containing Kerr nonlinearity [18,32,33]. One of the simplest
examples describing the system of equations (1) is two optical
ring resonators with different Kerr materials coupled to a
waveguide, as schematically shown in Fig. 1. In Fig. 1, the
radii of the resonators are considered different in order to
show that the EP can happen in this system by attributing
unequal Kerr coefficients (g1, g2) to the rings.

For the linear case, we should put g1 = g2 = 0 in Eq. (1);
therefore, the eigenvalues of this equation can be calculated
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analytically: ∣∣∣∣�1 − μ υ

υ �2 − μ

∣∣∣∣ = 0. (2)

The eigenvalues of this system are

μ = �1 + �2 ±
√

(�1 − �2)2 + 4υ2

2
. (3)

To have an EP, the square-root term should be zero, which im-
poses the conditions ω1 − ω2 = 2ε = 0 and γ1 − γ2 = 2δ =
±2υ for the real value of υ.

EP-based systems are highly responsive to small pertur-
bations around an EP, leaving them vulnerable to unwanted
perturbations. For instance, in the above EP conditions, for
ε �= 0 (i.e., when there is resonant detuning in the coupled
resonators), the degeneracy would be lifted. In the following
sections, we show that even for ε �= 0, we can have an EP due
to the nonlinearity, and resonance detuning can be compen-
sated. Furthermore, studying the sensitivity of nonlinear EPs
in the presence of quantum noise can be intriguing since their
Hamiltonian contains field intensity, and tuning the nonlinear
coefficients can be used as leverage to reduce the effect of
external and internal noise.

Numerical method

The EP can occur in nonlinear non-Hermitian systems
such as in a two-level system described by the nonlinear
Schrödinger equation [8–13]. To solve a nonlinear eigenvalue
problem, different methods can be used, for example, polar
representation [14,15], incorporating the Stokes parameters
and angular momentum operators [16–19]. These methods
may be cumbersome or limited to specific considerations, for
instance, that one should know both pumping and resonant
frequencies of cavities or that nonlinear coefficients in the
matrix equation should be equal. Here, we propose another
method which is based on the self-consistent field approach
and also takes into account the behavior of the eigenfunctions
in the iteration process. This method can be utilized in a wide
variety of nonlinear eigenvalue problems and also the higher-
order nonlinear matrix equation. To demonstrate the efficiency
of this method, we use unequal nonlinear coefficients in the
2 × 2 and 3 × 3 nonlinear matrix equations (which can be
realized in coupled resonators with different Kerr materials),
and we could observe that the EP can be tuned with respect to
parameter space.

To calculate the eigenvalues of the nonlinear eigenvalue
problem in Eq. (1), with respect to parameter space ε, we use a
method similar to the self-consistent-field method [34] in two
stages. First, for large values of |ε|, the problem is close to the
linear case (in the eigenvalue problem, |a|2 and |b|2 represent
the probability densities of energy levels; therefore, they are
smaller than unity, and for |ε| � g1, g2, in the matrix equa-
tion, the terms g1|a|2a versus εa and g2|b|2b versus εb can
be ignored). Therefore, in this region, we consider the linear
case (g1 = g2 = 0) and find eigenvalues and eigenfunctions
of Eq. (1). Then, we use these eigenfunctions in the nonlinear
eigenvalue problem [Eq. (1)] and find new eigenfunctions. We
repeat this iteration until the result converges to a specific
threshold (to get a better convergence, we may use the average

(a)

(b)

FIG. 2. First stage to calculate (a) real and (b) imaginary parts of
eigenvalues of a 2 × 2 nonlinear matrix equation, numerically.

of the newly calculated eigenfunctions and the previous one
as the next iteration value). For lower values of |ε|, we use
the converged result of the previous step as the initial value
and repeat the process. Figure 2 shows the real and imaginary
parts of μ for δ = υ = 1 and g1 = g2 = 1.8 (the values of
g1 and g2 are chosen arbitrarily, while the values of δ and υ

are equal, which is a condition of an EP). In Fig. 2 and other
figures, each branch of the real part of the eigenvalue and its
corresponding imaginary part are shown by different colored
arrows. It shows some discontinuities at four points (where
the four branches should continue their route and coincide at
the EP). Meanwhile, near the EP, there are some divergences
in the result (shown by dashed circles). In this region, where
the nonlinearity becomes more significant (with decreasing
absolute value of ε), the direction of the functions related
to the real and/or imaginary parts changes, which causes the
divergence near the EP. By defining the additional parameters
�i in the eigenfunctions, we force the eigenfunctions to con-
tinue their rate of change near the EP and therefore prevent
the result from the divergence.

