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In this work, we develop a physically transparent Coulomb-interaction model from simplification of a general
many-body theory and apply this model to study interacting electron dynamics for transient occupation and
quantum coherence in both single and double quantum dots under laser irradiation. Our theory considers
self-consistently the Coulomb-renormalized Rabi coupling to light by using an induced optical-depolarization
field, corresponding to dynamical exchange interaction between two electrons within the same quantum dot.
Meanwhile, we employ evanescent-field coupling for dynamical Coulomb interaction between two electrons in
different quantum dots based on a surface-plasmon model. In particular, we explore the quantum interference
between a pair of laser-induced quantum coherence in three-level quantum-dot systems, which gives rise
to indirect transition of electrons for sum- and difference-frequency transient optical responses. By varying
laser frequency detuning, the control of laser-dressed electronic states becomes possible and can be utilized
for switching among off-state, partial, and complete on-states. This study will be useful for controlling the
phase entanglement of two laser-dressed states of quantum dots, as well as for enhancing the electro-optical
performance through sum- and difference-frequency transitions in many optoelectronic devices.
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I. INTRODUCTION

The electronic properties of a material depend on both
band structures and nonequilibrium occupations of electronic
states. For example, one can compute the band structure
of crystal electrons accurately by using the Kohn-Sham
density-functional theory [1]. Simultaneously, one can also
determine the nonequilibrium occupations of crystal electrons
with quantum kinetic theory [2–5], in which the Coulomb
interaction between two electrons plays a crucial role on
effective mass, group velocity and dynamical screening, as
well as on energy relaxation of nonthermal electron distri-
butions. One can include the retarded Coulomb interaction
by using many-body theory [6] with diagrammatic-expansion
technique. Interestingly, the same retarded Coulomb inter-
action can also be taken into account by solving coupled
Maxwell-semiconductor Bloch equations [4,5,7], with which
one finds the macroscopic optical-polarization field through a
quantum-statistical average of the microscopic field-induced
quantum coherence. Meanwhile, the quantum coherence itself
is decided self-consistently from the semiconductor Bloch
equations (SBE) [8–14], involving a total electric field ob-
tained from Maxwell equations with both transverse and
longitudinal optical-polarization fields [15]. The field-electron
interactions, with higher-order harmonics of the total electric
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field [7], can be viewed as various terms in the diagrammatic
expansion [6].

The induced quantum coherence between two optically
coupled electronic states of a quantum dot appears with
laser frequency in resonance with two energy levels [14].
If two quantum dots stay next to each other, the quantum
coherence in one interacting dot can be transferred to an-
other noninteracting dot by a plasmon field. Similarly, if
three energy levels exist in a quantum dot, the interfer-
ence of direct quantum coherence [16] between lower- and
upper-two energy levels gives rise to an indirect quantum
coherence between the ground and top energy levels. Histor-
ically, quantum interference has been used for demonstrating
lasing without inversion [17–20] and electromagnetically in-
duced transparency [21–24] in atomic and solid-state systems.
The quantum interference also leads to sum- and difference-
frequency transient optical responses [25] without requir-
ing noninversion symmetry and phase matching compared
to second-order harmonic generation [26,27] in nonlinear
crystals.

For an interacting spherical quantum dot, a polarization
field occurs within the sphere [28], as described by a quantum-
dot dielectric function [29]. Outside the sphere, an evanescent
electric field exists [14]. If two quantum dots are close enough
within the decay length, they become coupled to each other.
One knows that the visible localized surface-plasmon (LSP)
field acquires an x-ray wavelength [30], implying a subwave-
length resolution for LSP. To facilitate double-dot on and off
states, we introduce a dot-embedded optical nanocavity [31],
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which has demonstrated large single-molecule fluorescence
enhancements [32] due to greatly enhanced LSP field within
the cavity. For two identical dots, there exist three states in
a configuration space. The first one is an off state having
two noninteracting dots. The second one is a partial-on state
having one interacting dot passing its coupling to another
noninteracting dot. The last one is a fully on state with two
interacting dots. These three states can be switched from one
to another by scanning nodes of a cavity with adjustable cav-
ity length under resonance. This cavity-controlled switching
is possible with a dynamical laser-dressing process [33,34],
whereas its state reading is fulfilled by microdetection of
luminescence [35] or tunneling current [36]. The cavity-field
spatial distribution is computed by transfer-matrix approach
and electrodynamics [28] as a generalization of geometric-
optics principle [37].

The occupations of two energy levels of a dot exhibit
Rabi oscillations under a resonant laser excitation. For a
specific choice of modulation profile, e.g., a resonator, one
finds direction-dependent Rabi-split Floquet eigenstates, re-
sulting in direction-dependent dissipation and nonreciprocal
transmission of waves [38]. Under femtosecond-laser comb
excitations [39,40], the level occupations display a fast
and controllable switching between two states. With a LSP
nanoantenna, one can extend current research to modifying
phase entanglement of two laser-dressed dots, quantum dot
single- [41] or entangled-photon [42] emitters, and quantum-
dot tunneling photodetectors [43]. Meanwhile, the same
technique can also be applied to greatly enhance the sensi-
tivity of infrared optoelectronics devices [44].

