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Two-photon blockade generated and enhanced by mechanical squeezing
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Photon blockade is an important quantum nonlinear phenomenon in cavity optomechanics. Here, we inves-
tigate the two-photon blockade effect by exploiting the mechanical squeezing. This squeezing can enhance the
optomechanical-coupling strength into the single-photon strong-coupling regime. With strong coupling, we find
the photon blockade effects can be generated and enhanced, and the region where the two-photon blockade
occurs can be widened. Finally, we study the transition between photon-induced tunneling and blockade.
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I. INTRODUCTION

Cavity optomechanics [1–6], exploring the radiation-
pressure-induced interaction between light and mechanical
motion on the macroscopic scale, has progressed enormously
in the past few years. Examples include optomechanical
cooling [7,8], optomechanically induced transparency [9–12],
coherent photon-phonon conversion [13,14], squeezed light
[15–17], nonreciprocal optical transmission [18–20], or, most
relevant to this study, photon blockade [21–34], which was
first proposed by Rabl et al. [21,22].

Generally, the conventional photon blockade relies mainly
on the anharmonicity of the energy structure [35,36]. This
originates from the nonlinear optomechanical coupling in
optomechanical systems. Based on the nonlinearity, espe-
cially the Kerr-type nonlinearity, earlier works have examined
the photon blockade effect in the single-photon strong-
coupling regime [21–34]. In such a regime, the single-photon
optomechanical-coupling strength is much larger than the sys-
tem losses. However, in the current experiments, it is difficult
to realize this strong coupling on the single-photon level. To
overcome the obstacle, people have proposed some theoretical
schemes to enhance the coupling strength, such as optical
coalescence [37], Josephson effect [38–40], and squeezing
effect of the cavity or mechanical mode [31,32].

Recently, two-photon blockade, i.e., the absorption of two
photons that blocks the absorption of subsequent photons, has
attracted a great deal of attention in the various configurations
[23,33,34,41–43]. For example, this blockade can be gener-
ated and enhanced in the optomechanical system with the
optical parametric amplification or the external mechanical
pumping [33,34]. Different from the above studies [33,34], we
investigate the two-photon blockade effect with the mechani-
cal squeezing in the nonlinear hybrid optomechanical system
[44–48]. This squeezing is realized through the Coulomb in-
teraction between the charged mechanical oscillator and the
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charged body, which is experimentally feasible [49–56]. It
could produce the strong optomechanical-coupling strength
sufficient for the realization of energy-level anharmonicity.
Through calculating the higher-order correlation functions,
we find that the strong optomechanical coupling can generate
and enhance the blockade effects and can widen the region
of two-photon blockade. Moreover, by varying the optome-
chanical coupling, photon-induced tunneling can be converted
into photon blockade, or vice versa. Therefore, our proposed
scheme offers an alternative approach to achieve the high-
quality and efficient few-photon sources.

II. THEORETICAL MODEL

A cavity optomechanical system [44–48] depicted in Fig. 1
consists of an optomechanical cavity and a charged body out-
side. The charged mechanical oscillator couples to the cavity
field via the radiation pressure force and interacts with the
charged body via the Coulomb force. The cavity from the
fixed mirror is driven by a weak probe field with frequency ωl

and amplitude εl . In a frame rotating with ωl , the Hamiltonian
describing this system is given by

H = H0 + Hom + Hco + Hpr, (1)

where

H0 = h̄�a†a + 1

2
mω2

mx2 + p2

2m
,

Hom = −h̄g0a†ax,

Hco = −keC1U1C2U2

|r0 + x| ,

Hpr = h̄εl
(
a† + a

)
.

Here a (a†) and x (p) are the annihilation (creation) operator of
the cavity mode, and the position (momentum) operator of the
mechanical oscillator mode with frequency ωm and mass m,

2469-9926/2021/103(4)/043509(6) 043509-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9600-3326
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.043509&domain=pdf&date_stamp=2021-04-14
https://doi.org/10.1103/PhysRevA.103.043509


LING-JUAN FENG AND SHANG-QING GONG PHYSICAL REVIEW A 103, 043509 (2021)

r0

x

C1U1

Charged
mechanical oscillator

L

Fixed mirror

Probe

εl ,ωl

Charged body

-C2U2

FIG. 1. Schematic representation of a cavity optomechanical
system, where an optomechanical cavity is coupled to a charged body
through the Coulomb force.

respectively. � = ωc − ωl is the detuning between the cavity
mode (frequency ωc) and the probe field. g0 = ωc/L denotes
the optomechanical coupling strength with L being the cavity
length. ke is the electrostatic constant. C1U1 is the positive
charge on the charged mechanical oscillator, and −C2U2 is
the negative charge on the charged body, with C1 (C2) and
U1 (−U2) being the capacitance and the bias gate voltage,
respectively. r0 represents the equilibrium separation between
the charged mechanical oscillator and the charged body, in the
absence of the radiation pressure and the Coulomb force.