In the second stage, in order to resolve the discontinuities
(and divergences) in Fig. 2, we study the behavior of the
eigenfunctions near this region. Accordingly, we define the
parameters �1,�2,�3,�4 and set a range of values for them
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(a)

(b)

FIG. 3. (a) Real and (b) imaginary parts of eigenvalues of a 2 × 2
nonlinear matrix equation containing EPs with equal Kerr coefficient
nonlinearity.

and consider the eigenfunction (ac + �1 + i�2, bc + �3 +
i�4) as the initial value of the next step. First, we consider
the parameters �1,�2,�3,�4 as very small values compared
to the changing rate of the eigenfunctions in each step. If it
cannot not converge to a specific value through the iteration
method, they would increase gradually. Figure 3 shows the
result which is obtained after these two stages, which com-
pletely matches analytical results in Refs. [8,35] (the EPs in
Fig. 3 and other figures are shown by gray dots).

Here, we investigate the result when the Kerr nonlinear
coefficients (g1, g2) are unequal. A system with unequal non-
linear coefficients may be realized in multiple resonators with
materials with different Kerr constants [36]. Figure 4 depicts
eigenvalues of Eq. (1) with g1 = 2.3 , g2 = 1.8. Figure 4
shows that the exceptional point occurs at ε = −0.12. By
changing the values of nonlinear coefficients, EP can be tuned
with respect to ε. Another feature of Fig. 4 is that the result
is asymmetric with respect to the EP. Slightly lower than the
EP, at ε = −0.18, the real parts of the eigenvalues coalesce,
while their imaginary parts depart. Therefore, the nonlinear
coefficients can be utilized as leverage to tune the photonic
system between different phases, as well as the location of

(a)

(b)

FIG. 4. The EP in the 2 × 2 matrix equation can be tuned by the
contrast between the Kerr nonlinearity. Moreover, close to the EP,
(a) real parts of eigenvalues coalesce, while (b) their imaginary parts
depart.

the EP. In linear systems, as well as in nonlinear systems with
equal Kerr nonlinearities, EPs occur at ε = 0, where the real
parts of the resonant frequencies are equal. However, in Fig. 4,
the EP occurs at a nonzero value of ε; therefore, the difference
between the resonant frequencies (due to the imperfections,
etc.) can be compensated by an appropriate contrast between
the nonlinear coefficients.

III. THIRD-ORDER EXCEPTIONAL POINT

Higher-order exceptional points in a photonic system may
be utilized in some applications such as sensitivity enhance-
ment [3,37]. In this section we investigate the effect of
nonlinearity on such systems. Figure 5 shows eigenvalues of
a 3 × 3 matrix equation, Eq. (4), which corresponds to three
rings, which act as gain, a neutral ring, and loss (with +iγ ,
+i0, and −iγ , respectively). Figure 5 depicts an example for
κ = 1 and γ = √

2κ (the condition that a third-order EP can
occur). It shows that third-order EPs occur at ε = 0, where six
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(a)

(b)

FIG. 5. The EP in the linear 3 × 3 matrix equation: (a) real part
and (b) imaginary parts of the eigenvalues.

branches coalesce:⎛
⎜⎝

iγ + ε + g1|a|2 κ 0

κ g2|b|2 κ

0 κ −iγ + g3|c|2

⎞
⎟⎠

⎛
⎝a

b
c

⎞
⎠

= μ

⎛
⎝a

b
c

⎞
⎠. (4)

Figure 6 shows the result for the nonlinear case with g1 =
0.1, g2 = g3 = 0. It is obtained with a method similar to that
above, although we have to deal with a higher order of matrix
and a higher number of branches. Figure 6 shows that third-
order EP occurs at ε = −0.025.

