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Laguerre-Gaussian optical sum-sideband generation via orbital angular momentum exchange has been studied
analytically beyond the linearized approach. We obtain the analytical expression for the amplitudes of these sig-
nals within the semiclassical approximation. The pump power dependence of Laguerre-Gaussian sum-sideband
generation is discussed, and we find that Laguerre-Gaussian sum-sideband generation can be remarkable even
at low power through the satisfaction of matching conditions. The matching conditions for Laguerre-Gaussian
sum-sideband generation in an optorotational system are discussed and summarized in detail, and the physical
interpretation of matching conditions is discussed. The role of the topological charge value l on the sum-sideband
generation is studied, which exhibits a saturation effect for the peak value of the normalized amplitude and
consequently limits further improvement of the Laguerre-Gaussian sum-sideband generation. Our results may
find applications in Laguerre-Gaussian optical frequency comb and communications and provide a potential
method for the determination of the orbital angular momentum of light fields with high topological charges.
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I. INTRODUCTION

The Laguerre-Gaussian (LG) beam, obtained as a type
of eigensolution of the paraxial wave equation in cylindri-
cal coordinates, possesses a helical phase structure and a
doughnut-shaped intensity distribution with zero intensity at
the beam center [1]. The LG beam carries an orbital angular
momentum (OAM) of l h̄ per photon along its propagation
direction, with the integer l representing the azimuthal mode
index or topological charge value [2]. Different methods
such as computer-generated holograms [3,4], spiral phase
plate or mirror [5,6], spatial light modulators (which may be
the most common method to generate OAM modes in the
laboratory) [7–9], and superposition of decentered Hermite-
Gaussian beams [10], have been developed to generate a LG
beam with well-defined orbital angular momentum.

Generation of an LG beam by spiral phase elements (such
as spiral phase plates or spiral phase mirrors) may be the
most straightforward approach [2]. The spiral phase plate is an
optical element with a helical surface, and it can impart a well-
defined orbital angular momentum to the photon reflected or
transmitted [11]. The ability to convert a Gaussian mode into
LG modes makes the spiral phase plate an important element
in modern optics, and generation of LG beams with spiral
phase elements is usually stable and efficient with respect to
the other methods. The spiral phase plate and mirror can be
fabricated with high precision and low mass, and the genera-
tion of LG beams with a topological charge value as high as
1000 has been demonstrated [12].

Recent experiments have been shown that LG beams can
exert a torque on objects due to the transfer of orbital angular
momentum, including microscopic absorptive particles [13],
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mesoscopic Bose-Einstein condensate [14], and submicron
Brownian particle [15]. The torques arising in the spiral phase
elements as a result of the interaction with light have been
analyzed in Ref. [16], and a Laguerre-Gaussian optorota-
tional system has been proposed, in analogy with the cavity
optomechanical system [17,18]. The Laguerre-Gaussian op-
torotational system consists of two spiral phase elements
acting as cavity mirrors [a schematic diagram is shown in
Fig. 1(a)]. The input spiral phase element is rigidly fixed, and
the Laguerre-Gaussian cavity modes can exchange an orbital
angular momentum with the rear spiral phase mirror, which
is able to rotate (treated as a torsional pendulum) along the
intracavity axis [16].

Laguerre-Gaussian spiral phase systems with remarkable
optorotational interaction have attracted great interest re-
cently, and this emerging subject has led to many applications,
including cooling of rotational mirrors [16], detection of or-
bital angular momentum of light fields [19,20], second-order
sideband effects [21], and entanglements [22,23]. Due to the
analogous Hamiltonian between the optorotational interac-
tion and the optomechanical interaction [24,25], many effects
arising from the optomechanical interaction [26–29] have cor-
responding analogs in the Laguerre-Gaussian optorotational
system through the transfer of orbital angular momentum
[19,21], which opens up fascinating possibilities for employ-
ing the orbital angular momentum states of light instead of
momentum states.

