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Maxwell-Bloch modeling of an x-ray-pulse amplification in a one-dimensional photonic crystal
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We present an implementation of the Maxwell-Bloch formalism for the study of x-ray emission dynamics
from periodic multilayer materials whether they are artificial or natural. The treatment is based on a direct
finite-difference time-domain solution of Maxwell equations combined with Bloch equations incorporating a
random spontaneous emission noise. Besides periodicity of the material, the treatment distinguishes between two
kinds of layers, those being active (or resonant) and those being off-resonance. The numerical model is applied
to the problem of Kα emission in multilayer materials where the population inversion could be created by fast
inner-shell photoionization by an x-ray free-electron laser. Specificities of the resulting amplified fluorescence
in conditions of Bragg diffraction are illustrated by numerical simulations. The corresponding pulses could be
used for specific investigations of nonlinear interaction of x rays with matter.
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I. INTRODUCTION

Nonlinear optical devices (NLO) have been a vivid subject
of study for their numerous applications. Within the domain
of x-ray quantum optics [1,2], the field of nonlinear x-ray
(NLX-ray) devices is much less explored since, compared
with the optical range, the control of x rays is more difficult.
The simplest NLX-ray device is an ensemble of 2,3-level
atoms for which different studies of pulse propagation and
of several nonlinear effects have been reported (see, for in-
stance, [3]). Other typical NLX-ray devices are multilayer
materials which are used in x-ray optics. Short and ultrain-
tense x-ray sources such as x-ray free-electron lasers (XFELs)
are pushing the boundaries of the response to x rays in such
devices. Besides this, it has been proven that XFEL sources
have the potential to create large population inversions in
gases [4], clusters [5], solids [6–8], and liquids [9], result-
ing in the creation of an x-ray amplifying medium. These
approaches based on lasing in atomic media have an important
potential to obtain useful short and coherent x-ray pulses.
Indeed, high-quality short pulses going beyond the inherent
defaults of SASE XFEL pulses (of spiky and chaotic nature)
are a prerequisite for future investigations concerning x-ray
quantum optics, x-ray scattering, precision spectroscopy, or
pump-probe experiments requiring a coherent probe. Com-
pared with conventional lasers, these approaches suffer from
the lack of a resonator to extract most of the energy stored in
an inverted medium. In other words, there remains the prob-
lem of realizing x-ray feedback to achieve laser oscillation
in the x-ray range. Hence a work going in that direction has
recently been reported [10]. In this reported work a classical
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multipass meter-sized laser cavity has been set up., the x-ray
lasing medium being a liquid jet pumped by an XFEL. Besides
this, within the context of XFEL excitation and to extract
energy stored in an inverted medium, the idea of using the
phenomenon of collective spontaneous decay or superradi-
ance (named also superfluorescence) has been discussed and
explored [11] but in the visible range. Independently, it has
been suggested that a laser action in the x-ray range can
be provided by Bragg reflection inside a natural crystal or
inside an artificial multilayer material [12–14]. Note that in
the first case, the Bragg condition is constrained by the crystal
periodicity.

The goal of this paper is to study numerically x-ray feed-
back under Bragg conditions as well as pulse propagation in
one-dimensional (1D) photonic crystals in which a population
inversion has been initiated by some external source. Here
we go beyond a description where the multilayer is simply
described by the complex refractive index of each layer [14].
Even when the complex part of the refractive index is neg-
ative (i.e., amplifying), such a description is basically linear
and corresponds to the linear phase of the interaction of an
x-ray pulse with the material. Note that this remark concerns
the active layers only. Passive layers, for which no resonant
response is expected, can still be described by a complex
refractive index. This defines the specificity of our description,
which mixes a nonlinear treatment and a linear treatment, i.e.,
more precisely, using a Maxwell-Bloch (MB) formalism or a
standard formalism, depending on the kind of layer (active or
passive).

In this paper we consider a large number of photons in
the radiation modes. As a consequence, quantum fluctuations
are neglected and the electromagnetic (EM) field is described
by Maxwell equations. In the absence of an external source,
one shortcoming of the MB description is that there is no
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mechanism for spontaneous emission. It is well known that
this problem can be overcome by adding a phenomenologi-
cal fluctuating polarization source that simulates spontaneous
emission (although this approach has some drawbacks, as
discussed below). Compared with many calculations of x-ray
lasing in gas or plasmas (see, for instance, Refs. [15–18]),
short spatial scales involved in this multilayer context do not
permit the use of the slowly varying envelope approximation
so that basic Maxwell equations have to be solved directly.
This is done here using the so-called finite-difference time-
domain (FDTD) method [19]. Furthermore, in this multilayer
(or 1D photonic crystal) context we consider a 1D plane ge-
ometry. Also, we consider only two levels resonantly coupled
to the EM field in the MB system. Other levels are taken into
account through relaxation and source terms in the equations
governing populations of these two levels.