Figure 6 reveals that the number of eigenvalues near the
EP can be up to 5. Moreover, the real parts of the eigenvalues
coincide at around ε = −0.026 and ε = −0.0245, while their
imaginary parts depart. These points, which have distances
of 0.001 and 0.0005 from the EP, could be the source of
additional resonances in the transmission and reflection co-
efficients in photonic systems, which can be tuned by the
nonlinear coefficients as well as the location of the EP. The
EP occurring at a nonzero value of ε, which is related to
the difference between the resonant frequencies of resonators,
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FIG. 6. The EP can be tuned by the nonlinear coefficient. Fur-
thermore, (a) the real part coalesces at two points below and higher
than the EP, while (b) the imaginary parts depart.

implies that the difference between resonant frequencies can
be compensated by imposing unequal nonlinear coefficients
on the system.

IV. IDEAL PT -SYMMETRIC RESONATORS

In the previous sections, we analyzed the eigenvalue prob-
lem; however, in practice, we measure the response of the
system to an external signal. In this section, we investigate the
mode amplitudes in ideal PT -symmetric coupled resonators
at which the gain in the active resonator is equal to the loss in
the passive one. For this purpose, we write the coupled mode
theory for coupled resonators with unequal Kerr nonlinearities
(Fig. 1) as

ωa = (ω0 + ε + g1|a|2 − iδ)a + υb − ηsi, (5a)

ωb = υa + (ω0 − ε + g2|b|2 + iδ)b, (5b)

where ω and si are the frequency and amplitude of the source,
η is mutual coupling between the source waveguide and ring
resonator, and ω0 + ε and ω0 − ε are the resonant frequencies
of the first and second rings, respectively. Therefore, mode
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FIG. 7. Absolute value of mode amplitudes in the nonlinear case:
(a) g1 = g2 = 0.001. (b) Tunability of the resonance for different
values of Kerr coefficients.

amplitudes a and b can be calculated from Eq. (5) as

a = (−� − ε + g2|b|2 + iδ)ηsi

(−� + ε + g1|a|2 − iδ)(−� − ε + g2|b|2 + iδ) − υ2
,

(6a)

b = −υηsi

(−� + ε + g1|a|2 − iδ)(−� − ε + g2|b|2 + iδ) − υ2
,

(6b)

where � = ω − ω0. If we set the source frequency ω equal to
ω0 (� = 0), Eq. (6) implies that, in the linear case (g1 = g2 =
0), EP conditions (ε = 0, δ = ±υ) cause the denominator of
the mode amplitudes to become zero. However, in the non-
linear case (g1, g2 �= 0), EP conditions would not make the
denominator zero since the expression (g1|a|2 − iδ)(g2|b|2 +
iδ) (the complex value) cannot equal υ2 (the real value).

Figure 7(a) shows the absolute value of the mode am-
plitudes |a| and |b| with respect to ε for g1 = g2 = 0.001,
υ ≈ δ = 1, �= 0, and ηsi = 0.01. It is obtained by solving

the matrix form of Eq. (5), numerically, with the same method
as in Sec. II. In addition, for better convergence of the numeri-
cal method, we consider υ = 0.9995, a value very close to 1. It
depicts a resonance at ε = 0, as in the linear case, at which the
amplitude of the resonance is around 5.4, which is 540 times
larger than the coupled source amplitude ηsi = 0.01. By de-
creasing the nonlinear coefficients g1 and g2, the amplitude of
the resonance approaches infinity. However, even in the linear
case, the experimental result shows that the EP condition in
such systems leads to a finite, but large, value of the resonance
in the transmission spectra [7]. The inset in Fig. 7(a) is related
to the magnified |a| and |b|, which are pretty close to each
other around ε = 0, as in the linear case.

Finally, Fig. 7(b) shows the tunability of the resonance
associated with the EP conditions for different values of the
nonlinear coefficients, which was previously predicted by
solving the eigenvalue problem in Sec. II. Figure 7(b) reveals
that with equal nonlinear coefficients, the resonance occurs at
ε = 0, while for unequal nonlinear coefficients, the resonance
leans toward the left or right side.