Semiconductor Bloch equations for interacting electrons
with a laser field have been developed [8–14], including
Hartree-Fock and excitonlike corrections to kinetic energies
of electrons. Particularly, the correction from exchange inter-
action to Rabi coupling was taken into account. Moreover,
generalized coupled Maxwell-semiconductor Bloch equations
have also been established [4,5,7], which revealed that the
Coulomb interaction between quantum wires could be viewed
as the back action from an induced optical-polarization field.
Here, we employ early works [4,5,7–14] and apply them to
quantum-dot systems, in which both corrections to kinetic
energy and Boltzman-type scatterings have been neglected
for simplicity. Meanwhile, we also simplify the polariza-
tion field as a spatially homogeneous one, different from a
general many-body theory [4,5,7–14]. This provides a trans-
parent analysis for the Coulomb-interaction effect on transient
optical response of electrons in interacting quantum dots.
Furthermore, the current model also enables investigating
complex time-dependent electron dynamics driven by a mul-
tifrequency laser pulse or laser comb, which becomes very
useful for experimentally studying transient optoelectronic
properties of semiconductors.

The rest of the paper is organized as follows. In Sec. II,
we present density-matrix theory (DMT) for a two-level
quantum-dot system including the self-consistent depolariza-
tion field for dynamical Coulomb interaction (DCI) between
electrons. Moreover, we generalize this theory to a three-level
DMT in Sec. III, considering the quantum interference in indi-
rect transitions of electrons for sum- and difference-frequency
transient optical responses. Section IV is for the study of

interdot DCI of electrons and its role in switching between
quantum-dot on and off states by LSP coupling. Finally, con-
clusions and remarks are given in Sec. V.

II. TWO-LEVEL QUANTUM-DOT SYSTEMS

We start by directly writing down the optical Bloch equa-
tions for density operator ρ̂(t ) ≡ {ρi j}2×2 of electrons in a
two-level quantum-dot system, yielding

dρ̃12(t | ω)

dt
= 1

ih̄
[h̄(ω + iγ0) − (E2 − E1)]ρ̃12(t | ω)

− 1

ih̄
[ρ11(t ) − ρ22(t )]V (0)

12 ,

dρ22(t )

dt
= −dρ11(t )

dt
= 2V (0)

12

h̄
Im[ρ̃12(t | ω)], (1)

where we assume the light-electron interaction as V12(t ) =
V (0)

12 exp[i(ω + iγ0)t] with laser frequency ω and dephasing
rate γ0 and find ρ12(t ) = ρ̃12(t | ω) exp[i(ω + iγ0)t]. Mean-
while, we write ρ̃21(t | ω) = ρ̃∗

12(t | ω) within the rotating-
wave frame. In Eq. (1), V (0)

12 = d12 E0 with d12 and E0 as the
dipole moment of a quantum dot and the amplitude of laser
field, respectively. E1,2 in Eq. (1) represent two energy levels
of electrons.

It is well known that when light is incident on a semi-
conductor, its energetic photons can elevate electrons from
a lower valence band to an upper conduction band, leaving
many free electron-hole pairs in the system [14]. Simulta-
neously, its electric-field component will further move aside
these negatively (positively) charged electrons (holes) in op-
posite spatial directions. Then, the remaining question is, do
these photogenerated electrons or holes exert an action back
on the photons of incident light? The answer to this lies in the
induced optical-polarization field as a collection of induced
dipole moments from spatial separation (interband) or charge-
density waves (intraband) of electrons and holes [15]. More
importantly, this induced optical-polarization field can act
back on holes and electrons, leading to a quantum-mechanical
DCI between two electrons or holes, as well as one electron
and hole [7]. Here, we will employ this transparent physics
picture to treat the DCIs between electrons either within the
same dot or in different dots, where the role of holes is re-
placed by a uniform background of positively charged lattice
ions.

Here, we consider an ensemble of many quantum dots,
which are optically isolated from each other, and each dot
behaves independently for its interaction with incident light.
As a result, the total optical response is the sum of contribu-
tions from each dot. The full treatment of DCI was described
in details early by employing SBE [8], which can be de-
rived from a general many-body theory but involves heavy
numerical computations. The specific SBE expressions [14]
for a quantum-dot system was also presented explicitly. The
main focus of the current paper is developing an analytical
approach for treating the DCI in optical Bloch equations,
which becomes important for considering optical properties
of semiconductor quantum dots. In particular, we present in
this paper a transparent and intuitive formalism [15], which
takes into account the DCI through an induced polarization
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FIG. 1. (Top) Schematics of two coupled quantum dots embed-
ded within an optical cavity under laser irradiation with frequency ω,
where E0 is the laser field (red) while Ed (ω) represents the induced
dynamical depolarization fields either within (yellow) or between
(green) quantum dots. Each quantum dot is described by a two-level
model. (Bottom) Two very close quantum dots, which center at O1

and O2 with a distance D0 and acquire two surfaces S1 and S2 with
parallel tangential planes and separation d , are electromagnetically
coupled to each other through induced spherical localized-surface-
plasmon modes, where R � D0 − 2R ≡ d is assumed, and therefore
these two coupled surfaces can be approximately treated as two
extremely close and parallel conducting planes.

field resulted from collective excitation of electrons in the
long-wavelength limit for a single quantum dot. For dou-
ble quantum dots, however, the interdot Coulomb interaction
should be given by a wave-number q-dependent exponentially
decayed form ∝ exp(−qd ) with respect to interdot distance d .