In the case of x � r0, Hco can be expanded to second order
of x/r0 as − keC1U1C2U2

r0
[1 − x

r0
+ x2

r2
0
] [50,51]. The linear term

proportional to x may be absorbed into the definition of the
equilibrium position. By further omitting the constant term,
we then obtain a simple form Hco = − keC1U1C2U2

r3
0

x2.
Introducing position and momentum operators

for the vibration mode of mechanical oscillator as
x = [h̄/(2mωm)]1/2(b† + b) and p = i[h̄mωm/2]1/2(b† − b),
H can be written as

H ′ = h̄�a†a + h̄(ωm − 2G)b†b − h̄ga†a(b† + b)

− h̄G(b†2 + b2) + h̄εl (a
† + a), (2)

where g = ωc
L

√
h̄/2mωm is the coupling strength, G =

keC1U1C2U2/(2mωmr3
0 ) is the effective mechanical coupling

constant, and b (b†) is the annihilation (creation) operator of
the mechanical oscillator mode. In Eq. (2), we have neglected
the zero-point energy from the second term.

To obtain strong optomechanical coupling, we need to use
the squeezing of mechanical oscillator mode [32]. In terms of
a squeezing transformation b = cosh(r)bs + sinh(r)b†

s , with
a preferred squeezed mechanical mode bs and a squeezing
parameter r = (1/4) ln[ωm/(ωm − 4G)], H ′ is transformed to
a standard optomechanical Hamiltonian

HOMS = h̄�a†a + h̄ωsb
†
sbs − h̄gsa

†a(b†
s + bs)

+ h̄εl (a
† + a). (3)

Here, the second and fourth terms in Eq. (2) have been diag-
onalized by the squeezing transformation and are simplified
to a mechanical oscillator (h̄ωsb†

sbs) in Eq. (3) with a trans-
formed mechanical frequency ωs = (ωm − 4G) exp(2r). gs =
gexp(r) describes the single-photon optomechanical-coupling

FIG. 2. The optomechanical coupling strength gs/κ versus the
mechanical frequency ωm and the coupling G. The parameters are
scaled by the cavity decay rate κ , i.e., g = 0.2κ , (a) G = 1250κ , and
(b) ωm = 5000κ .

strength, which could be significantly enhanced by adjusting
properly the mechanical frequency ωm and the effective me-
chanical coupling constant G, as shown in Fig. 2. In other
words, the optomechanical coupling between the squeezed
mechanical mode and the cavity mode can reach the single-
photon strong-coupling regime gs > κ , even when the system
is originally in the weak-coupling regime g < κ .

In a rotating reference frame defined by the unitary trans-
formation U = exp(−iωsb†

sbst ), HOMS is reduced to

H ′
OMS = h̄�a†a − h̄gsa

†a(b†
seiωst + bse

−iωst )

+ h̄εl (a
† + a). (4)

In the limit ωs � gs, we can adiabatically eliminate the
mechanical mode b†

s and bs and obtain the effective Hamil-
tonian [57–59]

Heff = h̄�a†a + h̄g̃a†aa†a + h̄εl (a
† + a), (5)

where g̃ = g2
s/ωs is the photon-photon coupling strength. Fur-

thermore, the above Hamiltonian can be rewritten as follows:

Hk
eff = h̄�ka†a + h̄g̃a†a(a†a − k) + h̄εl (a

† + a), (6)

where �k = ωc − ωl + kg̃ is the frequency mismatch, and k
is the positive tuning parameter, as in Ref. [23]. In the weak-
probe regime, we have the eigensystem Hk

eff|n〉 = En|n〉, with
eigenvalues

En = nh̄�k + n2h̄g̃ − nkh̄g̃, (7)

and the harmonic-oscillator number state of the cavity mode
|n〉. From Eq. (7), we notice that the energy difference �E =
En+1 − En is not constant, which indicates the anharmonicity
of the energy structure. This is the origin of conventional
n-photon blockade and is illustrated in more detail in Fig. 3. If
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FIG. 3. Schematic energy-level diagram of the isolated, single-
mode optomechanical system: (a) single-photon blockade, and
(b) two-photon blockade or photon-induced tunneling.