In the following we present the physical model used here
(Sec. II), underlining the specific choices made for consider-
ing 1D photonic crystals in the x-ray range. Then we turn to a
discussion of simulation results in Sec. III. Physical situations
considered here evolve gradually from very formal situations
to situations close to actual experimental conditions. More
precisely, we begin with a situation intended at testing the
FDTD implementation in the context of the fluorescence of
a multilayer. Here there is no solving of the Bloch equa-
tions; instead, a source of emission is assumed in each cell
(Sec. III A). Then, after these considerations of the validity of
the FDTD implementation, we turn to MB calculations and we
consider in detail the problem of an x-ray pulse propagation
in a particular stack of bilayers (Mg/Co) in which an initial
population inversion is supposed (Sec. III B). After this, one
considers the self-emission of such a stack, i.e., as initiated
by spontaneous emission (Sec. III C). Finally, we turn to sit-
uations where an XFEL source is used for pumping (i.e., for
creating the population inversion) either a multilayer (such as
a bi-layer (Mg/Co) stack Sec. III D) or a simple Ni crystal
(Sec. III E). Section IV summarizes these results.

II. THEORETICAL APPROACH

A. Basic equations

As said in the Introduction, the medium considered here
consists of alternating active and passive materials with a
given periodicity—active in the sense of resonantly coupled
with the EM field at some pulsation ωo and passive if there
is no resonant coupling. The two first basic equations of our
approach are the Faraday and the Ampere laws, respectively
written in the form (SI units)

�∇ × �E = −∂t �B, (1)

1

μo

�∇ × �B = εoεr∂t �E + �j, (2)

�E , �B are the electric and the magnetic fields (real quantities),
respectively. εo, μo are the vacuum permittivity and perme-
ability, respectively. εr is the relative permittivity (here time
independent), and �j is the local current induced by the EM
field. In a linear material, i.e., here in a passive layer, �j = σ �E ,
where σ is the electric conductivity. At pulsation ωo, adiabatic

FIG. 1. Level scheme with the associated source or loss rates.
The thick line with two arrows represents the Maxwell-Bloch
coupling.

properties of the material (in the sense of an instantaneous
response to the applied field) are included in the real quantities
εr and σ . If the material is described by a complex refractive
index of the form (as in current data tables [20,21])

n = (1 − δ) − iβ,

there is an equivalence between the conductivity approach and
the refractive index in the sense that

εr = (1 − δ)2 − β2, σ = 2(1 − δ)βωoεo.

In a so-called active medium such as the so-called active
layers, one has �j = ∂t �P , where �P is the macroscopic polar-
ization. Considering two levels coupled by the EM field, the
macroscopic polarization is defined as the trace of the operator
Nρ �d , where N is the density of polarizable atoms, �d is the
atomic dipole, and ρ is the density matrix. Hence

�P = 2NRe[ρ21] �d. (3)

The nondiagonal matrix element of the density matrix ρ21

is a complex number as the diagonal elements ρ11, ρ22 are
real quantities. These matrix elements are obtained from the
following evolution of the density matrix (Liouville equation)
ih̄∂t = [H, ρ] + relaxation and source terms. Here, assuming
a polarization along axis Ox, the Hamiltonian H has the
form H = ( ε1 −dEx

−dEx ε2
), where both Ex and d = 〈1|dx|2〉 are

real quantities. ε1,2 are the energies of the coupled levels.
Hereafter, h̄ωo = ε2 − ε1. The level scheme of the problem
is depicted in Fig. 1.

In a warm or hot medium, γ1, γ2 are the rates (in s−1) of the
collisional, radiative, and Auger processes, which depopulate
states, except stimulated emission and spontaneous emission.
A21 is the spontaneous emission rate. Here s1, s2 are the pos-
sible population fluxes due to all processes, except absorption
between states 1 and 2. γ1,2 and s1,2 may involve other levels
in the system. We define γ⊥ = 1

2 (γ1 + γ2) + γφ so that 1/γ⊥
can be seen as the lifetime of the coherent superposition of
states |1〉 and |2〉. In principle, γφ is supposed to be the rate
of events perturbing the wave function without inducing a
decay of eigenstates. Hereafter, we called populations of states
1 and 2 the macroscopic quantities N1 = Nρ11, N2 = Nρ22,
respectively.
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FIG. 2. Sketch of a stack of bilayers made of one active ele-
ment (yellow) and of one passive element. On one side the stack
is submitted to a source of excitation (the pump). Propagation of
the emerging radiation is described by Maxwell equations at some
frequency (which is resonant for the active layers). In active layers,
the response is described by the Bloch equations, while in passive
layers, the response is given by the refractive index.

In an active layer, the set of equations to be solved locally
for the populations N1, N2 and for the macroscopic coherence
P = Nρ21 is then

∂t N1 = −2

h̄
dExIm[P] + s1 − γ1N1 + A21N2, (4)

∂t N2 = 2

h̄
dExIm[P] + s2 − γ2N2 − A21N2 + Xp, (5)

∂t P = −iωoP − γ⊥P − i(N2 − N1)dEx + S, (6)

where we added in Eq. (5) a pump source term Xp. S is a
phenomenological random source modeling the spontaneous
emission. In the absence of external incoming radiation, S
acts as an energy seed for energy injection in the system.
Equations (1)–(6) correspond to our set of Maxwell-Bloch
equations where Eqs. (4)–(6) concern the active layers only. In
the literature, the name of Maxwell-Bloch [22], or sometimes
Maxwell-Schrödinger [15], is often given to the coupling of
complex slowly varying envelopes of the EM field with the
Bloch equations for the density matrix. Here, there is no
approximation concerning the field variation both in space and
time.