In the present work, we consider that the Laguerre-
Gaussian optorotational system is driven by a strong control
field with the frequency ω1 and two relatively weak probe
fields with different frequencies (δa and δb, respectively, in
a frame rotating at ω1). Based on the nonlinear analytical
method proposed previously [30], generation of Laguerre-
Gaussian spectral components at the sum sideband [31,32]
[with frequency ±(δa + δb) in a frame rotating at ω1, as shown
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FIG. 1. (a) Schematic diagram of the Laguerre-Gaussian optical
sum-sideband generation using angular momentum exchange. The
optorotational system consists of two spiral phase elements in which
the input coupler is rigidly fixed and the rear mirror is able to rotate
(treated as a torsional pendulum) about the intracavity axis. The
optorotational system is driven by a control field (with the frequency
ω1) and two probe fields (with frequencies ωa and ωb, respectively).
(b) Frequency spectrogram of the Laguerre-Gaussian optical sum-
sideband generation. When the control field and two probe fields
(Gaussian beams with charge 0) are incident upon the optorotational
system, there are output fields with frequencies ±(δa + δb) in a frame
rotating at ω1 generation (Laguerre-Gaussian beams with charge 2l).
In a frame rotating at ω1, this process is very similar to sum frequency
generation in a nonlinear medium.

in Fig. 1(b)] is discussed, including the the pump power
dependence and the role of the topological charge value l .
Although the amplitudes of Laguerre-Gaussian sum sideband
generation are often small due to the weak optorotational
coupling, the efficiencies of sum sideband generation can be
enhanced significantly when the suitable matching conditions
are met. The physical interpretation of these matching condi-
tions is discussed in detail.

The signals of Laguerre-Gaussian sum-sideband gener-
ation may be important in understanding nonlinear optics
through the transfer of orbital angular momentum of light,
where the optical nonlinearity enhancement arising from
optorotational interactions is still an area of exploration, es-
pecially with multiple driven optical interactions. Further
developments in this direction may lead to interesting ef-
fects by introducing strong coupling of Laguerre-Gaussian
optorotational system with other physical entities, such as
phonons and magnons [33–37]. From the precision mea-
surement perspective [38,39], matching conditions of the
Laguerre-Gaussian sum sideband generation may provide
a potential method for the determination of the orbital

angular momentum of light fields with high topological
charge, which play a crucial role in optical communications
and encoding information using the optical orbital angular
momentum. Further analysis is required to move in that
direction.

This paper is organized as follows. We give an analytic
description of the optorotational system in Sec. II, where the
Hamiltonian formulation and a group of nonlinear evolution
equations are given and simplified within the semiclassical
approximation. We solve these nonlinear evolution equations
analytically with suitable nonlinear ansatz, and the ampli-
tudes of sum-sideband generation are obtained. In Sec. III,
we discuss in detail the features of Laguerre-Gaussian sum-
sideband generation in an optorotational system, including
the pump power dependence, matching conditions, and the
role of the topological charge value l on the sum-sideband
generation. The matching conditions for Laguerre-Gaussian
sum-sideband generation are summarized, and the phys-
ical interpretation of matching conditions are discussed.
Finally, a conclusion of the results are summarized in
Sec. IV.

II. ANALYTIC SOLUTIONS FOR THE
LAGUERRE-GAUSSIAN SUM-SIDEBAND GENERATION

IN AN OPTOROTATIONAL SYSTEM

A Laguerre-Gaussian optorotational system consisting of
two spiral phase elements is shown schematically in Fig. 1(a).
The input coupler is designed to be partially transparent such
that it removes a fixed topological charge 2l from the laser
beam upon reflection from either side of the spiral phase
element, while allowing beams to pass through with no change
to their topological charge due to the opposite winding on
each side of the element. The rear mirror is designed to be
perfectly reflective and it adds a topological charge 2l to
the reflected beam [16]. We consider that the optorotational
system is driven by a strong control field with the frequency
ω1 and two probe fields with frequencies ωa and ωb. All these
input fields are Gaussian beams with the topological charge
0. The Hamiltonian formulation of the Laguerre-Gaussian
optorotational system is [16]

