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Switching the angular direction of radiation by the handedness of a circular dipole
in the vicinity of a subwavelength Mie scatterer

Jorge R. Zurita-Sánchez *

Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, Puebla 72840, Mexico

(Received 23 October 2020; accepted 23 March 2021; published 5 April 2021)

We study the radiation of a circular dipole nearby a subwavelength spherical particle. The circular dipole
spins in a plane containing a great circle of the spherical particle (meridional plane). We derive general
conditions for which radiation vanishes in any direction lying in the meridional plane, yielding directional
radiation whose angular orientation can be changed by switching the handedness of the circular dipole. The
radiative response (far field) of this dipole-scatterer system can be synthesized as arising from an effective
electric dipole in the meridional plane and an effective magnetic dipole perpendicular to the meridional
plane; both dipoles are located at the center of the sphere. We consider a nonabsorbing sphere and explore
the radiative characteristics (radiation pattern, directivity, radiated power, and spin angular momentum) in
which radiation is nullified along two particular axes lying in the meridional plane; particular geometri-
cal configurations and dielectromagnetic properties of the dipole-scatterer system are given. The directional
radiation and spin angular momentum patterns can be rotated π rad around the axis joining the dipole po-
sition and the center of the spherical scatterer by changing the handedness of the circular dipole, excepting
for the cases of null radiation in the forward and backward directions. Our work might have implications
for transferring quantum spin states to electromagnetic modes, controlling of radiation by emitters, rout-
ing of light in networks, manipulating of light propagation with metasurfaces, and sensing and locating
molecules.
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I. INTRODUCTION

The theoretical feasibility of achieving directional scatter-
ing when a spherical particle is illuminated by a plane wave
was shown in [1] (known as the Kerker effect). However, only
the current technological capabilities for manufacturing and
manipulating nanostructures and the development of metama-
terials have allowed the experimental realization of such effect
[2–5] and have opened up new possibilities for controlling
the emission of light. This directional effect arises merely
from the interference of radiative multipolar terms that are
externally induced in a single particle or a cluster of scatterers
[6–8]. Actually these scattering units are constitutive elements
(meta-atoms) of metasurfaces that can be tailored for control-
ling light directionality [9,10]. The simultaneous interaction
of azimuthally and radially polarized beams with a particle
can induce a circular magnetic dipole and a linear electric
dipole in which the angular direction of the radiation pattern
can be modified by proper adjustment of the phase of such
exciting beams [11]. Also the excitation of a nanoparticle with
an azimuthally polarized beam can yield directional scattering
which can be exploited for measuring displacements with
angstrom resolution [12]. Moreover, the possibility of scatter-
ers exhibiting switchable directionality has been explored; this
characteristic can depend on the spectral response of dimers
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[13,14], or on the polarization of an incident beam on a dimer
[15] and a core-shell particle [16].

Our paper concerns to light scattering due to dipolar exci-
tation. In this regard, the radiation arising from the interaction
of an electric dipole with a metallic particle can be directed
significantly in either forward or backward directions by con-
trolling particle-emitter distance [17]. Also article [18] states
the conditions for which forward or backward radiation is
obtained when a linear dipole is located in the vicinity of a
dielectric subwavelength sphere; the experimental verification
of this directional radiation for microwaves is reported in [19].
In [20], it is described both theoretically and experimentally
how the dipole excitation of a nanowire influences the radi-
ation pattern, achieving directional emission in the forward
direction. Also a directional optical antenna that is driven by
a dipole can be attained by using multiple structural elements,
such as a Yagi-Uda antenna [21]. Particularly for a circular
dipole, depending on its helicity, its emission can be coupled
to waveguide modes propagating in either the left or right
direction [22–27] or to resonator modes with either positive or
negative angular momentum [28,29]. In the context of quan-
tum mechanics, the energy of molecular or atomic emitters
with spin states can be directionally transferred to electro-
magnetic waveguide modes [30–32]. Also Raman waves with
circular polarization can be coupled to plasmonic waveguides
along one direction [33].

The aim of our paper is to explore whether a circular dipole
in the vicinity of a subwavelength spherical particle can gen-
erate directional emission and the subsequent possibility of
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switching the orientation of the radiative pattern by changing
the handedness of such dipolar source. This effect can be
crucial, as mentioned, as a transducer that converts the energy
of spin states of quantum systems into radiative energy. To
achieve this goal, we analyze the radiative properties (far-
field) arising from the dipole-sphere emitter for establishing
conditions that give rise to directional radiation. Furthermore,
we examine the spin angular momentum that comes out from
this antenna.

Our paper is organized as follows. Section II presents the
multipolar expansion for obtaining the scattered electric field
by a sphere in the presence of a circular dipole, as well as
the direct electric field originating by such a dipole, and it
includes the far-field asymptotics for calculating the radiation
pattern, radiated power, and spin angular momentum. Three
appendices complement this section. In Sec. III, for a sub-
wavelength sphere, the conditions for achieving null radiation
in any direction of the meridional plane (see the definition
in the next section) are stated. Section IV analyzes in detail
the radiative characteristics of the dipole-scatterer antenna for
which radiation vanishes along two particular axes. The last
section is dedicated to conclusions.