the probe beam is on resonance with the |0〉 → |1〉 transition,
i.e., ωl = ωc + g̃ (k = 1), the |1〉 → |2〉 transition is detuned
by 2h̄g̃ and will be suppressed for the strong-coupling regime
of g̃ > κ , which features single-photon blockade, as shown
in Fig. 3(a). Similarly, two-photon blockade can occur when
the two-photon-resonance condition (k = 2) is satisfied, as
denoted by red arrows in Fig. 3(b). The |0〉 → |2〉 transition
is resonantly driven by the probe beam, but the |2〉 → |3〉
transition is detuned by 3h̄g̃. Moreover, two-photon blockade
corresponds to photon-induced tunneling, as denoted by blue
arrows in Fig. 3(b). This indicates that the absorption of the
first photon favors also that of the second photon.

III. PHOTON BLOCKADE AND PHOTON-
INDUCED TUNNELING

Next, we study photon blockade and photon-induced tun-
neling by using the equal-time (namely, zero time delay)
nth-order correlation function

g(n)(0) = 〈a†nan〉
〈a†a〉n

for n � 2. (8)

Accordingly, the second-order and third-order correla-
tion functions are g(2)(0) = 〈a†2a2〉/〈a†a〉2 and g(3)(0) =
〈a†3a3〉/〈a†a〉3, respectively. To describe photon blockade and
photon-induced tunneling quantitatively, we use the following
criteria:

1. g(2)(0) < 1 represents the sub-Poisson statistics of the
cavity field, which is the photon antibunching effect. The
limit g(2)(0) → 0 means the complete photon blockade (1PB),
where two photons (or multiple photons) never occupy the
cavity at the same time.

2. g(2)(0) > 1 > g(3)(0) corresponds to two-photon block-
ade (2PB), which implies two-photon bunching and three-
photon antibunching.

3. g(n)(0) > 1 indicates the super-Poisson statistics of the
cavity field, which is the photon bunching effect. This charac-
terizes the photon-induced tunneling (PIT).

A. Analytical results

We phenomenologically add the dissipation term of the
cavity mode to Hk

eff, and then obtain the effective non-
Hermitian Hamiltonian

H ′
eff = Hk

eff − ih̄
κ

2
a†a, (9)

where this Hamiltonian can be expressed in a spectral repre-
sentation as

H ′
eff =

∞∑
n=0

(
En − ih̄

κ

2
n
)
|n〉〈n|

+ h̄εl

∞∑
n=0

|n〉〈n|(a† + a)
∞∑

n′=0

|n′〉〈n′|

=
∞∑

n=0

(
En − ih̄

κ

2
n
)
|n〉〈n|

+ h̄εl

∞∑
n=0

√
n + 1(|n + 1〉〈n| + |n〉〈n + 1|). (10)

For the weak-probe case, εl/κ � 1, only the lower energy
levels of the cavity field are excited. Thus, in the few-photon
subspace, the general state can be written as

|ϕ(t )〉 = C0(t )|0〉 + C1(t )|1〉 + C2(t )|2〉, (11)

where the coefficient Cn(t ) is the probability amplitude, with
photon numbers n = 0, 1, 2. Correspondingly, the Hamilto-
nian in Eq. (10) becomes

H ′
eff = E0|0〉〈0| +

(
E1 − ih̄

κ

2

)
|1〉〈1| + (E2 − ih̄κ )|2〉〈2|

+ h̄εl (|1〉〈0| + |0〉〈1|) +
√

2h̄εl (|2〉〈1| + |1〉〈2|),
(12)

where E0 = 0, E1 = h̄� + h̄g̃, and E2 = 2h̄� + 4h̄g̃.
In terms of Eqs. (11) and (12), and the Schrödinger equa-

tion ih̄d|ϕ(t )〉/dt = H ′
eff|ϕ(t )〉, we can obtain the following

equations of motion for the probability amplitudes:

ih̄Ċ0(t ) = E0C0(t ) + h̄εlC1(t ),

ih̄Ċ1(t ) = h̄εlC0(t ) +
(

E1 − ih̄
κ

2

)
C1(t ) +

√
2h̄εlC2(t ),

ih̄Ċ2(t ) =
√

2h̄εlC1(t ) + (E2 − ih̄κ )C2(t ). (13)