Ĥ = h̄ωcâ†â + L̂2
z

2I
+ Iω2

φ

2
φ̂2 − h̄gφ̂â†â + Ĥcontrol + Ĥprobe,

where ωc is the frequency of the cavity mode, â (â†) is the
bosonic annihilation (creation) operator of the cavity field,
and L̂z and φ̂ are the angular momentum operator and an-
gular displacement operator of the rear mirror about the
intracavity axis, respectively, satisfying the commutation re-
lation [φ, Lz] = ih̄. I is the moment of inertia of the rotation
mirror, ωφ is the angular frequency of the rotational mirror
described by a torsional pendulum, and g = cl/L is the op-
torotational coupling parameter with c being the speed of
light in vacuum. Ĥcontrol = ih̄

√
ηcκs1(â†e−iω1t − âeiω1t ) de-

scribes the incident coupling between the strong control
field and the intracavity field with the coupling parame-
ter ηc = 1/2, and Ĥprobe = ih̄

√
ηcκ (â†sae−iωat + â†sbe−iωbt −

âs∗
aeiωat − âs∗

beiωbt ) describes the similar incident process with
two probe fields with different frequencies (ωa and ωb, re-
spectively). si = √

Pi/h̄ωi (i = 1, a, b) are the normalized
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amplitudes of the input fields with P1 being the pump power
of the control field and Pa (Pb) being the power of the probe
field with frequency ωa (ωb), respectively.

Based on the Hamiltonian, the Heisenberg-Langevin equa-
tions in a frame rotating at ω1 read(

d

dt
+ Â

)
â = √

ηcκa

(
s1 +

∑
i=a,b

sie
−iδit

)
+ √

ηcκaâin,

d2φ̂

dt2
+ κφ

dφ̂

dt
+ ω2

φφ̂ = h̄g

I
â†â + F̂th, (1)

where Â = κa/2 − i� − igφ̂ with � = ω1 − ωc, δi = ωi −
ω1 (i = a, b), the noise operators of the cavity and tor-
sional pendulum (âin and F̂th) satisfy the correlation func-
tions 〈âin(t )â†

in(t ′)〉 = δ(t − t ′), 〈âin(t )〉 = 0, 〈F̂th(t )F̂ †
th(t ′)〉 =

κφ

∫
e−iω(t−t ′ )[coth(h̄ω/2kBT ) + 1]dω/2πωφ and 〈F̂th(t )〉 =

0, and the decay rates of the cavity field (κa) and torsional
pendulum (κφ) are introduced classically. Here, we focus on
the mean response of the intracavity field to the probe fields,
so the operators in the Heisenberg-Langevin equations (1)
can be reduced to their expectation values, viz. a(t ) ≡ 〈â(t )〉,
a∗(t ) ≡ 〈â†(t )〉, and φ(t ) ≡ 〈φ̂(t )〉. In this case, the evolu-
tion equations of the Laguerre-Gaussian optorotational system
then become

d

dt
a = (i� + igφ − κa/2)a + √

ηcκa

(
s1 +

∑
i=a,b

sie
−iδit

)
,

I

(
d2

dt2
+ ω2

φ + κφ

d

dt

)
φ = h̄ga∗a, (2)

where the noise terms are dropped and the mean-field approx-
imation by factorizing averages is used.

To solve the evolution equations of the Laguerre-Gaussian
optorotational system, we assume that the control field is
much stronger than the two probe fields, and the solution of
the evolution equations can be written in the series form:

a = a0 + a+
a e−iδat + a−

a eiδat + a+
b e−iδbt + a−

b eiδbt

+ a+
s e−i	t + a−

s ei	t + · · ·,
φ = φ0 + φae−iδat + φ∗

a eiδat + φbe−iδbt + φ∗
b eiδbt

+φse
−i	t + φ∗

s ei	t + · · ·, (3)

where 	 = δa + δb is the sum frequency in a frame ro-
tating at ω1, a0 = −√

ηcκas1/(i� + igφ0 − κa/2) and φ0 =
h̄ga∗

0a0/Iω2
φ are the steady-state solutions provided by the

control field. The frequency components of ±	 are the
so-called sum sideband. In the perturbative regime, other fre-
quency components, such as second-order and higher order
sidebands, contribute little to sum-sideband generation due
to the weak nonlinearity and are ignored in the ansatz (3).
Here, we use the traditional terms, upper and lower sum
sideband, to represent the frequency components +	 and
−	, respectively [30]. Substitution of the ansatz with sum-
sideband generation into Eqs. (2), we can obtain the following
algebraic equations:

I

h̄g

(
ω2

φ − 	2 − iκφ	
)
φs = a0(a−

s )∗ + a∗
0a+

s + a+
a (a−

b )∗ + a+
b (a−

a )∗,

(κa/2 − i� − igφ0 − i	)a+
s = ig(a0φs + a+

a φb + a+
b φa),

(κa/2 − i� − igφ0 + i	)a−
s = ig(a0φ

∗
s + a−

a φ∗
b + a−

b φ∗
a ), (4)

where a+
i = siτ (δi )/[θ (−δi )τ (δi ) − ih̄g2|a0|2] (i = a, b)

with the functions θ (x) = κa/2 − i� − igφ0 + ix, σ (x) =
I (ω2

φ − x2 − iκφx), and τ (x) = σ (x) + ih̄g2|a0|2/[θ (x)]∗.
a−

i = iga0φ
∗
i /θ (δi ), and φi = h̄ga∗

0a+
i /τ (δi ). We note that, to

obtain equations (4), the amplitude at the sum sideband is
assumed to be much smaller than the two probe fields due
to the fact that sum-sideband generation is a second-order
process.

The solution to algebraic equations (4) gives the analytical
expression for the Laguerre-Gaussian sum-sideband genera-
tion, and the amplitudes of sum-sideband generation in the
optorotational system can be obtained as follows:

a−
s = a0φ

∗
s + a−

a φ∗
b + a−

b φ∗
a

θ (	)/ig
, φs = h̄g

τ (	)
(℘+ a∗

0a+
s ),

a+
s = − (a+

a φb + a+
b φa)τ (	) + ih̄g2a0℘

ih̄g2|a0|2 − θ (−	)τ (	)
, (5)

where ℘= (a−
a )∗a+

b + (a−
b )∗a+

a − iga0[(a−
a )∗φb + (a−

b )∗φa]/
[θ (	)]∗. Using the input-output relation sout = sin − √

ηcκaa,

the amplitudes of the output field at upper and lower sum
sidebands can be obtained as −√

ηcκaa+
s and −√

ηcκaa−
s ,

respectively. To describe quantificationally the Laguerre-
Gaussian sum-sideband generation process, we use the nor-
malized amplitudes |A+| = √

ηcκah̄ωc|a+
s |2/P0 and |A−| =√

ηcκah̄ωc|a−
s |2/P0 with P0 being an arbitrary power (here

we choose P0 = 1 mW for simplicity) to make |A+| and |A−|
dimensionless.

III. FEATURES OF LAGUERRE-GAUSSIAN
SUM-SIDEBAND GENERATION

The amplitudes of the Laguerre-Gaussian sum-sideband
generation are often quite small due to the weak optorotational
coupling. The normalized amplitudes (in logarithmic form) of
upper and lower sum-sideband generation as a function of the
frequency of the first probe field δa are shown in Fig. 2 under
different pump powers of the control field. The parameters
used in the calculation are chosen from Ref. [22]. It has been
shown in Fig. 2(a) that the maximum amplitude of upper
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FIG. 2. The normalized amplitudes (in logarithmic form) of
(a) upper and (b) lower sum sideband generation as a function of
δa under different control fields. The parameters of the Laguerre-
Gaussian optorotational system are [22] m = 100 ng, κφ/2π =
140.0 Hz, ωφ/2π = 10.0 MHz, Pa = Pb = 100 μW, L = 1 mm, R =
10 μm, κa/2π = 10.0 MHz, l = 100, and � = −ωφ . We set δb =
0.05ωφ , and the wavelength of the control field is chosen to be
810 nm here.