II. THEORY

We consider a spherical scatterer with radius a and center
at the origin. Moreover, the sphere has dielectric and magnetic
functions ε2 and μ2, respectively. The nonabsorbing back-
ground medium has dielectric (magnetic) function ε1 (μ1);
Im[ε1] = Im[μ1] = 0 (Im[. . .] denotes the imaginary part).
We assume that a circular electric dipole oscillates with angu-
lar frequency ω and is located outside the sphere at r0 = z0nz;
z0 > a and nz is the unit Cartesian vector along the z axis.
Furthermore, we consider that the dipole moment lies in the
xz plane; that is,

p = p0[nx ± inz]/
√

2, (1)

where p0 is the strength of the dipole, nx is the unit Cartesian
vector along the x axis, and the sign of (1) determines the
spinning direction of the dipole. We define the meridional
plane as the one containing both the dipole p and a great circle
of the sphere. Our setup is depicted in Fig. 1.

A. Electromagnetic field

The direct field E0 (absence of scatterer) that is created by
the circular dipole can be expressed as a multipolar expansion
with respect to the origin. When |r| > z0, this expansion is

E0(r) = ik3
1

4πε0ε1

p0√
2

∞∑
l=1

2l + 1

l (l + 1)

[
jl (k1z0)Mol1(r, k1)

+ψ ′
l (k1z0)

k1z0
Nel1(r, k1)

±i l (l + 1)
jl (k1z0)

k1z0
Nel0(r, k1)

]
; (2)

the time-dependent phasor exp(−iωt ) is hereafter omitted.
Here, ε0 is the vacuum permittivity, jl (u) is the spherical

Radiation Radiation
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FIG. 1. Circular dipole in the vicinity a dielectromagnetic
sphere. In our system, the dipole spins in the xz plane and the sphere
is centered at the origin.

Bessel function of the first kind of order l , ψl (u) ≡ u jl (u)
is the Riccati-Bessel function of order l , and k1 = √

ε1μ1k0

(k0 = ω/c; c is the light speed in vacuum) is the wave vector
in the background medium. A primed function denotes the
derivative with respect to its argument. The vector spherical
harmonics are defined as

Mσ lm(r, k) = ∇ × [rhl (kr)yσ lm(θ, φ)], (3)

Nσ lm(r, k) = 1

k
∇ × Mσ lm(r, k), (4)

where σ = e and o, (r, θ, φ) are the spherical coordinates
of r, hl (u) is the spherical Hankel function of the first kind
of order l , yelm(θ, φ) ≡ Pm

l (cos θ ) cos(mφ), and yolm(θ, φ) ≡
Pm

l (cos θ ) sin(mφ); Pm
l (cos θ ) is the associated Legendre

function of order m and degree l , which is explicitly defined
as Pm

l (u) ≡ (1 − u2)m/2(dm/dum)Pl (u), where Pl (u) is the or-
dinary Legendre polynomial of order l . Equation (2) comes
from the general multipolar expansion of the Green tensor
[34] whose complexity is reduced when the dipolar source is
located on the z axis (see details in Appendix A). Since we are
only interested in the far-field region, the multipolar expansion
of E0(r) for |r| < z0 is omitted.

The electric field outside the spherical scatterer can be
decomposed as

ET(r) = E0(r) + E1(r), (5)

where E1(r) is the scattered electric field by the sphere. By
applying Mie theory to the particular setup of Fig. 1, the
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scattered electric field becomes

E1(r) = ik3
1

4πε0ε1

p0√
2

∞∑
l=1

2l + 1

l (l + 1)

[
hl (k1z0)Al (ω)

×Mol1(r, k1) + ξ ′
l (k1z0)

k1z0
Bl (ω)Nel1(r, k1)

±i l (l + 1)
hl (k1z0)

k1z0
Bl (ω)Nel0(r, k1)

]
, (6)

where ξl (u) ≡ uhl (u) is the Riccati-Hankel function of order
l . Here, Al (ω) and Bl (ω) are the reflection Mie coefficients
which are explicitly given by

Al (ω) = μ2 jl (ρ2)ψ ′
l (ρ1) − μ1 jl (ρ1)ψ ′

l (ρ2)

μ1hl (ρ1)ψ ′
l (ρ2) − μ2 jl (ρ2)ξ ′

l (ρ1)
, (7)

Bl (ω) = ε2 jl (ρ2)ψ ′
l (ρ1) − ε1 jl (ρ1)ψ ′

l (ρ2)

ε1hl (ρ1)ψ ′
l (ρ2) − ε2 jl (ρ2)ξ ′

l (ρ1)
, (8)

where ρi = kia (i = 1, 2 and k2 = √
ε2μ2k0). The analytical

expression (6) comes from general multipolar series of the
scattering Green tensor [35]; similarly to the case of the direct
field, the dipole position lying in the z axis simplifies the
multipolar expansion of such a Green tensor as shown in
Appendix A.

B. Far-field limit

To calculate the scattered field in the radiation zone, we
use the asymptotic expressions for the spherical Hankel and
Riccati-Hankel functions:

lim
ρ→∞ hl (ρ) = eiρ/(il+1ρ), lim

ρ→∞ ρ−1ξ ′(ρ) = eiρ/(ilρ). (9)

By using (9) in (6) and (2), the far-field limit of the electric
field ET(r) becomes

ET∞(r) = k2
1

4πε0ε1

ieik1r

r

p0√
2

∞∑
l=1

1

il

2l + 1

l (l + 1)

[
αl (k1z0)

i

× Pol1(θ, φ) + βl (k1z0)Qel1(θ, φ)

± i l (l + 1)γl (k1z0)Qel0(θ, φ)

]
, (10)

where

αl (ρ) = jl (ρ) + hl (ρ)Al (ω), (11)

βl (ρ) = [ψ ′
l (ρ) + Bl (ω)ξ ′

l (ρ)]/ρ, (12)

γl (ρ) = [ jl (ρ) + Bl (ω)hl (ρ)]/ρ, (13)

and

P e
o lm(θ, φ) = ∓�m

l (θ )m
sin(mφ)
cos(mφ)nθ − τm

l (θ )
cos(mφ)
sin(mφ)nφ,

(14)