V. PRACTICAL OUTLOOK

Due to the similarity between ring resonators and optical
fibers, we investigate a practical value of the Kerr nonlinearity
in optical fibers. By considering the spatial distribution of
the field amplitude in an optical fiber containing a nonlinear
material and applying the Helmholtz equation, the effect of
a nonlinear material is evaluated with a small variation of
the wave number within the perturbation approach [38]. The
nonlinear coefficient is then estimated, g(ω0) = n2(ω0 )ω0

cAeff
, as

the coefficient of the term |A|2A, where n2 is the nonlinear-
index coefficient related to third-order susceptibility χ (3), Aeff

is the effective mode area, and ω0 and A are the frequency
and amplitude of the optical mode, respectively. In a more
conventional form, g can be written as g = 2πn2

λAeff
. We can

consider the field amplitude A to be normalized such that |A|2
represents the optical power, and n2 is expressed in m2/W;
then the quantity g|A|2 is measured in m−1 [to use this nonlin-
ear coefficient in the temporal coupled-mode theory (CMT),
we should multiply it by c/n, the ratio of the speed of light and
(relative) refractive index of material—the conversion of the
eigenwave number to eigenfrequency—and g|A|2 would be in
units of rad s−1; however, in spatial CMT this conversion is
not required].

Therefore, the nonlinear coefficient depends on the fre-
quency, fiber design, and nonlinear material. As an example,
for a fiber with a 2-μm core diameter, air as its cladding,
silica as its core with (relative) refractive index n = 1.45,
and nonlinear-index coefficient n2 ≈ 2.6 × 10−20 m2/W, at
a wavelength near λ = 1 μm, the nonlinear coefficient is
estimated to be g ≈ 0.1 W−1/m.

On the other hand, to create loss or gain in the coupled
resonators and waveguides, [7] proposed an active Er+-doped
silica microtoroid coupled to a passive silica microtoroid to
provide optical gain, while in [6], optical loss was produced
by a thin Cr layer deposited on a Al0.2Ga0.8As planar waveg-
uide coupled to a lossless Al0.2Ga0.8As planar waveguide.
In the notations of [6], the EP can happen when the loss
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coefficient is 4 times the coupling rate, α = 4υ, which is
around α = 900 m−1 at λ = 1.55 μm. However, in our no-
tations, the EP can occur for a loss coefficient equal to
the coupling rate, δ = υ. Therefore, we can consider δ =
225 m−1, according to our notations. If we assume, at a
wavelength around λ = 1 μm, we can create almost half
of this amount of loss in silica-based coupled resonators
and fibers (since the refractive index of silica, n = 1.45, is
almost half that of Al0.2Ga0.8As, n = 3.28), we can write
δ ≈ 100 m−1.

From the last two paragraphs, we can deduce that the ratio
of some practical values of nonlinear and loss coefficients can
be g/δ ≈ 0.001. In Fig. 7, we used the same ratio, g/δ ≈
0.001, for the nonlinear and gain and loss values, while in
the other figures, which deal with the eigenvalue problem,
this ratio is much higher than 0.001. However, it does not
violate the general concept of the paper, and tunability could
be shown for any other values of nonlinear coefficients g.
Furthermore, in the eigenvalue problem (unlike Fig. 7), the
values |a|2 and |b|2 are smaller than unity since they represent
the probability density of the energy levels; therefore, the
nonlinear coefficients in the terms g1|a|2a and g2|b|2b are
chosen to be large enough to show the tunability effectively.

VI. CONCLUSION

We observed that both second- and third-order EPs can be
tuned by the contrast between the Kerr nonlinearities in the
matrix equation. Furthermore, near the EP, the real parts of the
eigenvalues coincide, while their imaginary parts depart. The
distance between these points and the EP can also be tuned
by a nonlinear coefficient. Meanwhile, we showed that with
Kerr nonlinearity, the absolute value of the mode amplitude in
the ideal PT -symmetric system can lean toward the right or
left side with respect to the parameter space ε. To solve the
nonlinear non-Hermitian eigenvalue problem, we proposed a
numerical method based on self-consistent-field and iteration
methods in two stages: first, we calculate eigenvalues with
respect to ε, from large to small values of |ε|. Second, the
discontinuities from the previous stage are removed by defin-
ing additional parameters for the eigenfunctions so that the
changing rate of the eigenfunctions is preserved.
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