B. Wave equations in a 1D photonic medium
at oblique incidence

A sketch of the physical problem is given in Fig. 2. The
medium is made of a periodic stack of different materials
(at least two different materials). One is the active material
(i.e. described by the MB equations), the other(s) is (are)
the passive (or linear) material(s), i.e., described by complex
refractive indices.

(�k, �E , �B) represent a plane wave propagating in the material
under the angle θ⊥. Hereafter we make use of θ⊥, which is the
angle with respect to a direction perpendicular to the surface
xy while it may be more convenient to use θ// = π

2 − θ⊥. In
this geometry, Faraday’s law [Eq. (1)] reads

∂zEx = −∂t By, (7)

∂yEx = ∂t Bz, (8)

while Ampere’s law [Eq. (2)] reads

−∂zBy + ∂yBz = εr

c2
∂t Ex + μo jx, (9)

where jx = σEx is in a passive layer. In an active layer,
εr = 1 and jx = ∂tPx, Px being deduced from Eq. (3), i.e.,
Px = 2dRe[P]. Translating (7), (8), and (9) from the time do-
main to the frequency domain gives three equations in which
Ex has the behavior Ex ∼ exp(iωot ± iky sin θ⊥). Eliminating
Bz and going back to the time domain (iωo → ∂t ) finally
gives the following two equations governing the behavior of a
plane wave for an arbitrary oblique incidence in the multilayer
material:

∂zEx = −∂t By, (10)

− ∂zBy = 1

c2
(εr − sin 2θ⊥)∂t Ex + μo jx. (11)

To solve these equations, one uses the usual FDTD
method [19], namely, a second-order central difference
scheme introduced by Yee [23]. Yee’s scheme consists in
writing the central differences of Ex and By, shifted in space
by half a cell and in time by half a time step. In our im-
plementation, B is evaluated at the edge of each cell, while
E is evaluated at the center. Accordingly, proper boundary
conditions for B have to be applied on each side of the multi-
layer. Considering that the two external layers (on both sides)
correspond to the vacuum (refractive index n = 1), and in
order to remove reflections from these boundaries, we used
second-order absorbing boundary conditions (ABCs) [24].
Together with Ex, the quantities N1, N2, and P are cell centered
and are advanced in time using a Crank-Nicolson scheme.

Concerning the sampling in space, typically at least 20
steps per wavelength are necessary. This involves a subdivi-
sion of each layer in much smaller layers of thicknesses �z.
Accordingly, the sampling in time is governed by the Courant
limit. More precisely, an inspection of Eq. (11) shows that the
front phase velocity is c/

√
εr − sin2 θ⊥. Then the time step

must be such that

�t � �z

c

√
εr − sin2 θ⊥.

C. Incident source – Spontaneous emission

For some applications it may be useful to consider the
seeding of the multilayer by some incident external polarized
x-ray pulse (see Sec. III B below). Practically, this can be an
external source of x rays at ωo generated independently. Note
that we distinguish this potential seeding source at ωo from
another source (not at ωo) allowing creation of a population
inversion. In order to follow an x-ray pulse propagating in
one specific direction, the positive z direction, for instance
(see Fig. 2), this source at ωo has to be properly implemented.
As usual in FDTD simulations, this is accomplished using a
total-field/scattered-field (TFSF) boundary [25] at the point
where the source(s) is (are) put. For instance, this source can
be placed in the left vacuum cell of our simulation domain.
More precisely, one defines both an incident electric field E inc

and an incident magnetic field Binc = cos θ⊥
√

εrE inc (εr = 1
in the vacuum). At the location of the source, according to
the TFSF method, E must be replaced by E − E inc in the
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discretized evolution of the B field, while B must be replaced
by B + Binc in the discretized evolution of the E field.

Independently of any external source at ωo, the source of
spontaneous emission in Eq. (6) (the term S) can be mod-
eled as a Gaussian white noise following the guidelines of
Ref. [16], an approach followed later by others [17,18]. The
interest of this approach is that it provides the correct spectral
behavior for the field [16]. Here, one starts from the simplified
(local) system [see Eqs. (11) and (6)] coupling the electric
field and P = Nρ21:

dE

dt
= αRe

[
dP

dt

]
(α = −2μoc2d ), (12)

dP

dt
= −iωoP − γ P + S, (13)

where the noise source S (complex) has the correlation func-
tion 〈S∗(t ′)S(t )〉 = Fδ(t ′ − t ). The notation 〈...〉 is used to
represent the statistical ensemble averaging, and F is a con-
stant defined by the following arguments. From the density of
the electric field εo

2 E2, one defines an average power density
W which must be equal to the power emitted by spontaneous
emission (in one direction) so that

W = d

dt

(
εo

2
〈E2〉

)
= 1

4π
N2A21h̄ωo. (14)

From the formal solution of Eq. (12), E (t ) =
α

∫ t
−∞ Re[ dP(t ′ )

dt ′ ]dt ′, one gets

W = εo〈E dE
dt 〉 = α2εo

∫ t
−∞〈Re[ dP(t ′ )

dt ′ ]Re[ dP(t )
dt ]〉dt ′. Using

(13), W becomes

W = εo

4
α2

∫ t

−∞

(〈
dP∗(t ′)

dt ′
dP(t )

dt

〉
+

〈
dP(t ′)

dt ′
dP∗(t )

dt

〉)
dt ′.