Q e
o lm(θ, φ) = nr × P e

o lm(θ, φ); (15)

τm
l (θ ) = d

dθ
Pm

l (cos θ ), (16)

�m
l (θ ) = Pm

l (cos θ )

sin θ
. (17)

Here, nr , nθ , and nφ are the unit spherical vectors. The mag-
netic field in the radiation zone is

HT∞(r) = k2
1

4πε0ε1Z1

eik1r

r

p0√
2

∞∑
l=1

1

il

2l + 1

l (l + 1)

[
αl (k1z0)

× Qol1(θ, φ) + βl (k1z0)

i
Pel1(θ, φ)

± l (l + 1)γl (k1z0)Pel0(θ, φ)

]
, (18)

where Z1 = [(μ0μ1)/(ε0ε1)]1/2 is the impedance of the back-
ground medium.

C. Radiated power

The time-average far-field Poynting vector is

〈S(r, t )〉 = 1

2
Re[E∗

T∞(r) × HT∞(r)], (19)

where Re[. . .] denotes the real part. Then, the radiated power,
namely, the energy flux that goes through a large sphere with
radius R, is

P =
∫

A

dP(θ, φ)

d�
d�, (20)

where d� is the solid angle differential and

dP(θ, φ)

d�
= 〈S(R, θ, φ)〉 · nrR2 (21)

is the so-called radiation pattern. Then, the radiation pattern
can be expressed as a sum of multipolar contributions:

1

P0

dP

d�
=

∞∑
l,l ′=1

1

P0

dPll ′

d�
, (22)

where P−1
0 (dPll ′/d�) is explicitly defined in Appendix B. The

radiated power turns out to be

P

P0
=

∞∑
l=1

Pl

P0
, (23)

where

Pl

P0
= 3

4

(2l + 1)

2
[|αl (k1z0)|2 + |βl (k1z0)|2

+ 2l (l + 1)|γl (k1z0)|2]. (24)

Here, P0 is the radiated power by a dipole when the scatterer
is absent, which is given by

P0 = 1

3

ωk3
1 |p0|2

4πε0ε1
. (25)

We mention that (23) is obtained by using the orthogonal
properties of spherical harmonics [36].
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D. Spin angular momentum

The spin angular momentum density is [37]

s(r) = 1

4ω
Im[ε0ε1E∗(r) × E(r)

+μ0μ1H∗(r) × H (r)]. (26)

This quantity is related to circular polarization of light and can
be related to the Stokes parameters [38]. In the radiation zone,
that is, k1r � 1, the spin angular momentum density becomes

s∞(r) = nr

r2
s̃(θ, φ), (27)

where s̃ is denominated hereafter as the spin pattern whose
multipolar decomposition is

s̃(θ, φ) =
∞∑

l,l ′=1

s̃ll ′ (θ, φ) (28)

(the explicit analytical expression of sll ′ is found in Ap-
pendix C). Here, s∞ comes from (26) in which the far-field
approximations of the electric and magnetic fields [(10) and
(18), respectively] are substituted.

III. DIRECTIONAL SUBWAVELENGTH RESPONSE

When k1a � 1, that is, a subwavelength particle, we expect
that the dipolar response of the sphere comes mainly from the
dipolar order (l = 1). Then, up to l = 1, the far-field electric
field can be synthesized as arising from an effective magnetic
dipole oriented in the y direction (mef = myny; ny is the unit
vector along the y axis), and an effective electric dipole which
is polarized in the xz plane (pef = pxnx + pznz), that is,

ET∞(r) = k2
1

4πε0ε1

eik1r

r
{[cos θ cos φnθ − sin φnφ]px

+ [cos φnθ − cos θ sin φnφ](myn1/c)

− sin θnθ pz}, (29)

where n1 = √
ε1μ1 is the refractive index of background

medium and the effective dipoles are

myn1/c = α1(k1z0)

i

3p0

2
√

2
, (30)

px = β1(k1z0)
3p0

2
√

2
, (31)

pz = ±2iγ1(k1z0)
3p0

2
√

2
. (32)

The radiation pattern arising from these dipoles is

1

Px

dP11

d�
= 3

8π
[(1 − sin2 θ cos2 φ) + f 2

2 sin2 θ

+ f 2
1 (1 − sin2 θ sin2 φ) + 2 f1 cos θ cos δ1

− 2 f2 sin θ cos θ cos φ cos δ2

− 2 f1 f2 sin θ cos φ cos(δ1 − δ2)]. (33)

Here, Px is radiated power by the effective dipole px embedded
in the background medium, namely,

Px = 1

3

ωk3
1 |px|2

4πε0ε1
, (34)

and we have defined

f1 exp(iδ1) = myn1/(pxc), f2 exp(iδ2) = pz/px, (35)

namely, f1 and f2 (δ1 and δ2) are the magnitudes (arguments)
of myn1/c and pz normalized with respect to px, respectively.
To avoid further confusion, we emphasize that parameters f1,
δ1, f2, and δ2 concern to effective dipoles, while the dipolar
source or circular dipole refers to the physical source (1).

The spin pattern due to the lowest order becomes

s̃11(θ, φ) = s̃x sin θ sin φ[ f1 sin θ cos φ sin δ1

− f2 sin δ2 + f1 f2 cos θ sin(δ1 − δ2)], (36)

where s̃x = 3n1Px/(4πc ω). We can notice that the first, sec-
ond, and third term of the right-hand side of (36) correspond to
the spin angular momentum that is generated by the mixing of
effective dipoles px-my, px-pz, and pz-my, respectively. Also,
(36) indicates that the s̃11 vanishes in any directional vector
that lies in the meridional plane.