In the presence of a laser field, electron distribution inside
a quantum dot will be polarized, as illustrated in the top
panel of Fig. 1, giving rise to an optical depolarization P̃d (t ).
Explicitly, we can write down [14,45]

P̃d (t ) = −nd d12 ρ̃12(t | ω), (2)

where nd = f0ne for the effective volume density of dipoles,
f0 stands for the ratio of the total quantum-dot volume to
the host-material volume, whereas ne is number of elec-
trons per quantum-dot volume. The optical depolarization
in Eq. (2) corresponds to a self-consistent induced de-
polarization field (SCIDF) [7,45], Ẽd (t ) = P̃d (t )/ε0εd , and
corrects the Rabi coupling energy V (0)

12 in Eq. (1) to
a renormalized one [14,45] U12 = d12[E0 + Ẽd (t )] = V (0)

12 −
(nd d2

12/ε0εd ) ρ̃12(t | ω), where ε0 is the permittivity in vac-
uum, and εd represents the host-material dielectric constant.

Classically, let us first consider a scenario with two charged
objects separated by a short distance. For these two objects,
there always exists a Coulomb interaction between them.

Equivalently, we can view this Coulomb interaction as an
electric field produced by object-1, which exerts a Coulomb
force on object-2 and vice versa. Meanwhile, a depolarization
field will be produced within the object-2 due to the applied
field from object-1, which, in turn, exerts another evanescent
polarization force [15] back on object-1 in addition to a regu-
lar Coulomb force.

The above transparent physics picture applies here. From
quantum mechanics, we know that there always exists a
Coulomb interaction between two identical electrons. By us-
ing the above classical analogy, the back action here plays
the role of Coulomb interaction between two electrons within
the ladder approximation [14,46], which can modify the Rabi
coupling energy of laser-driven electrons, i.e., the replacement
of V (0)

12 by U12 for Coulomb renormalization.
Finally, by including this renormalization to V (0)

12 , the well-
known Eq. (1) can be generalized to

dρ̃12(t | ω)

dt
= 1

ih̄
[h̄(ω + iγ0) − (E2 − E1)]ρ̃12(t | ω)

− 1

ih̄
[ρ11(t ) − ρ22(t )]

× [
V (0)

12 − (
nd d2

12/ε0εd
)
ρ̃12(t | ω)

]
,

dρ22(t )

dt
= 2

h̄
Im
{[

V (0)
12 −(nd d2

12/ε0εd
)
ρ̃∗

12(t |ω)
]
ρ̃12(t | ω)

}

= 2V (0)
12

h̄
Im[ρ̃12(t | ω)],

ρ11(t ) = 1 − ρ22(t ), (3)

which becomes nonlinear [7] with respect to the off-diagonal
density-matrix element ρ̃12(t | ω).

Here, we would like to emphasize that the renormalization
of electron kinetic energy by Hartree interaction can also be
included by solving Poisson’s equation, in which a density
function [46], involving the diagonal density-matrix elements
ρ11(t ) and ρ22(t ), should be employed. However, the differ-
ence in kinetic-energy renormalizations between two energy
levels is very small and can be neglected here or formally
included in laser-frequency detuning.

Interestingly, we find from the first equation of Eq. (3)
that the Coulomb-renormalized Rabi coupling can be formally
absorbed into bare kinetic energy terms of electrons, yielding

dρ̃12(t | ω)

dt
= 1

ih̄
{h̄(ω + iγ0) − [Ẽ2(t ) − Ẽ1(t )]}ρ̃12(t | ω)

− 1

ih̄
[ρ11(t ) − ρ22(t )]V (0)

12 , (4)

where two time-dependent renormalized energies Ẽ1,2(t ) of
electrons are defined as

Ẽ1(t ) = E1 −
(

nd d2
12

ε0εd

)
ρ11(t ),

Ẽ2(t ) = E2 −
(

nd d2
12

ε0εd

)
ρ22(t ), (5)

which resemble Fock-energy corrections. However, such a
simple correspondence does not apply to the quantum-dot
system addressed in Sec. III. Although the interdot Coulomb-
renormalized Rabi coupling can still be absorbed into bare
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kinetic energy terms of electrons in Eq. (17), an additional
interdot pumping term appears for occupations. Here, we
emphasize that the light-electron interaction still drives the
quantum system although the Coulomb-renormalized Rabi
coupling can be incorporated into electron kinetic energies,
which implies the appearance of Rabi oscillations for electron
occupations in the system.