(15)

From the formal solution of Eq. (13), P(t ) =∫ t
−∞ S(t ′)e−iωo(t−t ′ )e−γ (t−t ′ )dt ′, it is easy to calculate quantities

〈...〉, so that after averaging over one period, calculation of the

integrals in (15) gives (since ωo 
 γ ) W = εo
4 α2 F

2
ω2

o
γ 2 . Then

from relation (14) one gets

F (z, t ) = 2A21h̄ωoN2(z, t )

α2πεo

γ 2

ω2
o

. (16)

Practically, over a time step �t , the noise source term S in
Eq. (6) is a random complex number u + it distributed accord-
ing to the law 1

πσ 2
S

exp [−(u2 + t2)/σ 2
S ] with σS = √

F�t .
The action of this local phenomenological model of spon-

taneous emission as set from Eqs. (12) and (13) is to inject
a random macroscopic coherence at each point and at each
instant. While giving the correct number of photons, a short-
coming of this approach (as discussed also later in the text) is
that, in the limit of weak excitation (i.e., weak population of
the upper level), the simulated temporal profile of the emis-
sion (supposed to be driven by spontaneous emission) is not
entirely decreasing exponentially.

III. SIMULATION RESULTS

A numerical code based on the model described above has
been built. The active materials considered in this article are

K-shell photoionized magnesium (Secs. III A–III D) or nickel
(Sec. III E). In magnesium, according to the level scheme
depicted in Fig. 1, level 2 stands for 1s 2s2 2p6 [3s2] and
level 1 stands for 1s2 2s2 2p5 [3s2]. In nickel, level 2 stands
for 1s 2s2 2p2

1/22p4
3/2 3s23p63d8 [4s2] and level 1 stands for

1s2 2s2 2p2
1/22p3

3/2 3s23p63d8 [4s2]. Compared with neutral
atoms, outer electrons in solid Mg or Ni (denoted by [...]) are
delocalized. In what follows we either set populations 2 and
1 (likewise, the density of inversion) (Secs. III B and III C) or
we explicitly consider a time-dependent pumping (Secs. III D
and III E).

In this last case, initial atoms (in the state |0〉 ≡
1s2 2s2 2p6 [3s2] for Mg or [Ar]3d8 [4s2] for Ni) are photoion-
ized by an external x-ray source (supposedly an XFEL beam),
hereafter named as “the pump,” tuned above the K edge. This
pumping results in the population of the core-excited state
|2〉 radiatively coupled to state |1〉 by the decay 2p → 1s.
In conditions of weak pumping, this coupling corresponds to
the usual Kα fluorescence. Note that in conditions of weak
pumping, state |2〉 predominantly decays via Auger decay
(with the rate �2), while both states |1, 2〉 are also affected by
the photoionizing pump. In Mg we neglect the fine-structure
splitting of the Kα line, since it is smaller than the Auger
width. For Ni, the splitting Kα1 − Kα2 largely exceeds the
Auger width, and we chose to consider the Kα1 line only.
Levels |1, 2〉 are the two levels considered in our Maxwell-
Bloch modeling. According to Figs. 1 and 2, quantities γ1, γ2,
and Xp depend on the local intensity of the pump Ip in the
sense that

γ1(z, t ) = σ1s
Ip(z, t )

hνp
, (17)

γ2(z, t ) = �2, (18)

Xp(z, t ) = σ1sNo(z, t )
Ip(z, t )

hνp
, (19)

where σ1s denotes the 1s photoionization cross section at
energy hνp. Ip, hνp are the intensity (here a power per surface
unit) and the photon energy of the pump, respectively. No is
the population density of state |0〉. If hνp is greater than the
second 1s ionization threshold, the term σ1s

2
Ip(z,t )

hνp
must be

added to the right side of Eq. (18). At this step it is important
to remark that, for a normal incidence and being off an acci-
dental situation where the period of the material would be an
integer of λ/2 (i.e., off-Bragg), one may adopt for the pump
the simple corpuscular point of view of photon absorption.
Hence for a pump propagating from the right (see Fig. 2), the
pump intensity obeys the following photon transport equation:

1

c

∂Ip(z, t )

∂t
− ∂Ip(z, t )

∂z
= −kp(z, t ) Ip(z, t ), (20)

with

kp(z, t ) = σ1sNo(z, t ) + σ1sN1(z, t )

+ σ1s

2
N2(z, t ) (in the active material)

= σ passiveNpassive(z, t ) (in the passive material),
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in which Npassive(z, t ) is the atom density in a passive layer,
σ passive being the corresponding absorption cross section at
hνp. Finally, the population of state |0〉 evolves as

∂No(z, t )

∂t
= −σ1sNo(z, t )

Ip(z, t )

hνp
. (21)

In the case where the pump is explicitly taken into account,
Eqs. (17)–(21) have to be solved simultaneously with the
previous Maxwell-Bloch set of equations.

In the following, after checking the right behavior of the
FDTD implementation (Sec. III A), we describe the propaga-
tion of an x-ray pulse at the Kα energy for different situations
of increasing complexity, whether the pulse is of external
origin (Sec. III B) or not (i.e., originating from spontaneous
emission, Secs. III C–III E). Note that in Secs. III D and III E
we explicitly consider the pumping by an external photoion-
izing x-ray source.