We define a unit vector in the xz plane as

nd = sin ψnx + cos ψnz, (37)

where ψ is angle between the z axis and nd . To attain null
radiation in a direction perpendicular to the plane expanded by
unit vectors nd and ny, the Huygens’ dipole condition, which
gives rise to directional radiation, must be fulfilled, namely,

nd · pef = ±myn1/c. (38)

Hence it is possible to nullify the radiation in any direction
along the meridional plane.

Importantly, the ratio of effective dipoles pz/px is pro-
portional to γ1(k1z0)/β1(k1z0) which is real for nonabsorbing
dielectromagnetic materials. We restrict ourselves hereafter to
these kinds of materials; thus

δ2 = ±(π/2)sgn[γ1(k1z0)/β1(k1z0)], (39)

where sgn[. . .] is the sign function and the ± signs come from
the handedness of the circular dipole [see (1)]. Hence, on one
hand, the positive sign of the right-hand side of (38) yields
conditions

f 2
1 = sin2 ψ + f 2

2 cos2 ψ, (40)

δ1 = arctan(sin ψ, sgn[δ2] f2 cos ψ ), (41)

and the null-radiation direction is n+
0 = cos ψnx − sin ψnz;

arctan(u, v) is defined as arctan(v/u) in which the quadrant of
point (u, v) is taken into account. On the other hand, for the
solution corresponding to the negative sign of the right-hand
side of (38), the relation between f1 and f2 is the same as (40),

δ1 = π + arctan(sin ψ, sgn[δ2] f2 cos ψ ), (42)

and n−
0 = − cos ψnx + sin ψnz is the direction for which ra-

diation vanishes. Therefore, (39)–(42) are the conditions in
which radiation can vanish in any direction that lies in the
meridional place, yielding a directional radiation pattern.

Relative to the meridional plane (xz plane), the radiation
pattern is symmetric, while the spin pattern is antisymmetric
(sign change). Furthermore, by considering the aforemen-
tioned condition δ2 = ±π/2, the change of the dipolar source
handedness rotates the radiation and spin patterns π rad
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FIG. 2. Radiation pattern P−1
x dP11/d� for f2 = 0.25, 1, 1.5, and f = 4.29. Radiation vanishes in the direction (nx − nz )/

√
2.

around the z axis, explaining the shift of the angular direc-
tion of radiation. These symmetric properties of the radiation
and spin patterns can be seen by replacing sin θ cos φ → x/r,
sin θ sin φ → y/r, and cos θ → z/r in (33) and (36).

IV. RESULTS

As illustrative cases, we analyze the radiative charac-
teristics that occur along two particular axes lying in the
meridional plane (xz plane), where the radiation vanishes uni-
directionally. The first axis is z = x (or axis z = −x which
is indeed correlated with axis z = x) and is denominated as
the “diagonal axis.” The second of them is the principal axis
which is the line passing through the circular dipole position
and the center of the sphere (z axis); it defines the conventional
backward (θ = 0) and forward (θ = π ) directions.

A. Diagonal axis

In this case, ψ = π (1/4 + q/2) (q = 0, 1, 2, 3).
Consequently, f 2

1 = (1 + f 2
2 )/2 and δ1 = ± arctan( f2), π ±

arctan( f2); the value of δ1 depends on angle ψ , the sign of δ2,
and the sign of the right-hand side of (38). Then, the radiation
pattern in terms of f2 is

1

Px

dP11

d�
= 3

8π

[
1 − sgn[n±

0 · nz]
√

2 cos θ

− sgn[n±
0 · nx]

√
2 f 2

2 sin θ cos φ

+ f 2
2 sin2 θ − sin2 θ cos2 φ

+ (
1 + f 2

2

)
(1 − sin2 θ sin2 φ)/2

]
, (43)

whereas the spin pattern turns out be

s̃11(θ, φ) = s̃x f2 sin θ sin φ sgn[δ2][−1

+ (
√

2/2)sgn[nz · n±
0 ] cos θ

+ (
√

2/2)sgn[nx · n±
0 ] sin θ cos φ]. (44)

As an example, we consider ψ = π/4 and the condi-
tion with the positive sign of the right-hand side of (38);
thus n+

0 = (nx − nz )/
√

2. These parameters yield the radi-
ation patterns for several values of f2 that are depicted in
Fig. 2. When f2 < 0.2873, the maximum of the radiation
pattern occurs at θm = 0, as seen in Fig. 2(a). For this case,
the contribution of the effective dipole pz, in comparison
to the others, is small; thus the radiation pattern is mainly
directed in the forward direction and it depends weakly on
φ. However, as is shown in the zoomed region of Fig. 2(a),
the radiation vanishes in the direction (θ = 3π/4, φ = 0).
When f2 > 0.2873, the maximum of the radiation pattern
occurs at φm = π and θm obeys f 2

2 cos θm(
√

2 + 2 sin θm ) −
sin θm(

√
2 + 2 cos θm ) = 0. For f2 = 1, θm = π/4 and this

direction is exactly the opposite of n+
0 [see Fig. 2(b)]. In

Fig. 2(c) ( f2 = 3/2), the angle θm increases to 0.421π . As
f2 grows even more, the effective dipoles pz and my are much
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FIG. 3. Directivity D as a function of f2 when radiation is nulli-
fied along any of four directions (±nx ± nz )/

√
2.

greater than effective dipole px and θm → π/2. Consequently,
directional radiation of the scatterer-dipole antenna occurs
predominantly along the negative x axis and null radiation is
still maintained in direction n+

0 ; this is seen in Fig. 2(d) for
f2 = 4.9.