In our following calculations, we will neglect dephas-
ing effect by letting γ0 → 0. By setting U12 → V (0)

12 , we
know from Eq. (3) that ρ̃12(t | ω) will acquire a phase factor
exp(−iδt ) from the first term on the right-hand side of the
equation for dρ̃12(t | ω)/dt , where δ = [h̄ω − (E2 − E1)]/h̄
denotes the laser-frequency detuning. On the other hand,
the second term on the right-hand side of the equation for
dρ̃12(t | ω)/dt in Eq. (3) leads to Rabi oscillations with respect
to both d2ρ̃12(t | ω)/dt2 and d2[ρ11(t ) − ρ22(t )]/dt2. Interest-
ingly, the SCIDF has no effect on the pumping of electrons
between two energy levels, which is driven only by external
laser field.

Physically, we can gradually turn on a laser field at time
t0 so as to use initial conditions ρ11(0) = 1 and ρ22(0) = 0.
Mathematically, such a turning-on process can be simulated
by introducing a broadened step function S0(t ), given by

S0(t ) = 1

2
+ 1

π
tan−1

( t − t0
�0

)
, (6)

which approaches zero if (t − t0)/�0 � −1 or unity for
(t − t0)/�0 � 1, where positive �0 � t0 represents broad-
ening in a step function. Meanwhile, we should also set
positive turning-on time t0 far away from zero to en-
sure the accuracy of initial conditions in the absence of
optical field. Therefore, we will replace V (0)

12 = d12E0 by
d12E0 S0(t ). Furthermore, we would solve Eq. (3) using
U12(t ) = d12E0 S0(t ) − (nd d2

12/ε0εd ) ρ̃12(t | ω).
According to the Kane approximation [14], the dipole

moment d12 = dcv for electrons in a quantum dot between
the valence and conduction bands at the isotropic � point is
calculated as

dcv =
√

e2h̄2

2m0EG

(m0

m∗ − 1
)
, (7)

where m∗ and EG are the effective mass of electrons and the
bandgap of host material for a quantum dot, and m0 is the
free-electron mass.

On the other hand, for the dipole moment d12 of electrons
within the conduction band at the � point, we employ the
harmonic-oscillator model for a quantum dot. As a result,
we obtain the dipole moment dn,n+1 between two energy lev-
els En = (n − 1/2) h̄ω0 and En+1 = (n + 1/2) h̄ω0 with n =
1, 2, . . ., yielding [6]

dn,n+1 = er0

√
n

2
, (8)

where r0 = √
h̄/(m∗ω0) represents the effective radius of a

quantum dot. Moreover, we find d23 = √
2 d12 = er0, which

is larger than dcv in Eq. (7).
As a starting point, we would first explore the Coulomb-

interaction effect for electrons within a two-level quantum
dot. For steady-state electrons, we formally get the solution

of Eq. (1) as [47–52]

d

dt
{[ρ11(t ) − ρ22(t )]2 + 4|ρ̃12(t | ω)|2} = 0,

ρ̃12(t | ω) =
[

ρ11(t ) − ρ22(t )

h̄ω − (E2 − E1)

]
V (0)

12 . (9)

For numerical calculations in Sec. II, we set r0 = 23 Å,
nd = 0 and nd = 4.9 × 1015 m−3 for unrenormalized and
renormalized Rabi couplings, respectively. Moreover, for the
laser field with frequency ω, we assume 	R = |V (0)

12 |/h̄ =
d12 E0/h̄ = 1.09 × 105 Hz for the Rabi frequency. The other
parameters, e.g., detuning δ = (h̄ω − E21)/h̄, in numerical
calculations will be provided directly in the figure caption.

For unrenormalized case with nd = 0, the calculated
ρ11(t ), ρ22(t ) and Re[ρ̃12(t | ω)] are presented in Fig. 2 as
functions of time t . From Fig. 2 we find that both ρ11(t )
and ρ22(t ) in the left panel display Rabi oscillations with

a time period of 2π/

√
δ2 + 4	2

R for δ = 2	R. Meanwhile,
there exists a gap between the valley of ρ11(t ) and the peak
of ρ22(t ), and this gap will close as δ → 0. Moreover, from
the right panel of Fig. 2, we observe an onset of ρ̃12(t | ω)
around t = 0 due to the use of S0(t ), which is followed by
Rabi oscillations of ρ̃12(t | ω) with a peak-to-valley amplitude
slightly smaller than 0.5 due to δ 	= 0.