A. Simple propagation in a multilayer material

A first and minimal implementation amounts to consid-
ering that all the layers are of passive nature, i.e., simply
described by a complex refractive index. The goal is to assess
the necessary number of subdivisions of each layer in our
specific problem of wave propagation in the x-ray range, in
a stratified medium made of nanometer-size layers. Indeed,
this number of subdivisions defines a typical space interval
�z on which Maxwell equations are discretized according to
the FDTD scheme mentioned above. Of course, this defines
the time step �t as discussed in Sec. II B. As a test case,
we consider here a sample already considered in a context of
synchrotron irradiation [26]. It consists of a stack of 30 bilay-
ers (Mg/Co) of thicknesses e1 = 5.45 nm and e2 = 2.55 nm,
respectively, so that the whole stack is denoted (Mg/Co)30. In
each of the Mg layers, a source of radiation is supposed to emit
at the Kα line energy (1253.6 eV). These sources are all the
same and of the form E (t ) = A exp [−0.5(t − to)2/τ 2

p ] sin ωot
(where A is an arbitrary amplitude), implemented as discussed
in Sec. II C. The resulting time-integrated outgoing emission
over a time well exceeding both the time duration of the source
and the time of propagation through the sample is displayed
in Fig. 3 as a function of the number of subdivisions in
each layer. Specific modulations (called Kossel patterns) are
observed at the Bragg angles of the multilayer. These modu-
lations are due to interferences of the diffracted waves inside
the material [27,28]. Outgoing signals displayed in Fig. 3 are
similar to those calculated for the same sample but by solving
the Helmholtz wave equation for a plane-wave incident in the
sample [14], which is just a check of the optical reciprocity
theorem stated as a point source at A will produce at B the same
effect as a point of equal intensity placed at B will produce at
A [29,30]. Here, point A is a source point in the material while
point B is a detection point at infinity. Now, one can consider
the opposite point of view of a plane wave originating from B
and incident on the material and calculate the electric field in
the material (supposedly an N-cell stack). The resulting inten-
sity (i.e., the sum of all of the local intensities) is equivalent to
the total outgoing emission from N identical sources located
in the N cells of the material.
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FIG. 3. Calculated angular scan for the Mg Kα radiation emitted
by a stack (Mg/Co)30 (e1 = 5.45 nm and e2 = 2.55 nm) where a
same source of Kα radiation has been put in each Mg layer. Kossel
patterns are labeled by their Bragg order n.

In Fig. 3, one sees a convergence in the number of subdivi-
sions necessary for performing accurate FDTD calculations
of x-ray pulse propagation in multilayered materials. It is
interesting to note the extinction of Kossel structure n = 3
for the converged results. This is consistent with the diffrac-
tion theory when applied to a simple line grating [30] or to
X-UV interference mirrors [31]. Indeed, the first extinction
should occur for the ratio �

e2
= 3. Taking for e2 and for the

period � = e1 + e2, the values given above, one finds a value
very close to 3. These different remarks validate our minimal
implementation.

B. Propagation in an amplifying multilayer material

We consider here the problem of a short pulse originating
at the left, i.e., in the vacuum cell of our computational domain
(see Sec. II B) and then propagating from left to right in
a multilayer similar to the stack considered in the previous
paragraph, albeit with an increased number of bilayers, i.e.,
(Mg/Co)60. The Mg layers are now active, i.e., described
by the Bloch equations, and we consider four typical sets
of initial populations for N1, N2 in term of the total density
of atoms in solid state Mg, that is, nMg = 4.3063 × 1022

cm−3. The population of the lowest level is fixed to N1 =
4.306 × 1018 cm−3, while N2 is varied between 4.306 × 1017

cm−3 (case 1), 4.306 × 1020 cm−3 (case 2), 4.306 × 1021

cm−3 (case 3), 4.306 × 1022 cm−3 (case 4), respectively. In
this way, case 1 corresponds to a very weak 1s photoionization
with no inversion, while case 4 corresponds to a maximal
population inversion in the Mg layers. The ingoing pulse is of
the form E (t ) = 1√

2πτp
exp [−0.5(t − to)2/τ 2

p ] sin ωot with the

typical parameters τp = 1 fs and to = 2 fs. What is specifically
studied here is the right outgoing intensity as a function of
time. More precisely, one displays the modulus of the Poynt-
ing vector, averaged over one period, i.e., Sav = 1

T

∫ T
0 |S|dt

with μ2
oS2 = (ExBz )2 + (ExBy)2, Bz = 1

c Ex sin θ⊥. Hereafter,
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FIG. 4. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in the normal direction (θ// = 90◦) as a function of time.
See text for the characteristics of the ingoing signal and for the
definition of cases 1–4.

units for the Poynting vector are the atomic units, i.e.,Sav is in

unit of e12

(4πεo)6
m4

e

h̄9 . For a signal ingoing in the normal direction,
calculations are displayed in Fig. 4.