Due to the weak-probe limit, we have the approximate
expressions: C0 ≈ 1, C1 ∼ εl/κ , C2 ∼ ε2

l /κ
2, and then can

approximately solve the equations in Eq. (13) by discarding
the higher-order terms of εl . Assume that the cavity is initially
in the vacuum state, i.e., C0(0) = 1, the long-time (steady
state) solutions of the equations of motion for the probability
amplitudes can be obtained:

C0(∞) ≡ C0 = 1,

C1(∞) ≡ C1 = −εl

(E1/h̄ − iκ/2)
,

C2(∞) ≡ C2 =
√

2ε2
l

(E2/h̄ − iκ )(E1/h̄ − iκ/2)
. (14)

For the state given in Eq. (11), the second-order correlation
function can be written as

g(2)(0) =
∑2

n,n′=0 C∗
nCn′ 〈n|(a†2a2)|n′〉

(∑2
n,n′=0 C∗

nCn′ 〈n|a†a|n′〉)2

= 2P2

N (P1 + 2P2)2 , (15)
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where N = 1 + |C1|2 + |C2|2 is the normalization coefficient
of the state, P1 = |C1|2/N and P2 = |C2|2/N are the probabil-
ities for finding a single photon and two photons in the cavity,
respectively. Since the probe field is sufficiently weak, we
have N ≈ 1 with |C2|2 � |C1|2 � 1. Hence, the second-order
correlation function is approximately given by

g2(0) ≈ 2P2

P2
1

= κ2/4 + (g̃ + �)2

κ2/4 + (2g̃ + �)2 . (16)

For the single-photon resonant excitation from the ground
state to the first-excited state of the cavity field, i.e., � =
−g̃ (k = 1), the second-order correlation function becomes
g2(0) = [1 + 4g̃2/κ2]−1 < 1. In the strong-coupling regime
g̃/κ > 1, we have g2(0) � 1, which indicates that 1PB can
be achieved. For the two-photon resonant excitation from the
ground state to the second-excited state of the cavity field,
i.e., � = −2g̃ (k = 2), the second-order correlation function
becomes g2(0) = 1 + 4g̃2/κ2 > 1, which corresponds to the
PIT.

Similarly, we calculate the third-order correlation function
in the steady-state case as

g3(0) = [κ2/4 + (g̃ + �)2]2

[κ2/4 + (2g̃ + �)2][κ2/4 + (3g̃ + �)2]
. (17)

B. Numerical results and discussion

We numerically study the systemic dynamics after taking
into account optical and mechanical dissipations. The system
master equation of the density operator ρ is given by

ρ̇ = i

h̄
[ρ, H] + κD[a]ρ + γ (Ns + 1)D[bs]ρ

+ γ NsD[b†
s ]ρ + γ MsG[bs]ρ + γ M∗

s G[b†
s ]ρ, (18)

where κ and γ denote the cavity and mechanical de-
cay rates, and the cavity field is in a vacuum bath.
Here, D[o]ρ = oρo† − (o†oρ + ρo†o)/2 and G[o]ρ = oρo −
(ooρ + ρoo)/2 are the standard dissipators in the Lind-
blad form. In addition, the expressions Ns = sinh2(2r)[1 +
cos(	)]/2 and Ms = − sinh(2r)[1 + exp(i	)][cosh2(r) +
exp(−i	) sinh2(r)]/2 correspond to the effective thermal
noise and the strength of the two-phonon correlation for the
squeezed mechanical mode bs [60]. Note that, when the ideal
parameter condition 	 = ±nπ (n = 1, 3, 5, . . . ), the thermal
noise and the two-phonon correlation strength can be sup-
pressed completely; that is, Ns, Ms = 0.

To check the validity of the effective Hamiltonian Heff, in
Fig. 4 we plot the evolution of the correlation function g(2)(0).
It clearly shows that the numerical result corresponding to the
effective Hamiltonian Heff (green dots) agrees well with the
exact numerical calculation obtained using the full Hamil-
tonian HOMS (red curve). We also find that the correlation
function g(2)(0) approaches a steady value at κt ≈ 15. For
κ = 0.1 MHz, the relaxation time of the system is about
150 μs.