sum-sideband generation can reach |A+| ≈ 0.1, which corre-
sponds to a power of about 10 μW and a power efficiency of
about 10%. In general, the normalized amplitude of the upper
sum-sideband generation increases monotonically with the in-
crease of the pump power of the control field. However, some
exceptions have been observed near the point of resonance due
to the weak interference between multiple scattering paths.
A typical example is shown in the partial enlarged drawing
of Fig. 2(a), where the blue line (corresponding to the pump
power of 0.2 mW) is located below the green line (corre-
sponding to the pump power of 0.1 mW) near the resonance
point δa = 0.95. The amplitude of the lower sum-sideband
generation is much smaller than the amplitude of the upper
one under equivalent conditions. As shown in Fig. 2(b), the
maximum amplitude of the lower sum-sideband generation is
about |A−| ≈ 10−3, which corresponds to a power of about
1 nW and a power efficiency of about 0.001%. The normal-
ized amplitude of the lower sum-sideband generation also
increases monotonically with the increase of the pump power
of the control field, and no exception has been observed near
the point of resonance.

There is a high dependence of Laguerre-Gaussian sum-
sideband generation on the detuning between the control field
and the two probe fields. Calculation results for the nor-
malized amplitudes (in logarithmic form) of sum sideband
generation as functions of both detuning δa and δb are shown
in Figs. 3 and 4, where the normalized amplitudes of sum-
sideband generation exhibit peak and dip structure for some
specific combinations of δa and δb. These specific combina-
tions of detuning are the so-called matching conditions [30],
and the efficiencies of Laguerre-Gaussian sum-sideband gen-
eration can be enhanced or reduced significantly when the
suitable matching conditions are met. From Fig. 2(a), we can
identify that the amplitude of upper sum-sideband generation

FIG. 3. The normalized amplitude (in logarithmic form) of upper
sum-sideband generation vs δa and δb. (a) The surface plot and (b) the
contour plot with the pump power P1 = 1.0 mW. (c) The normal-
ized amplitudes of upper sum sideband generation vary with δa for
different δb. We use δb = 1.5ωφ (above) and δb = −0.5ωφ (below).
(d) Enlarged view of the contour plot near the cross point. (e) The
normalized amplitudes of upper sum-sideband generation exhibits a
peak instead of a dip at the cross point. The other parameters are the
same as Fig. 2.

achieves the maximum at δa = ωφ (the main peak) while
it achieves the minimum at δa = 0.95ωφ (the narrow dip).
In Fig. 2(b), the amplitude of lower sum-sideband genera-
tion achieves the local maximum at both δa = ωφ and δa =
0.95ωφ . The matching condition δa = ωφ originates from the
mechanical resonance of the torsional pendulum. The value
0.95 in these matching conditions comes from the parameter
setting δb = 0.05ωφ used in the calculation, and we confirm
that the amplitude of upper sum-sideband generation achieves
the minimum at δa + δb = ωφ .

The surface plot for the normalized amplitude of upper
sum-sideband generation [shown in Fig. 3(a)] exhibits orthog-
onal crisscross structure, where the peak values are located
on the lines δa = ±ωφ and δb = ±ωφ . Careful examination
confirms that Fig. 3(a) is symmetrical for δa and δb due to
the equal status of both detuning in the Laguerre-Gaussian
sum-sideband generation, and one can identify clearly a cir-
cular structure in which the normalized amplitude of upper
sum-sideband generation achieves local minimum [so-called
dip circle; see the blue circular shown in Fig. 3(b)]. The
physical interpretation for the dip circle is the π phase dif-
ference between the rotational responses to the two probe
fields, which leads to the destructive interference for the upper
sum-sideband generation in the optorotational system [40].
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FIG. 4. The normalized amplitude (in logarithmic form) of lower
sum-sideband generation vs δa and δb. (a) The surface plot and (b) the
contour plot with the pump power P1 = 1.0 mW. (c) The normalized
amplitudes of upper sum-sideband generation vary with δa for dif-
ferent δb. We use δb = 0.5ωφ (above) and δb = −1.4ωφ (below). The
other parameters are the same as Fig. 2.