In fact, by setting U12 → V (0)
12 and neglecting the slow

oscillations, proportional to exp(−iδt ) and sin2(	Rt ), from
detuning δ and Rabi frequency 	R, we obtain from Eq. (9)
the amplitudes for Rabi oscillations in ρ̃12(t | ω) and ρ22(t ),
namely

ρ̃
(0)
12 (ω) = sgn[h̄ω − (E2 − E1)]h̄	R√

[h̄ω − (E2 − E1)]2 + 4h̄2	2
R

,

ρ
(0)
22 (ω) = 1 − ρ

(0)
11 (ω)

= 1

2

⎡
⎣1 − |h̄ω − (E2 − E1)|√

[h̄ω − (E2 − E1)]2 + 4h̄2	2
R

⎤
⎦, (10)

where sgn(x) is the sign function. Consequently, using
Eq. (10) for the steady state of electrons, we further obtain

ρ22(t ) = ρ
(0)
22 sin2 [(t/2)

√
δ2 + 4	2

R

]
= 1

2
ρ

(0)
22

[
1 − cos

(
t
√

δ2 + 4	2
R

)]
,

ρ11(t ) = 1−ρ22(t ) = 1−ρ
(0)
22 sin2

[
(t/2)

√
δ2 + 4	2

R

]
= 1−1

2
ρ

(0)
22

[
1 − cos

(
t
√

δ2 + 4	2
R

)]
,

Re[ρ̃12(t | ω)] = 1

2
− ∣∣ρ̃ (0)

12 (ω)
∣∣ sin2

[
(t/2)

√
δ2 + 4	2

R

]
= 1

2
− 1

2

∣∣ρ̃ (0)
12 (ω)

∣∣[1 − cos
(
t
√

δ2 + 4	2
R

)]
,

Im[ρ̃12(t | ω)] = 1

2	R

dρ22(t )

dt
=
√

δ2 + 4	2
R

4	R

× ρ
(0)
22 sin

(
t
√

δ2 + 4	2
R

)
, (11)
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FIG. 2. Calculated occupations ρ11(t ) (blue solid) and ρ22(t ) (red dash-dotted) as functions of time t (left) and real part of the quantum
coherence Re[ρ̃12(t | ω)] (right) as a function of t within the rotating-wave frame. Here, we have set nd = 0, δ = 2	R for the unrenormalized
case, and the periodic Rabi oscillations in the left and right panels can be seen clearly.

which fully agree with our numerical results presented in
Fig. 2.

Figure 3 presents the Fourier transform (FT) of both
Re[ρ̃12(t | ω)] and Im[ρ̃12(t | ω)] as functions of scaled FT
frequency ω/	R. For Im[ρ̃12(t | ω)] in the right panel, we

find two spectral peaks at ω = ±
√

δ2 + 4	2
R = ±2

√
2 	R for

δ = 2 	R. These two side peaks are also seen in the left panel
for Re[ρ̃12(t | ω)], and moreover, we observe a central peak at
ω = 0 due to the constant term involved in Re[ρ̃12(t | ω)], as
can be verified from Eq. (11).

As demonstrated in Ref. [14], the existence of Coulomb
interaction between electrons within the same quantum dot
will add a correction term to the bare Rabi coupling en-
ergy V (0)

12 , and then renormalize V (0)
12 into a new one U12(t ).

This renormalized one contains the induced quantum coher-
ence ρ12(t ) of electrons. As a result, the corrected stimulated

transition Im{U12(t ) ρ12(t )} of electrons involves a nonlinear
term [ρ12(t )]2 in the time domain with respect to the induced
quantum coherence. Such a band-edge nonlinearity is com-
pletely different from the common optical nonlinearity [26]
in crystals with no requirements for crystal symmetry and
phase matching condition, and it exists only in the presence
of Coulomb interaction.

In comparison with V (0)
12 = d12 E0, the higher-harmonic ef-

fect from the corrected U12 is expected to show up around
peaks (but not valleys) of Rabi oscillations, where positive
ρ̃12(t | ω) can take its maximum value for enhanced nonlin-
earity. In Fig. 4 we present calculated ρ11(t ), ρ22(t ), and
Re[ρ̃12(t | ω)] by including the SCIDF correction to 	R for
nd = 4.9 × 1015 m−3. From the left panel, we find the gap
between the valley of ρ11(t ) and the peak of ρ22(t ) is slightly
increased by Coulomb interaction among electrons within the

FIG. 3. Results for Fourier transform (FT) of Re[ρ̃12(t | ω)] (left) and Im[ρ̃12(t | ω)] (right) as functions of frequency ω/	R. Here, we
have set nd = 0 and δ = 2	R for the unrenormalized case. The background oscillations come from finite time windows for Fourier transform
performed.
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FIG. 4. Calculated occupations ρ11(t ) (blue solid) and ρ22(t ) (red dash-dotted) as functions of time t (left) and real part of the quantum
coherence Re[ρ̃12(t | ω)] (right) as a function of t within the rotating-wave frame. Here, we have set nd = 4.9 × 1015 m−3 and δ = 2	R for the
renormalized case, and the amplitude of Rabi oscillations in the left panel is reduced significantly.

same dot. However, this intradot Coulomb-interaction effect
only plays an insignificant role in Re[ρ̃12(t | ω)], as seen from
the right panel, due to large detuning δ = 2 	R.