The directivity D as a function of f2 is plotted in Fig. 3.
The directivity D is defined as

D−1 = 1

4π

1

max[dP(θ, φ)/d�]

∫
dP(θ, φ)

d�
d�, (45)

where max[. . .] denotes the maximum. We can notice that the
directivity is bounded in the interval 2 < D < (3 + 2

√
2)/2;

the superior limit happens when f2 → 0 or f2 → ∞, whereas
f2 = 1 yields the inferior limit. The radiated power is

P1

Px
= 3

2

(
1 + f 2

2

)
. (46)

Again, we assume ψ = π/4 and the condition with the
positive sign of the right-hand side of (38), obtaining the spin
pattern that is illustrated in Fig. 4. As can be noticed from
(44), the shape of the spin angular momentum pattern is inde-
pendent of factor f2, but this factor scales linearly the strength
of this pattern. The maximum strength of this pattern occurs
when θm = arccos[1/(2

√
2)] and φm = π − arccos[1/(

√
7)].

Now we present a narrow subset of material and geomet-
ric parameters of the dipole-scatterer antenna that render the
aforementioned directional far-field response: null radiation
along directions ±nx − nz (the direction is set by the spinning
direction of the dipolar source). The background medium is
hereafter vacuum (ε1 = μ1 = 1, k1 = k0). We consider two
normalized sizes of the scatterer (k0a = 0.3 and 0.35). Fig-
ure 5(a) shows the dielectric and magnetic functions of the
particle as the surface-source separation k0(z0 − a) varies for
which the aforementioned conditions for directional radiation
are fulfilled. As seen, ε2 (μ2) increases (decreases) as the
separation k0(z0 − a) increases. Also, for a fixed value of
surface-source separation, the dielectric and magnetic func-
tions (ε2 and μ2, respectively) are larger for the smaller
particle. At first instance, we notice that materials possessing
those values of ε2 and μ2 might not exist. However, we expect
that metamaterials with simultaneously large effective per-
mittivity and permeability would be realizable [39–41]. Also
we mention that the aforementioned conditions are exactly

0.5

1.0

1.5

spin pattern

FIG. 4. Spin pattern s̃11/( f2 s̃x ) for φ = π/, π/3, π/2, 2π/3, and
5π/6. Radiation vanishes in the direction (nx − nz )/

√
2.

matched, so if these conditions are approximately satisfied,
then the dielectromagnetic properties of metamaterials might
be tailored with less difficulty. Another possibility is to ex-
plore the dipolar response of a multilayered spherical particle
which might ease the material limitations. For those parame-
ters of Fig. 5(a), Fig. 5(b) illustrates the strength of the ratio
of the effective electric dipoles pz and px ( f2), and the relative
phase difference δ1 between the effective magnetic my and
electric dipoles against the normalized separation k0(z0 − a);
the strength f1 depends on f2 [see (40)] and δ2 = ±π/2 [see
(39)].

We consider specifically a sphere with radius k0a = 0.3,
ε2 = 12.2458, and μ2 = 16. Moreover, the circular dipole
is located at k0z0 = 0.3812. These factors fulfill (40) and
(41) with ψ = π/4 and δ2 = −π/2 (the upper sign of (1)
is considered since sgn[γ1/β1] = −1), yielding f1 = 1.2741,
δ1 = −0.3127π , and f2 = 1.499. Consequently, the radiation
pattern corresponds to the one of Fig. 2(c). The radiated power
from the lowest multipole is P1 = 4.8704Px = 39.6223P0. To
quantify the impact of high-order multipoles on the radiation
pattern, we calculate the error as

σp = 1

Px

∣∣∣∣dP11

d�
− dP

d�

∣∣∣∣. (47)

As seen in Fig. 6(a), the contribution of high-order multi-
poles practically unperturbs the radiation pattern since the
error σp is much smaller than the strength of the radiation
pattern of the lowest order [compare Figs. 6(a) and 2(c)].
In addition, the contribution of high-order multipoles to the
radiated power with respect to total radiated power is about
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FIG. 5. (a) ε2 (left axis) and μ2 (right axis) fulfilling condition of
directional radiation along the diagonal axis versus the surface-dipole
separation k0(z0 − a) for k0a = 0.3 and 0.35. (b) The strength f2 (left
axis) and phase δ1 (right axis) versus the surface-dipole separation
k0(z0 − a) that arises from material parameters ε2 and μ2 and particle
size k0a of panel (a).

0.094%. Concerning the spin angular momentum pattern, the
lowest order contribution, s̃11, matches exactly the one that is
shown in Fig. 4. Like the radiation pattern, the contribution of
high-order multipoles to the spin angular momentum pattern
has almost no impact. This is seen in Fig. 6(b) where the spin
error, which is defined as

σs = 1

f2s̃x
|s̃11(θ ) − s̃(θ, φ)|, (48)

is plotted; the error σs is negligible in comparison with the
dipolar part of the strength of the spin pattern [see Figs. 4 and
6(b)].

As mentioned, if the handedness of the circular dipole is
changed [the lower sign of (1)], then δ2 = π/2 and the radi-
ation pattern is the same as that of Fig. 2(c), but φ → φ + π

[null-radiation is directed along unit vector −(nx + nz )/
√

2];
conditions (40) and (41) with ψ = 3π/4 are satisfied and
factors f1, δ1, and f2 are unchanged. Therefore, by changing
the spinning direction of the circular dipole, the directionality
of the antenna can be switched.