From the analytical expression (5), the amplitude of the
upper sum sideband generation can be rewritten as

a+
s = a+

s
(1) + a+

s
(2)

,

a+
s

(1) = − (a+
a φb + a+

b φa)τ (	)

ih̄g2|a0|2 − θ (−	)τ (	)
, (6)

a+
s

(2) = − ih̄g2a0℘

ih̄g2|a0|2 − θ (−	)τ (	)
,

where the term a+
s

(1) describes the one-step scattering into the
upper sum sideband from the probe fields while a+

s
(2) two-step

scattering into the upper sum sideband from the control field.
In general, the two-step scattering is much weaker than the
one-step scattering. After some derivation, we obtain

a+
s

(1) ∝ a+
a a+

b τ (	)[τ (δa) + τ (δb)], (7)

where τ (δa) and τ (δb) can be seen as the susceptibilities of
the rotational responses to the two probe fields. The one-step
scattering into the upper sum sideband is determined by the
total susceptibility τ (δa) + τ (δb) and the sum susceptibility
τ (	). In the certain parameter regime κφ 
 ωφ , the total
susceptibility τ (δa) + τ (δb) ≈ 0 requires

I
(
ω2

φ − δ2
a − iκφδa

) + I
(
ω2

φ − δ2
b − iκφδb

) ≈ 0, (8)

which leads to the condition δ2
a + δ2

b = 2ω2
φ . This condition

is exactly the dip circle observed in Fig. 3(b). The sum

susceptibility τ (	) ≈ 0 requires

I
(
ω2

φ − 	2 − iκφ	
) ≈ 0, (9)

which leads to the condition 	 = ±ωφ or equivalently δa +
δb = ±ωφ . This condition is exactly the dip observed in
Fig. 2(a).

These matching conditions can be confirmed quantifica-
tionally. The normalized amplitudes of upper sum-sideband
generation vary with δa for different δb are shown in Fig. 3(c).
In the above subplot, δb = 1.5ωφ is used, and we see two
peaks located at δa = ωφ and δa = −ωφ , due to the mechani-
cal resonance of the torsional pendulum. A dip located at δa =
−0.5ωφ can be observed which corresponds to the δa + δb =
ωφ . The matching condition δa + δb = −ωφ results in δa =
−2.5ωφ , which is out of parameter range δa ∈ [−2ωφ, 2ωφ].
Due to the fact that δ2

b = 2.25ω2
φ > 2ω2

φ , the equation δ2
a +

δ2
b = 2ω2

φ has no real solution for the detuning δa, which
excludes the dip located at the dip circle. So we can know that
there are two peaks and one dip for the upper sum-sideband
generation in the parameter range δa ∈ [−2ωφ, 2ωφ]. In the
below subplot shown in Fig. 3(c), δb = −0.5ωφ is used, and
two peaks located at δa = ωφ and δa = −ωφ can be clearly
observed. The matching condition δa + δb = ±ωφ results in
two dips located at δa = −0.5ωφ and δa = 1.5ωφ [labeled as
dips 2 and 4 in the below subplot of Fig. 3(c)]. The matching
condition δ2

a + δ2
b = 2ω2

φ has two real solutions for the case

δb = −0.5ωφ , viz. δa/ωφ = ±√
7/2 ≈ 1.323, which leads to

two deep dips located at δa = −1.323ωφ and δa = 1.323ωφ

[labeled as dips 1 and 3 in the below subplot of Fig. 3(c)].
So we can know that there are two peaks and four dips for
the upper sum-sideband generation in the parameter range
δa ∈ [−2ωφ, 2ωφ].

The surface plot for the normalized amplitude of lower
sum-sideband generation is shown in Fig. 4(a), which ex-
hibits a “sea-island” structure that the amplitude of lower
sum-sideband generation is remarkable in the area of the
island. We can identify three matching conditions for the
lower sum-sideband generation, viz. δa = ±ωφ , δb = ±ωφ ,
δa + δb = ±ωφ , which corresponds to the orange lines shown
in Fig. 4(b), and the islands are located at the intersection of
these lines. The physical interpretation of the matching condi-
tions for lower sum-sideband generation can be understood
through the mechanical susceptibility, that the mechanical
oscillation of the torsional pendulum becomes significant if
the beating between the control field and one of the probe
fields has a resonance with the mechanical eigenfrequency,
and consequently leads to remarkable signals at the lower sum
sideband via Stokes scattering of the cavity fields.