Compared with the weak signal (case 1), one sees the
gradual effect of a gain material on the intensity temporal
shape of the outgoing pulse. In particular, one notices an
increase of the outgoing pulse duration with respect to the
ingoing pulse duration. In the case of strong (and here max-
imal) inversion (case 4), a typical effect such as “ringing”
of the outgoing signal is observed. This corresponds to the
well-known Burnham-Chiao ringing [32]. Present simulations
are in the time domain. Of course, taking the Fourier trans-
form gives information on the frequency domain. Figure 5
shows the spectra corresponding to the previous simulations,
i.e., the evolution of the (normalized) spectrum as a function
of the density of inversion. Even on this small distance of
propagation, the high density allows a clear gain narrowing
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FIG. 5. Normalized spectra corresponding to the signals of Fig. 4.
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FIG. 6. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in the normal direction (θ// = 90◦) as a function of time.
The seeding is provided by the inherent spontaneous emission noise.
See text for the for the definition of cases 1–4.

(cases 2 and 3) and then a strong AC Stark (or Rabi) splitting
for the maximal density of inversion (case 4). This behavior
illustrates the response of the two-level system driven by an
x-ray field on resonance. This field becomes so important that
the levels shift dynamically through the Stark effect.

C. Self-emission of an amplifying multilayer material

In this paragraph we do not consider the propagation of an
external pulse but the signal originating from the noisy source
of spontaneous emission in each active cell of a multilayer.
More precisely, we study how spontaneous emission emitted
in one direction propagates and how stimulated emission sets
in. Present calculations rely on the modeling of spontaneous
emission presented in Sec. II C. Still, for the same multilayer
(Mg/Co)60 and the same sets of initial populations (N1, N2) in
Mg layers, Fig. 6 displays simulations of the outgoing x-ray
emission in the normal direction.

We see the weak noisy signal for a low initial excitation
(case 1) while, gradually with the density of inversion, a
collective emission is set up independently of any external
pulse ingoing into the material. For the maximal initial popu-
lation inversion (case 4), characteristics of the superradiance,
namely, time delay for the peak of emission and ringing,
are clearly visible. We emphasize that these results are just
single realizations which may be subjected to large fluctua-
tions. However, what we observed is that in case of strong
population inversion, stimulated emission and amplification
make the results weakly sensitive to a given realization, a fact
which is somehow reflected by the smooth aspect of graph
corresponding to case 4. In case of weak or absent stimulated
emission, the right temporal behavior can be recovered only
by performing an average over many realizations. For cases 1
and 2, we checked that an average over at least a few tens of
realizations gives a decaying behavior for large time. Further-
more, in this weak limit we observed a behavior as te−�t (�
being the decay time of level 2) instead of the right behavior
e−�t , which is an identified shortcoming of MB models with
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FIG. 7. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in first Bragg direction θ// = 3.45 deg as a function of
time. The seeding is provided by the inherent spontaneous emission
noise. See text for the for the definition of cases 2–4. The inset is a
zoom of the time interval 0–2 fs.

a noise term [33,34]. In the weak limit, the present theoretical
approach is thus not very reliable.

We turn now (Fig. 7) to a propagation seeded around the
first uncorrected Bragg angle (defined so that � sin θ// = λ/2,
� being the period of the material, i.e., � = e1 + e2 according
to Fig. 2). Here an oscillation feedback can be provided by
Bragg reflection [12,13,35] so that large electric field en-
hancements can be obtained [14]. Note that for a multilayer
and in the linear response regime, a small deviation to the
previous Bragg law exists [31,36,37]. Compared with Fig. 6
(normal direction), a dramatic change of the emission is ob-
served for θ// = 3.45◦. Here at oblique incidence, the phase
front of a plane-wave incident on the left is supposed to arrive
on the opposite side in a very short time. This time τ is defined
so that cτ = d sin θ//, d being the whole thickness of the
multilayer, i.e., τ � 0.1 fs in present conditions. As one can
see, depending on the inversion density, the outgoing x-ray
pulse shifts earlier in time; its duration is reduced while its
intensity strongly increases. This is a clear evidence of the
feedback provided by Bragg reflection in the multilayer. Some
complex “ringing” is also apparent. Here, also, we observed
that stimulated emission, amplification, and feedback make
the results weakly sensitive to a particular realization, which
means that the random onset of emission is easily forgotten.
Spectra corresponding to Fig. 7 are displayed in Fig. 8. The
huge broadening observed for the maximal density of inver-
sion (case 4) is a combined effect of the pulse shortening and
of AC Stark splitting due to the huge electric field which sets
up. These results suggest that for large population inversions,
emission will tend to be around the Bragg angle and that its
duration should be extremely short, beating even Auger decay,
which is of the order of 2–3 fs.

At this step, it is important to comment the choice of
the relative thicknesses which can be done to optimize the
feedback. For our purpose, optimization of the multilayer
relies on its intrinsic reflectivity at the wavelength of interest
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FIG. 8. Normalized spectra corresponding to the signals of Fig. 7.

(i.e., here the Kα line of active layers), regardless of any
MB calculation. Relative thicknesses are thus important. A
characteristic parameter is the ratio (usually called γ ) of the
heaviest layer (and more absorbing) thickness e2 to the period.
It is well known from multilayer physics that an optimal
diffraction may be found for γ close to 1/3. Using equations
based on two different methods (either the dynamical theory
of diffraction [38] as applied to multilayer optics [39]) or the
“optical approach” as applied to multilayer optics [31], we
have found that for the system (Mg/Co) the optimal γ is close
to 0.4. So the rule of thumb of γ ∼ 1/3 is verified and has
been used as a typical value. Concerning the effect of possible
imperfections in the periodicity, one can also look at the in-
trinsic reflectivity and see how it is sensitive to a small random
variation of thicknesses. Considering 1% variation (which is a
high limit from an experimental point of view) we have found
that the reflectivity moves only 1%. Therefore small random
variations of the thicknesses are not very important.