Now we concisely consider another particular case for
which the radiation direction can be nullified in the upper
half-space (z > 0). With ψ = 3π/4 and the negative sign
of the right-hand side of (38), the direction in which the

FIG. 6. The setup has parameters k0a = 0.3, ε2 = 12.2458, μ2 =
16, and k0z0 = 0.3812; f2 = 1.499; radiation vanishes in directions
(±nx − nz )/

√
2. (a) Radiation pattern error σp. (b) Spin pattern

error σs.

radiation vanishes is n−
0 = (nx + nz )/

√
2. By assuming δ2 =

π/2 (the lower sign of (1) is considered since sgn[γ1/β1] =
−1), the following parameters satisfy (40) and (42): k0a =
0.3, k0z0 = 0.3111, ε2 = 18.0785, and μ2 = 10; they render
f1 = 3.5386, δ1 = 0.5639π , and f2 = 4.9033. For this case,
the radiation pattern and spin patterns are obtained by apply-
ing a reflection transformation with respect to the xy plane
to Fig. 2(d) and Fig. 4. The radiated power turns out to be
P1 = 37.5629Px = 25.175P0. Similarly to the previous case,
the dipolar contribution of the radiation and spin patterns is
much stronger than any other corresponding high-order mul-
tipolar term. As explained, the change of rotation direction of
the dipolar source to δ2 = −π/2 switches the null-radiation
direction to n−

0 = (−nx + nz )/
√

2.

B. Principal axis

Now we examine the case in which null radiation is
attained in either the forward or backward direction in
the presence of the circular dipole. According to the
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FIG. 7. (a) Radiation pattern P−1
x dP11/d� for f2 = 1, 2, 2.49,

and 3. (b) Spin pattern −s̃11/( f2 s̃xsgn[δ2]) for φ = π/6, π/3, and
π/2. Radiation vanishes in the forward direction.

aforementioned conditions, the radiation pattern cannot be
switched by flipping the rotation direction of the dipolar
source.

First we analyze the case in which radiation in the forward
direction is obtained. This happens when ψ = π/2 (3π/2) for
the positive (negative) sign of the right-hand side of (38). As a
consequence δ1 = 0, f1 = 1, and δ2 = ±π/2 (as expected the
null-forward radiation is independent of the spinning direction
of the circular dipole). Then, from (33), the radiation pattern
becomes

1

Px

dP11

d�
= 3

8π

[
(1 + cos θ )2 + f 2

2 sin2 θ
]
, (49)

which is independent of the azimuthal angle φ. Although
f2 has no impact in the aforementioned condition of null
radiation, it affects the radiation pattern. This can be shown
in Fig. 7(a) in which the radiation pattern for several values
of f2 is plotted. On one hand, if f2 �

√
2, the maximum of

P−1
x dP11/d� is 3/(2π ) and occurs when θ = 0, as illustrated

in Fig. 7(a) for f2 = 1. In the limit f2 → 0, the conven-
tional Huygens dipole is attained. On the other hand, when
f2 >

√
2, the angle cos θm = ( f 2

2 − 1)−1 gives the maximum
of P−1

x dP/d� which is equal to 3 f 4/[8π ( f 2
2 − 1)]. Conse-

quently, as shown in Fig. 7(a), as f2 becomes larger, θm →
π/2, meaning that the radiation lobe builds up perpendicularly
in relation to the dipole orientation. The directivity D of the
antenna is

D =
{

6
/(

2 + f 2
2

)
, f2 �

√
2,

3 f 4
/[

2
(
2 + f 2

2

)(
f 2
2 − 1

)]
, f2 >

√
2,

(50)

and it is plotted in Fig. 8. We can notice that the factor f2

controls the antenna directivity. As seen in Fig. 8, at f2 = 0,
D is maximal and has a value of 3. Then, D decreases to the
minimum level of 4/3 when f2 = 2 and D = 3/2 as f2 → ∞
(the directivity of a dipole embedded in a background medium
is equal to this value). The radiated power P becomes

P1/Px = 2 + f 2
2 . (51)

The spin pattern reduces to

s̃11(θ, φ) = −s̃x f2sgn[δ2] sin θ sin φ(1 + cos θ ), (52)

1064 80 2
1.25

2.25

2.75

1.75D
ire

ct
iv

ity

FIG. 8. Directivity D as a function of f2 when radiation vanishes
in either backward or forward direction.

and it is depicted in Fig. 7(b). It can be seen from (52) that
phase δ2 determines spin angular moment direction. Like the
diagonal-axis case, the shape of the angular spin pattern is in-
dependent of f2 (this parameter acts only as a scaling factor).
The maximal strength of the angular spin pattern occurs when
θm = π/3 and φm = π/2.

Now we discuss a particular configuration of the dipole-
scatterer system that yields the aforementioned radiative
patterns. We consider a sphere with size k0a = 0.3 and a
circular dipole located at k0z0 = 0.35. We look for values
of ε2 and μ2 which fulfill the aforementioned conditions for
achieving no radiation in the forward direction. We find that
such conditions are met when ε2 = 13.386 and μ2 = 14.542,
yielding f2 = 2. The radiation pattern of the dipolar contri-
bution (l = 1) of the dipole-sphere antenna matches exactly
the radiation pattern of Fig. 7(a) with f2 = 2. There are high-
order contributions to the radiation and spin angular patterns;
however these contributions perturb slightly those patterns.
This is indeed shown in Fig. 9 where the errors σp and σs

are plotted for several values of φ. As seen the errors σp

and σs are much smaller than the strengths P−1
x dP11/d� and

|s̃11/( f2s̃x )|, respectively. The total radiated power due to the
dipolar contribution is P1 = 6Px = 449.8126P0, whereas the

FIG. 9. Case of vanishing radiation in the forward direction.
(a) Radiation pattern error σp. (b) Spin pattern error σs. k0a = 0.3,
k0z0 = 0.35, ε2 = 13.386, μ2 = 14.542, and f2 = 2.
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addition of all multipoles yields P = 449.8522P0; this shows
as well the low impact of higher order multipoles.