Figure 5 displays the correlation functions g(2)(0) and
g(3)(0) as functions of the detuning �/κ without and with

0 10 20 30 40 50

10-1

100

�t

g
(2

) (0
)

FIG. 4. The second-order correlation function g(2)(0) versus the
scaled time κt in the case of single-photon resonance (i.e., � = −g̃)
and the ideal parameter condition (i.e., 	 = π ). Here, the results
are obtained by numerically calculating master Eq. (18) with Heff

and HOMS. Parameters are chosen as ωs = 2000κ , gs = 20
√

10κ ,
γ = 10−3κ , and εl = 0.1κ .

the mechanical squeezing, respectively. Here, the solid curves
show the approximate analytical results based on Eqs. (16)
and (17), while the red circles are based on the numerical
results of the master equation in Eq. (18). We find that the ana-
lytical results are in an excellent agreement with the numerical
results. Specifically, without the mechanical squeezing (G =
0), i.e., in the weak-coupling regime, there is no photon

FIG. 5. The second- and third-order correlation functions g(2)(0)
and g(3)(0) versus the detuning �/κ . (a) δ = 0.02κ and (b) δ = 0.2κ .
Here, the symbol δ denotes the difference between the parameters
ωm and 4G as δ = ωm − 4G. D(2) and D(3) are the dips in the g(2)(0)
and g(3)(0), respectively. The pink regions indicate the occurrence of
two-photon blockade. Other parameters are taken as ωm = 5000κ ,
g = 0.2κ , and εl = 0.1κ .
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FIG. 6. The second- and third-order correlation functions g(2)(0)
given in Eq. (16) and g(3)(0) given in Eq. (17) versus the coupling
g̃/κ . The parameters are the same as in Fig. 5 except for the detuning
�/κ = −1.

blockade effect. That is because the weak coupling cannot
cause the sufficient anharmonicity, resulting in the incomplete
suppression of multiphoton excitation. However, in the pres-
ence of the mechanical squeezing, we find that single-photon
blockade and two-photon blockade effects can emerge by
varying the parameter δ. Obviously, as δ decreases, the photon
blockade effects are significantly enhanced, and the regions
where two-photon blockade occurs are widened. That is be-
cause the small δ could produce the strong optomechanical
coupling sufficient for the realization of the anharmonicity.
Thus, the strong optomechanical coupling is necessary for
generating and enhancing photon blockade effects. More-
over, with the increase of the optomechanical coupling g̃,
the photon-induced tunneling (PIT) effect can be transformed
into the photon blockade (2PB and 1PB) effects for �/κ =
−1, which can be seen more clearly in Fig. 6. This transi-
tion induced by the optomechanical coupling (the mechanical
squeezing) would be helpful for exploring quantum control of
antibunching and bunching light.

IV. EXPERIMENTAL FEASIBILITY AND CONCLUSION

To generate and enhance photon blockade effects, the
strong-coupling condition g0 > κ must be satisfied. However,
until now this condition in the experiments is still a big
challenge. Fortunately, in our proposal, the optomechanical
coupling can be enhanced into the single-photon strong-
coupling regime by the mechanical squeezing, even if the
system is originally in the weak-coupling regime. Specifically,
we choose the realistic parameters [44–56] as C1 = C2 =
27.5 nF, U1 = U2 = 1 V, r0 = 67 μm, and then obtain the
effective mechanical coupling constant G ≈ GHz. Moreover,
micro- and nanofabricated optomechanical systems [61–65]
have already demonstrated the high mechanical frequency
ωm ≈ GHz. When ωm infinitely approaches 4G, we obtain
a large squeezing parameter r. This leads to the realization
of the strong optomechanical coupling. Thus, we believe that
the proposal could be implemented on the currently available
experimental technologies.

In summary, we have investigated the enhanced two-
photon blockade effect via the mechanical squeezing, in the
optomechanical system consisting of charged mechanical os-
cillator coupled with cavity field and charged body. Due
to this squeezing, the optomechanical coupling can be sig-
nificantly enhanced into the single-photon strong-coupling
regime, which can cause the sufficient anharmonicity. By ana-
lytically and numerically calculating the correlation functions,
we have found that the strong optomechanical coupling not
only enhances the photon blockade effects but also widens
the region where the two-photon blockade occurs. Further-
more, we have shown that the transition from photon-induced
tunneling to photon blockade can be achieved by increasing
the coupling. Finally, the basic mechanism of our work can
be extended to the other blockade effects, such as phonon
blockade or magnon blockade.
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