By increasing the intradot Coulomb interaction and re-
ducing the detuning at the same time, we find from Fig. 5
for nd = 1.8 × 1016 m−3 and δ = 0.2 	R that the gap be-
tween the valley of ρ11(t ) and the peak of ρ22(t ) in Fig. 4
disappears in the left panel. This is accompanied by the in-
creased peak-to-valley amplitudes of ρ11(t ) and ρ22(t ) due to
reduced δ. More interestingly, the peak splitting, or equiva-
lently the sum-frequency transient optical response (SFTOR),
in Re[ρ̃12(t | ω)] appears in the right panel, which is attributed
to enhanced Coulomb interaction between electrons in a quan-
tum dot. In comparison with Fig. 3 for the unrenormalized
case, the strong higher-harmonic peaks at ω ≈ ±4 ωR show

up for Re[ρ̃12(t | ω)] in the left panel of Fig. 6 but are still too
weak to be seen for Im[ρ̃12(t | ω)] in the right panel.

Due to the existed time periodicity in the applied optical
field E0(t ), we expect the periodic feature in all elements of
the density matrix in its steady states. As a result, the Fourier
spectra of these elements are expected discrete. Indeed, we
find discrete Fourier peaks for ρ̃12(t | ω) in Figs. 3 and 6
with respect to cases without (nd = 0) and with (nd 	= 0)
Coulomb-interaction effects. In addition, we also find a weak
background between these discrete Fourier peaks due to the
limited time window taken in performing the Fourier trans-
forms. Since all discrete Fourier peaks can stand out clearly,
including both cases for nd = 0 and nd 	= 0, we will not make
extra effort on extending time windows for performing Fourier
transforms again.

FIG. 5. Calculated occupations ρ11(t ) (blue solid) and ρ22(t ) (red dash-dotted) as functions of time t (left) and real part of the quantum
coherence Re[ρ̃12(t | ω)] (right) as a function of t within the rotating-wave frame. Here, we have set nd = 1.8 × 1016 m−3, δ = 0.2 	R for the
renormalized case, and the Rabi oscillations in the left panel can be seen clearly.
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FIG. 6. Results for Fourier transform (FT) of Re[ρ̃12(t | ω)] (left) and Im[ρ̃12(t | ω)] (right) as functions of frequency ω/	R. Here, we have
set nd = 1.8 × 1016 m−3 and δ = 0.2 	R for the renormalized case.

III. THREE-LEVEL QUANTUM-DOT SYSTEMS

In this section, we generalize the two-level single-quantum-dot system discussed in Sec. II into a three-level one. For three-
level systems interacting with two or more incident laser fields, we are not able to use a single rotating-wave frame for completely
eliminating fast oscillations. In this case, by generalizing Eq. (3) first, we arrive at

ih̄
dρ11(t )

dt
= −2i Im[U ∗

12(t )ρ12(t )] − 2i Im[U ∗
13(t )ρ13(t )],

ih̄
dρ22(t )

dt
= 2i Im[U ∗

12(t )ρ12(t )] − 2i Im[U ∗
23(t )ρ23(t )],

ih̄
dρ33(t )

dt
= 2i Im[U ∗

13(t )ρ13(t )] + 2i Im[U ∗
23(t )ρ23(t )],

ih̄
dρ12(t )

dt
= ih̄

dρ∗
21(t )

dt
= −(E2 − E1)ρ12(t ) − [ρ11(t ) − ρ22(t )]U12(t ) + U13(t ) ρ∗

23(t ) − U ∗
23(t ) ρ13(t ),

ih̄
dρ13(t )

dt
= ih̄

dρ∗
31(t )

dt
= −(E3 − E1)ρ13(t ) − [ρ11(t ) − ρ33(t )]U13(t ) + U12(t ) ρ23(t ) − U23(t ) ρ12(t ),

ih̄
dρ23(t )

dt
= ih̄

dρ∗
32(t )

dt
= −(E3 − E2)ρ23(t ) − [ρ22(t ) − ρ33(t )]U23(t ) + U ∗

12(t ) ρ13(t ) − U13(t ) ρ∗
12(t ), (12)

where ρ11(t ) + ρ22(t ) + ρ33(t ) = 1 is assumed for the initial condition ρ11(0) = 1, ρ22(0) = ρ33(0) = 0. Similarly, we have
defined renormalized Rabi couplings Ui j (t ) for electrons as

U12(t ) = Ũ12(t ) exp(iω1t ) = [d12 E1 S0(t )] exp(iω1t ) −
(

nd d2
12

ε0εd

)
ρ12(t ),

U23(t ) = Ũ23(t ) exp(iω2t ) = [d23 E2 S0(t )] exp(iω2t ) −
(

nd d2
23

ε0εd

)
ρ23(t ),

U13(t ) = Ũ13(t ) exp(iω3t ) = [d13 E3 S0(t )] exp(iω3t ) −
(

nd d2
13

ε0εd

)
ρ13(t ), (13)

where dj j′ represents the dipole moment between the jth and j′th energy levels of electrons, E j and ω j for j = 1, 2, 3
correspond to the amplitudes and frequencies of three applied laser fields, in connection with three pairs of energy levels in
a quantum dot.
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In our calculations, we assume E3 = 0 and d13 = 0 due to electron transition between two states with the same parity. This
leads to U13(t ) ≡ 0 but ρ13(t ) 	= 0. Thus, from Eq. (12), we obtain

ih̄
dρ11(t )