Opposite to previous case, the radiation is nullified in the
backward direction when ψ = 3π/2 (π/2) for the positive
(negative) sign of the right-hand side of (38). Hence, δ1 = π

and again f1 = 1 and δ2 = ±π/2. The reflection of the radi-
ation and spin patterns of Fig. 7 with respect to the xy plane
renders those corresponding to case of zero radiation in the
backward direction. Hence, these patterns exhibit the same
characteristics of those corresponding to the null-forward di-
rection. Again we consider a dielectromagnetic sphere with
size k0a = 0.3 and a circular dipole located at k0z0 = 0.35.
We find that the sphere with ε2 = 14.435 and μ2 = 13.373
fulfills the aforementioned conditions for null radiation in
the backward direction with f2 = 2.49. As mentioned, the
radiation and spin patterns of the dipolar contribution coincide
exactly with the one of Fig. 7(a) with f2 = 2.49 and Fig. 7(b),
respectively (after performing the xy-plane reflection). Sim-
ilarly to the previous case, almost imperceptible deviations
from the dipolar radiation pattern are caused by high-order
multipoles. The radiated power from the dipolar order is P1 =
8.2Px = 579.94P0, and the total radiated power that includes
all multipoles is P = 579.98P0 which is only a few hundredths
of P0 larger than that of the dipolar part.

V. CONCLUSIONS

We studied the electromagnetic response in the far field of
a circular electric dipole placed near a subwavelength sphere;
the circular dipole spins in a plane containing a great circle of
the sphere (meridional plane). The aforementioned response
arises mainly from the lowest multipolar order, as is indeed
corroborated for the particular cases that were examined. The
fields in the radiation zone can be synthesized as originating
from an effective magnetic dipole oriented perpendicularly to
the meridional plane and an effective electric dipole that lies in
the meridional plane; these sources are located at the center of
the sphere. We derived general conditions for achieving null
radiation in any direction that lies in the meridional plane. As
a consequence, the directional radiation of the dipole-scatterer
antenna is obtained. The projection of the effective electric
dipole along a unit vector in the meridional plane and the
effective magnetic dipole can, under certain conditions, give
rise to a Huygens dipole, obtaining null radiation in one of
the directions of the normal vector to the plane expanded
by such a unit vector and a vector parallel to the effective
magnetic dipole. The remaining component of the effective
electric dipole (parallel to the normal vector) influences the
radiation pattern, and consequently, the directivity D as well.
In addition, we have analyzed, in the far field, the spin angular
momentum which can be seen as arising from the mixing
among the effective dipoles.

We analyzed in detail the radiative characteristics and
looked for geometrical and material (nonabsorbing) parame-
ters of the dipole-scatterer antenna in which radiation vanishes
unidirectionally along two particular axes: diagonal and prin-
cipal. We were able to find specific parameters of the
dipole-scatterer setup for which the aforementioned condi-
tions were matched exactly. The flipping of the spinning
direction of the circular dipole rotates the radiation and spin

patterns π rad around the axis that joins the position of the cir-
cular dipole and the center of the scatterer. As a consequence,
when radiation nullifies in either of the forward or backward
directions, theses patterns are unaffected by the handedness of
the circular dipole. The directivity curves D are bounded and
depend on the angular direction in which radiation vanishes.
Thus, the dipolar contribution of the radiation pattern coin-
cides with the ideal case; the radiated power and radiation
and spin patterns are practically unperturbed by high-order
modes. For a given direction of null radiation, the shape of the
spin pattern is independent of the relative strength of effective
dipoles pz and px.

We expect that this study might impact aspects related
to the coupling of quantum spin states and electromagnetic
modes, the control of radiation by emitters, the routing of light
in networks, the manipulation of light by metasurfaces, and
the sensing and localization of molecules.

APPENDIX A: ELECTRIC FIELD THAT IS GENERATED
BY THE CIRCULAR DIPOLE

In general, the direct electric field that is created by an
arbitrary electric dipole p is

E0(r) = [k2
1/(ε0ε1)]

↔
G0 (r, r0, ω) · p. (A1)

Here, r0 is the dipole position,
↔
G0 is the unbounded Green

tensor whose multipolar expansion for |r| > |r0| is [34]

↔
G0 (r, r0, ω) = ik1

∑
σ lm

alm[Mσ lm(r, k1)M̂σ lm(r0, k1)

+ Nσ lm(r, k1)N̂σ lm(r0, k1)], (A2)

where

alm = 1

2π (1 + δ0m)

(2l + 1)(l − m)!

l (l + 1)(l + m)!
, (A3)

δi j is the δ-Kronecker tensor, and the summation indices run
over 0 � m � l and l = 1, 2, . . . (we recall that σ = e, o).
Here, the vector spherical harmonic M̂σ lm(r, k) is defined as
(3), but hl (kr) is replaced by jl (kr) and N̂σ lm(r, k) is obtained
from (4) with the replacement Mσ lm(r, k) → M̂σ lm(r, k). Be-
cause of the fact that the multipolar expansion (A2) is valid for
|r| > |r0|, the vector spherical harmonics related to the field
point r have outgoing spherical Hankel functions, whereas the
vector spherical harmonics for the source points contain reg-
ular spherical Bessel functions to avoid divergence at r0 = 0.
By considering the dipole position r0 = z0nz, the projections
of the right-hand vector spherical harmonics of Green tensor
(A2) with unit vectors nx and nz [related to polarization of the
circular dipole (1)] turn out to be

N̂σ lm(z0nz, k) · nx = δ1mδeσ l (l + 1)ψ ′
l (kz0)/(2kz0), (A4)

N̂σ lm(z0nz, k) · nz = δ0mδeσ l (l + 1)ψ ′
l (kz0)/(kz0), (A5)

M̂σ lm(z0nz, k) · nx = δ1mδoσ l (l + 1) jl (kz0)/2, (A6)

M̂σ lm(z0nz, k) · nz = 0. (A7)
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These projections lead straightforwardly to the expression for
the electric field given by (2).