The matching conditions for lower sum-sideband genera-
tion have be confirmed quantificationally in Fig. 4(c). In the
above subplot, δb = 0.5ωφ is used, and we see two peaks
located at δa = ωφ [labeled as peak 4 in the above subplot
of Fig. 4(c)] and δa = −ωφ (labeled as peak 2), according to
the matching condition δa = ±ωφ . From the another matching
condition δa + δb = ±ωφ , we can obtain δa/ωφ = −0.5 ± 1,
which results in two additional peaks located at δa = −1.5ωφ

(labeled as peak 1) and δa = 0.5ωφ (labeled as peak 3). The
total peaks add up to four in this case. In the blow subplot
shown in Fig. 4(c), δb = −1.4ωφ is used, there are two fixed
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TABLE I. Matching conditions of Laguerre-Gaussian sum-sideband generation for achieving maximum and minimum.

Conditions of achieving peaks Conditions of achieving dips

Upper sum-sideband generation δa = ±ωφ, δb = ±ωφ δa + δb = ±ωφ, δ2
a + δ2

b = 2ω2
φ

Lower sum-sideband generation δa = ±ωφ, δb = ±ωφ, δa + δb = ±ωφ

peaks located at δa = ωφ (labeled as peak 3) and δa = −ωφ

(labeled as peak 1), according to the matching condition δa =
±ωφ . The matching condition δa + δb = −ωφ results in the
peak located at δa = 0.4ωφ (labeled as peak 2). The matching
condition δa + δb = ωφ results in δa = 2.4ωφ , which is out of
parameter range δa ∈ [−2ωφ, 2ωφ]. We can know that there
are three peaks for the lower sum sideband generation in the
parameter range δa ∈ [−2ωφ, 2ωφ], as we have observed in
the blow subplot of Fig. 4(c).

Based on the discussion, the matching conditions for
Laguerre-Gaussian sum-sideband generation are summarized
in Table I. In what follows, we will discuss the influence
of topological charge l on Laguerre-Gaussian sum-sideband
generation, which provides another control parameter.

The normalized amplitudes of Laguerre-Gaussian sum
sideband generation versus δa and δb with different topologi-
cal charges are shown in Fig. 5, where the matching conditions
are maintained for different topological charges. The topo-
logical charge l influences Laguerre-Gaussian sum-sideband
generation on the width of the peaks and dips, viz. the line
width shown in Fig. 5. For upper sum-sideband generation
[Fig. 5(a)], the matching conditions δa = ±ωφ and δb = ±ωφ

can be easily recognized, as well as the dip circle. The match-
ing condition δa + δb = ±ωφ can be confirmed clearly in an
enlarged figure. The widths of the peaks and dips are about
0.02ωφ for l = 50, while 0.05ωφ for l = 200. In addition to
influencing the width of the peaks and dips, the Laguerre-
Gaussian mode with a high topological charge l leads to
an overall improvement for the sum-sideband generation. As
shown in Fig. 5(b), the amplitude of lower sum-sideband
generation went up by several orders of magnitude [the color
change in the sea area]. To show the improvement of the sum-
sideband generation more accurately, we plot the normalized
amplitude of upper sum-sideband generation under different
topological charges in Fig. 5(c). As expected, the peak width
becomes wider as the topological charge l increases, and
there is an overall improvement for the normalized amplitude
(log10 |A+| increases by about 2/3 for topological charge l
double; see the interval between the lines). However, there is
a saturation effect for the peak value of the normalized am-
plitude [see the peak values for different topological charges
l in Fig. 5(c)], which limits further improvement of the sum-
sideband generation.

The relationship between the Laguerre-Gaussian sum-
sideband generation and the Laguerre-Gaussian second-
order sideband generation is checked, and it is found
that there is a fixed relation between the degenerate
and the nondegenerate cases, in a sense similar to the
basic sum frequency and second-order harmonic genera-
tion by a nonlinear crystal [34]. In the degenerate case,
viz. δa = δb = δ, we have a+

i = si�(δ), a−
i = s∗

i �(δ), and
φi = h̄ga∗

0a+
i /τ (δ) = h̄ga∗

0si�(δ)/τ (δ) for the subscript i =
a, b, with �(δ) = τ (δ)/[θ (−δ)τ (δ) − α], α = ih̄g2|a0|2, and