dt
= −2i Im[U ∗

12(t )ρ12(t )],

ih̄
dρ22(t )

dt
= 2i Im[U ∗

12(t )ρ12(t )] − 2i Im[U ∗
23(t )ρ23(t )],

ih̄
dρ33(t )

dt
= −ih̄

[
dρ11(t )

dt
+ dρ22(t )

dt

]
= 2i Im[U ∗

23(t )ρ23(t )],

ih̄
dρ12(t )

dt
= ih̄

dρ∗
21(t )

dt
= −(E2 − E1)ρ12(t ) − [ρ11(t ) − ρ22(t )]U12(t ) − U ∗

23(t ) ρ13(t ),

ih̄
dρ23(t )

dt
= ih̄

dρ∗
32(t )

dt
= −(E3 − E2)ρ23(t ) − [ρ22(t ) − ρ33(t )]U23(t ) + U ∗

12(t ) ρ13(t ),

ih̄
dρ13(t )

dt
= ih̄

dρ∗
31(t )

dt
= −(E3 − E1)ρ13(t ) + U12(t ) ρ23(t ) − U23(t ) ρ12(t ), (14)

where ρ11(t ) + ρ22(t ) + ρ33(t ) = const for the conservation of total electron number.
In Eq. (14), there is no direct transition between the first and third energy levels of electrons since U13(t ) ≡ 0. However,

a finite indirect quantum coherence ρ13(t ) 	= 0 could still exist between these two electronic states, which is facilitated by
the interference between two laser-induced quantum coherence ρ12(t ) and ρ23(t ) [16]. In particular, we can set ω1 ≈ ω2 if
E2 − E1 ≈ E3 − E2. As a result, the induced quantum coherence ρ13(t ) in Eq. (14) will behave in a way very similar to a direct
one with frequency ω1 + ω2 [25].

By writing Ej j′ = Ej − Ej′ and assuming ρ12(t ) = ρ̃12(t ) exp(iω1t ), ρ23(t ) = ρ̃23(t ) exp(iω2t ) as well as ρ13(t ) =
ρ̃13(t ) exp[i(ω1 + ω2)t], we get from Eq. (14)

ih̄
dρ11(t )

dt
= −2i Im[Ũ ∗

12(t )ρ̃12(t )],

ih̄
dρ22(t )

dt
= 2i Im[Ũ ∗

12(t )ρ̃12(t )] − 2i Im[Ũ ∗
23(t )ρ̃23(t )],

ih̄
dρ33(t )

dt
= −ih̄

[
dρ11(t )

dt
+ dρ22(t )

dt

]
= 2i Im

[
Ũ ∗

23(t )ρ̃23(t )
]
,

ih̄
dρ̃12(t )

dt
= ih̄

dρ̃∗
21(t )

dt
= (h̄ω1 − E21)ρ̃12(t ) − [ρ11(t ) − ρ22(t )]Ũ12(t ) − Ũ ∗

23(t ) ρ̃13(t ),

ih̄
dρ̃23(t )

dt
= ih̄

dρ̃∗
32(t )

dt
= (h̄ω2 − E32)ρ̃23(t ) − [ρ22(t ) − ρ33(t )]Ũ23(t ) + Ũ ∗

12(t ) ρ̃13(t ),

ih̄
dρ̃13(t )

dt
= ih̄

dρ̃∗
31(t )

dt
= [h̄(ω1 + ω2) − E31]ρ̃13(t ) + Ũ12(t ) ρ̃23(t ) − Ũ23(t ) ρ̃12(t ), (15)

where Ũ12(t ) = d12 E1 S0(t ) − (nd d2
12/ε0εd ) ρ̃12(t ) and Ũ23(t ) = d23 E2 S0(t ) − (nd d2

23/ε0εd ) ρ̃23(t ). From Eq. (15) we find that
finite occupation ρ33(t ) for the top energy level can be achieved by two consecutive optical transitions from two low-energy
levels although there exists no direct optical transition from the bottom to the top energy level. At the same time, the sum-
frequency quantum coherence ρ̃13(t ) also shows up as a consequence of quantum interference between ρ̃12(t ) and ρ̃23(t ), leading
to indirect transition of electrons as well as the sum- and difference-frequency transient optical responses due to renormalized
Rabi couplings.

If we further assume ω1 = ω2 = ω and E21 = E32 = 
E , we get from Eq. (15)

ih̄
dρ11(t )

dt
= −2i Im[Ũ ∗

12(t )ρ̃12(t )],

ih̄
dρ22(t )

dt
= 2i Im[Ũ ∗

12(t )ρ̃12(t )] − 2i Im[Ũ ∗
23(t )ρ̃23(t )],

ih̄
dρ33(t )

dt
= −ih̄

[
dρ11(t )

dt
+ dρ22(t )

dt

]
= 2i Im[Ũ ∗

23(t )ρ̃23(t )],

ih̄
dρ̃12(t )

dt
= ih̄

dρ̃∗
21(t )

dt
= (h̄ω − 
E )ρ̃12(t ) − [ρ11(t ) − ρ22(t )]Ũ12(t ) − Ũ ∗

23(t ) ρ̃13(t ),

ih̄
dρ̃23(t )