The scattered electric field Es (outside the scatterer), which
is generated by an arbitrary dipole p, can be obtained also

from (A1), but
↔
G0 is replaced by the scattering Green tensor

↔
Gs which admits also a multipolar expansion with respect to
the origin as [35]

↔
Gs (r, r0, ω) = ik1

∑
σ lm

alm[Al (ω)Mσ lm(r, k1)

× Mσ lm(r0, k1) + Bl (ω)Nσ lm(r, k1)

× Nσ lm(r0, k1)]. (A8)

Equation (6), that is, the particular expression for scat-
tered electric field Es, is obtained from the scattering Green
tensor (A8), but now the projections Nσ lm(z0nz, k) · nx,
Nσ lm(z0nz, k) · nz, Mσ lm(z0nz, k) · nx, and Mσ lm(z0nz, k) · nz

are needed; they correspond respectively to the right-hand
side of (A4)–(A7) with replacements ψ ′

l (kz0) → ξ ′
l (kz0) and

jl (kz0) → hl (kz0). Since the domain of the scattering Green
tensor (A8) is |r| > a and |r0| > a, both vector spherical
harmonics of the dyadic possess outgoing spherical Hankel
functions.

APPENDIX B: MULTIPOLAR CONTRIBUTIONS OF THE
RADIATION PATTERN

The multipolar term of the radiation pattern P−1
0 (dPll ′/d�)

is defined as

1

P0

dPll ′

d�
= 3

8π
Re

{−i

2

(2l + 1)

(−i)l l (l + 1)

(2l ′ + 1)

il ′ l ′(l ′ + 1)

× [
iα∗

l (k1z0)αl ′ (k1z0)
(
τ 1

l (θ )τ 1
l ′ (θ ) sin2 φ

+ �1
l (θ )�1

l ′ (θ ) cos2 φ
) − α∗

l (k1z0)βl ′ (k1z0)

× (
�1

l (θ )τ 1
l ′ (θ ) cos2 φ + τ 1

l (θ )�1
l ′ (θ ) sin2 φ

)
∓ il ′(l ′ + 1)α∗

l (k1z0)γl ′ (k1z0)�1
l (θ )τ 0

l ′ (θ ) cos φ

+β∗
l (k1z0)αl ′ (k1z0)

(
τ 1

l (θ )�1
l ′ (θ ) cos2 φ

+ �1
l (θ )τ 1

l ′ (θ ) sin2 φ
) + iβ∗

l (k1z0)βl ′ (k1z0)

× (
τ 1

l (θ )τ 1
l ′ (θ ) cos2 φ + �1

l (θ )�1
l ′ (θ ) sin2 φ

)
∓ l ′(l ′ + 1)β∗

l (k1z0)γl ′ (k1z0)τ 1
l (cos θ )τ 0

l ′ (θ )

× cos φ ∓ i l (l + 1)γ ∗
l (k1z0)αl ′ (k1z0)

× τ 0
l (θ )�1

l ′ (θ ) cos φ ± l (l + 1)γ ∗
l (k1z0)

×βl ′ (k1z0)τ 0
l (θ )τ 1

l ′ (θ ) cos φ + il (l + 1)

× l ′(l ′ + 1)γ ∗
l (k1z0)γl ′ (k1z0)

× τ 0
l (θ )τ 0

l ′ (θ )
]}

. (B1)

APPENDIX C: MULTIPOLAR CONTRIBUTIONS
OF THE SPIN PATTERN

The multipolar contribution sll ′ of the spin pattern is ex-
plicitly given by

sll ′ = s0Im

[
1

(−i)l

2l + 1

l (l + 1)

1

(−i)l ′
2l ′ + 1

l ′(l ′ + 1)

×
{

sin φ cos φ
[
τ 1

l (θ )�1
l ′ (θ ) − �1

l (θ )τ 1
l ′ (θ )

]
× [α∗

l (k1z0)αl ′ (k1z0) − β∗
l (k1z0)βl ′ (k1z0)]

+ i sin φ cos φ
[
τ 1

l (θ )τ 1
l ′ (θ ) − �1

l (θ )�1
l ′ (θ )

]
× [α∗

l (k1z0)βl ′ (k1z0) + β∗
l (k1z0)αl ′ (k1z0)]

∓ l ′(l ′ + 1) sin φτ 1
l (θ )τ 0

l ′ (θ )α∗
l (k1z0)γl ′ (k1z0)

± il ′(l ′ + 1) sin φ�1
l (θ )τ 0

l ′ (θ )β∗
l (k1z0)γl ′ (k1z0)

± l (l + 1) sin φτ 0
l (θ )τ 1

l ′ (θ )γ ∗
l (k1z0)αl ′ (k1z0)

± il (l + 1) sin φτ 0
l (θ )π1

l ′ (θ )

× γ ∗
l (k1z0)βl ′ (k1z0)

}]
, (C1)

where s0 = 3n1P0/(16πcω).
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