D. Self-emission of a pumped multilayer material

Previous calculations were based on the idea of a prelim-
inary preparation of N1, N2 at given initial values. Here we
place ourselves in conditions where these initial values are
zero and where pumping of level 2 is provided by an external
x-ray source photoionizing the ground level (of population
N0) within an active layer, as discussed at the beginning of
Sec. III. This raises the question of the optimal size of the
multilayer, i.e., of the number of bilayers. The answer depends
on the material, on the attenuation length of the pump, and on
the incidence angle. For a not too inhomogeneous pumping,
the size of the multilayer for a given incidence angle cannot
exceed the attenuation length of the pump.

In present simulations, the x-ray pulse is supposed Gaus-
sian and of 10-fs duration (FWHM) and at normal incidence,
i.e., according to Fig. 2. Its intensity is propagated and de-
pleted according to Eq. (20). The photon energy of this pump
is 1332 eV, i.e., above the Mg K edge. In Fig. 9 we plot
the outgoing Mg Kα emission of our (Mg/Co)60 stack in
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FIG. 9. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in the normal direction (θ// = 90◦) as a function of time
and for different intensities of an external x-ray pump. Dashes (of
arbitrary unit) indicate the temporal shape of the pump. The seeding
of the emission is provided by the inherent spontaneous emission
noise.

the normal direction as resulting from three different pump
intensities. Dashes (of arbitrary unit) indicate the temporal
shape of the pump. Here the different shapes of the outgoing
emission reflect the efficiency of the core-hole creation with
respect to the maximum of intensity. As seen above, the signal
stops being noisy when stimulated emission sets up, which
is possible if a sufficient density of core holes is reached.
Now, as expected from the considerations of Sec. III C, the
signals observed in the Bragg direction θ// = 3.45◦, are dra-
matically different (Fig. 10), both in intensity (a few orders of
magnitudes) and in temporal shape. About the different angles
of emission, a question arises here. In principle, spontaneous
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FIG. 10. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in the direction θ// = 3.45◦ as a function of time and for
different intensities of the external x-ray pump. Dashes (of arbitrary
unit) indicate the temporal shape of the pump. The seeding of the
emission is provided by the inherent spontaneous emission noise.
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FIG. 11. Modulus of the Poynting vector outgoing from the stack
(Mg/Co)60 in four directions as a function of time and for the in-
tensity 1017 W/cm2 (of external x-ray pump). The seeding of the
emission is provided by the inherent spontaneous emission noise.

emission (which is isotropic) generates photons in all direc-
tions, although at different times and different locations. For
this reason the fields corresponding to all directions should be
calculated so that Eqs. (4)–(6) include the contribution of all
directions. In terms of computation time, such a treatment is
prohibitive since, as discussed in Sec. III A and seen in Fig. 3,
a very fine spatial zoning and a very fine angular gridding is
needed to resolve the Kossel structures. Here our purpose is to
show that a multilayer structure may present preferential di-
rections of emission for which initial photons emitted around
the Bragg angle “catch on” the stimulated emission as does
a standard cavity. This point is illustrated in Fig. 11, which,
for the same multilayer and for the intensity 1017 W/cm2,
displays at θ// = 45◦ and for three angles at and around the
Bragg angle, the temporal profiles of radiation. What is shown
in this figure is twofold. First, one sees that most of the emis-
sion is catch on around the Bragg angle θ// = 3.45◦. Second,
it is clear that the enhancement of the emission is not a simple
geometry effect where this enhancement would come from a
larger effective propagation distance.

In Fig. 10, the complex behavior of outgoing signals
reflects the complex interplay between population kinetics,
depletion of the pump, propagation, and Bragg diffraction.
This is somehow illustrated by snapshots of the spatial dis-
tribution (inside the multilayer) of populations N0, N1, N2 at
different characteristic times during the driving pump pulse
(Fig. 12). The x-ray pump comes on the right so that the
decrease of population N0 as a function of z reflects the
attenuation of the pump as it propagates from the right to
the left inside the material. The Maxwell-Bloch coupling of
populations N2, N1, seeded by spontaneous emission, gives
rise to a set of pulses propagating inside the multilayer and to
clear Rabi oscillations (Rabi flopping). Despite the complex
temporal shape of these outgoing signals around the Bragg
direction, they remain much more intense than in the normal
direction.
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FIG. 12. Snapshots of populations N0, N1, N2 at two moments
inside the multilayer (Mg/Co)60 and in the conditions of Fig. 10.
The pump comes on the right with an intensity of 1018 W/cm2. Left
figure: t = 7.5 fs; right figure t = 10 fs.