�(δ) = ih̄g2a2
0�

∗(δ)/[τ ∗(δ)θ (δ)]. After some calculations,
we can obtain the amplitude of the degenerate sum-sideband
generation (δa = δb = δ) as follows:

a+
s = 2sasb

a∗
0

τ (δ)τ (2δ)�
2(δ) + iga0�

∗(δ)�(δ)
[
1 − α

τ (δ)θ∗(2δ)

]
θ (−2δ)τ (2δ) − ig|a0|2

≡ 2sasbE (δ), (10)

FIG. 5. The contour plots of the normalized amplitudes (in log-
arithmic form) of (a) upper and (b) lower sum-sideband generation
with different topological charge l . (c) The normalized amplitude of
upper sum-sideband generation as a function of δa under different
topological charge l . We use the pump power P1 = 1.0 mW, and the
other parameters are the same as Fig. 2.
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where s2
i E (δ) is exactly the amplitude of the second-order

sideband generation [21], which establish a relation between
the degenerate and the nondegenerate cases.

Finally, we give some discussion on the feasibility of
experimentally observing the effects based on the current
experimental progresses. In the present work, the param-
eters of the Laguerre-Gaussian optorotational system are
chosen from a previous work [22]: m = 100 ng, κφ/2π =
140.0 Hz, ωφ/2π = 10.0 MHz, L = 1 mm, R = 10 μm,
κa/2π = 10.0 MHz, and l = 100. Through sustained effort,
high-l Laguerre-Gaussian modes can be achieved readily in
experiments via spiral phase elements [12], and the azimuthal
structure of laser beams can be modified via reflection or
transmission from the spiral phase elements. Here we consider
the configuration used in Ref. [16], which provides complete
self-consistent conditions for intracavity Laguerre-Gaussian
mode buildup. With the development of nanotechnology, the
spiral phase mirrors can be produced by direct machining
of an aluminum disk surface with an ultraprecision point
diamond turning lathe [16,41]. For example, the Nanotech
250UPL lathe has a feedback resolution of 34 pm [16,41],
which is sufficiently precise to create suitable spiral phase
elements for the implementation of our results (in the spatial
scale of a few μm). We also note that the spiral phase plate
and mirror can be fabricated with high precision and low mass
(sub-μg), and the generation of LG beams with a topological
charge value as high as 1000 has been demonstrated [12].
In addition, the mechanical oscillators (torsional pendulum)
with high-quality factor (mechanical quality factors exceeding
Qm = 108), low mass (with an effective mass meff = 27 pg),
and high frequency (a few MHz) has been realized in exper-
iments [42], which may provide other alternative devices for
the implementation of our results.

IV. CONCLUSION

In summary, Laguerre-Gaussian optical sum-sideband gen-
eration via orbital angular momentum exchange has been

studied in an optorotational system beyond the linearized ap-
proach. The analytical expressions describing the amplitude
of the upper and lower sum sidebands are obtained. To make
Laguerre-Gaussian sum-sideband generation observable and
controllable within the experimentally available parameter
range, the features of Laguerre-Gaussian sum-sideband gen-
eration in an optorotational system are discussed in detail,
including the pump power dependence, matching conditions,
and the role of the topological charge value l . We show that
Laguerre-Gaussian sum-sideband generation can be remark-
able even at low power through the satisfaction of matching
conditions. These matching conditions for Laguerre-Gaussian
sum-sideband generation are summarized, and the physical
interpretation of matching conditions is discussed. The role of
the topological charge value l on the sum-sideband generation
exhibits a saturation effect for the peak value of the normal-
ized amplitude, and consequently limits further improvement
of the Laguerre-Gaussian sum-sideband generation. This in-
vestigation may provide further insight into the understanding
of the optorotational system with orbital angular momentum
exchange and find applications in Laguerre-Gaussian optical
frequency comb [43] and communications. In the current pa-
per, for simplicity, we only consider the case that both control
and probe fields are in the fundamental Gaussian modes. If
the OAM of the control field is different from the OAM
of the probe fields, or the two probe fields have different
OAM, the OAM in these modes should affect the efficiency
of the process, and the situation becomes very complicated.
Further analysis is required to move in that direction.
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