As massive photoionization causes a large concentration of
photoelectrons which thermalize quickly in dense materials,
an interesting question is to what extent collisional ionization
of 2p electrons in level 2 by these photoelectrons may affect
significantly the lifetime of this level. Assuming an instanta-
neous thermalization, a temperature for these photoelectrons
can be estimated from the total energy deposited in these
photoelectrons. In Mg and with our parameters, we estimated
this electron temperature to be of the order of 100 eV for
a pump intensity of 1018 W/cm2. From a calculation of the
collisional ionization cross section of a 2p electron in state
1s 2s2 2p6 [3s2], the collisional ionization rate varies between
109 s−1 (at 10 eV) and 1014 s−1 (at 100 eV). This can be
compared with the autoionization rate which is 3.4 × 1014

s−1. Although not negligible at high intensity, still, at the
end of the pump pulse, the effect of photoelectrons remains
smaller than autoionization decay. We do not think that their
existence changes the conclusions of this article, especially in
the feedback regime, which shortens the emission duration.

E. Self-emission of a pumped natural crystal

In this last section we examine the case of a natural crystal
whose periodicity of atomic layers may provide the same
kind of Bragg oscillations. One considers here a Ni crystal
where for an orientation (111) of planes parallel to the surface,
atomic layer spacing is d = 0.216 nm. A strong pumping of
the 1s core electrons in Ni may give rise to an amplification
on the 2p3/2 → 1s Kα1 line at 7478.15 eV. At this energy the
first Bragg angle is around 22.6◦ (with respect to the surface).
1D periodicity is introduced in the calculations by considering
the (supposedly perfect) crystal as a stack of bilayers of period
d and where the first layer (the active layer) is a layer of Ni
atoms while the second layer is just empty (then passive) and
of refractive index 1. Such a replacement of real atoms by a
uniform layer of a given thickness e1 (see Fig. 2) is a rough
method to simulate the problem of a distribution of individual
small scatterers. Its validity is semiempirical. A relevant quan-
tity to measure its effectiveness is the reflectivity of the system
(element/vacuum)n, which for a wavelength of interest can
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FIG. 13. Modulus of the Poynting vector outgoing from the stack
(Ni/vacuum)5000 (e1 = 0.0972 nm, e2 = 0.1188 nm) irradiated in the
normal direction by a raised cosine pulse of intensity 1019 W/cm2,
10 fs duration, 8360 eV photon energy. Three outgoing directions
are shown: the normal direction θ// = 90◦, the Bragg direction θ// =
22.57◦, and an off-Bragg axis direction θ// = 21.0◦. Seeding of the
emission is provided by the inherent spontaneous emission noise.

be calculated around the Bragg angle and compared with a
model giving the reflectivity of a real crystal. From x-ray
reflectivity calculations based on a solution of the Helmholtz
equation applied to stacks (element/vacuum)n, we performed
such comparisons with a software available at Stepanov’s x-
ray server [40], allowing a calculation of the reflectivity in
real crystals. We found that taking for the element thickness
a typical value of 0.4d (d being the proper inter-reticular
distance in the crystal of interest) and renormalizing properly
the number of atoms in this element layer to the right number
of atoms (per volume unit), this approach gives results close
to those of Stepanov’s x-ray server. Accordingly, we used this
recipe in our Maxwell-Bloch calculations.

Simulations presented here correspond to a Ni thickness
of 1.08 μm, i.e., to the stack (Ni/vacuum)5000. Simulation
results are displayed in Fig. 13. Irradiation conditions are a
raised cosine pulse of 10-fs duration (FWHM), 8360 eV of
photon energy (i.e., above the Ni K edge) and of intensities
1019 W/cm2, and at normal incidence, i.e., in the geometry
of Fig. 2. Figure 13 displays a comparison of the outgoing
Ni Kα1 signal (i.e., seeded by spontaneous emission) observed
in the normal direction θ// = 90◦, in the Bragg direction
θ// = 21.57◦, and in some off-Bragg direction, respectively.
Compared with the other directions, emission in the Bragg
diffraction region (the Kossel region) is strongly enhanced,
which indicates the possibility of having a resonator or feed-
back effect in natural crystals.

IV. CONCLUSION

A 1D Maxwell-Bloch FDTD model for any oblique in-
cidence has been successfully implemented for studying
x-ray propagation in 1D photonic crystals. We simulated the
self-emitted signal from typical 1D photonic crystals where

043508-9



PEYRUSSE, JONNARD, AND ANDRÉ PHYSICAL REVIEW A 103, 043508 (2021)

a population inversion is prepared on an atomic transition
in the x-ray range. The buildup of an outgoing signal starts
from spontaneous emission. We have seen that this emission
encompasses many nonlinear phenomena such as Rabi split-
ting, Rabi flopping, ringing, etc., in the x-ray range as well as
the Kossel effect, but in an amplified mode. We have shown
that most of the emission occurs in a prevailing direction
which is the Bragg direction. If the inversion results from a
previous photoionization, we observed that this emission is
short enough to beat Auger relaxation. We specifically studied
cases where the pumping source allowing a strong population
inversion is an intense, short x-ray pulse such as provided by
XFEL sources. For a typical multilayer and for realistic con-
ditions of pumping, calculations show a strong enhancement

of the emission in the Bragg direction. For the case of natural
crystals, this enhancement is also noticeable.

Results of this study motivate future experimental investi-
gations of the behavior of photonic crystals, whether they are
natural or artificial (multilayers). It motivates also many other
theoretical investigations on different multilayers or natural
crystals to optimize x-ray emission at different wavelengths.
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