dt
= ih̄

dρ̃∗
32(t )

dt
= (h̄ω − 
E )ρ̃23(t ) − [ρ22(t ) − ρ33(t )]Ũ23(t ) + Ũ ∗

12(t ) ρ̃13(t ),

ih̄
dρ̃13(t )

dt
= ih̄

dρ̃∗
31(t )

dt
= (2h̄ω − 2
E )ρ̃13(t ) + Ũ12(t ) ρ̃23(t ) − Ũ23(t ) ρ̃12(t ). (16)
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FIG. 7. Comparison of occupations ρ11(t ) (blue solid), ρ22(t ) (green short-dashed), and ρ33(t ) (red dash-dotted) as functions of time t with
(right) and without (left) renormalized Rabi coupling for a three-level quantum dot. Here, we have set ρ11(0) = 1, ρ22(0) = ρ33(0) = 0 as
initial conditions, δ1 = 0.2 	R1, and δ2 = 0.4 	R2.

where the 2ω optical response is expected from the indirect
transition of electrons between the first and third energy lev-
els.

For numerical calculations in Sec. III, we set r0 = 23 Å,
nd = 0, and nd = 1.8 × 1016 m−3 for unrenormalized and
renormalized Rabi couplings, respectively. Moreover, for two
laser fields with frequencies ω1 and ω2, we assume 	R1 =
	R2/

√
2 = 1.09 × 105 Hz for their Rabi frequencies due to

different dipole moments d12 = d23/
√

2. The other parame-
ters, such as δ1, δ2, in numerical calculations will be directly
indicated in the figure caption.

From Fig. 7 with small dephasing, we find slow-beating
features, or equivalently the difference-frequency transient
optical response (DFTOR), for occupations ρ11(t ) and ρ33(t )
in its left panel as the DCI between two electrons within the
same quantum dot has been neglected. However, only the
amplitude modulation is found for ρ22(t ) at the same time.
In addition, ρ11(t ) reaches its maximum whenever ρ22(t ) and
ρ33(t ) sit at their minima. Furthermore, the time period for
oscillating ρ22(t ) is reduced by half compared to oscillations
in ρ11(t ) and ρ33(t ). Meanwhile, the oscillations in ρ11(t ) are
found to be out of phase with those in ρ33(t ). As the intensive
intradot DCI is turned on in the right panel of Fig. 7, both
DFTOR and amplitude-modulation features are suppressed,
indicating the effect of Coulomb interaction between two elec-
trons. But, the phase relations among oscillations in ρ11(t ),
ρ22(t ), and ρ33(t ) remain.

Figure 8 displays a periodic peak SFTOR for Im[ρ̃12(t )]
in its top-right panel with switching strength for dual
peaks in the unrenormalized case, although no SFTOR oc-
curs for Re[ρ̃12(t )] at the same time in the top-left panel.
However, a full DFTOR is present in the top-left panel with
completing beating nodes. Here, both of these observations
can be attributed to the indirect quantum coherence ρ̃13(t )
due to quantum-interference effect resulted from the term
Ũ ∗

23(t ) ρ̃13(t ) in Eq. (15). Once intradot DCI between electrons

has been added, the DFTOR found in the top-left panel turns
into strong periodic peak SFTOR with a constant amplitude
in the bottom-left panel. On the other hand, the peak-split
SFTOR in the top-right panel is greatly washed out, leaving
only a shoulder at the right-hand side of individual peak.

It is known from the top-right panel of Fig. 9 that a periodic
peak SFTOR shows up for Im[ρ̃23(t )] for the unrenormalized
case but acquires a different pattern compared to the same
panel in Fig. 8. This new feature also results from the indirect
quantum coherence ρ̃13(t ) due to quantum-interference effect
given by a different term Ũ ∗

12(t ) ρ̃13(t ) in Eq. (15). Moreover,
the beating nodes of Re[ρ̃12(t )] in the top-left panel of Fig. 8
is found smeared out in the same panel of Fig. 9. If we take
into account the effect of intradot DCI between two electrons,
the peak-split SFTOR in the top-right panel of Fig. 9 has been
significantly obscured for Im[ρ̃23(t )] in its bottom-right panel,
leaving only a shoulder at the left-hand side of individual
peak in contrast to the finding in the same panel of Fig. 8.
Furthermore, the incomplete DFTOR developed in the top-left
panel of Fig. 9 changes into a constant-amplitude oscillation
in its bottom-left panel with superposed peak-split SFTOR by
intradot DCI.

In order to gain a full understanding of both sum-
and difference-frequency nonlinear characters, as well as
quantum-interference effects associated with indirect quan-
tum coherence ρ̃13(t ), we present Re[ρ̃13(t )] and Im[ρ̃13(t )] in
Fig. 10 with either bare or renormalized Rabi couplings. For
the unrenormalized case, we find periodic peak SFTOR and
DFTOR pattern, respectively, from Re[ρ̃13(t )] and Im[ρ̃13(t )]
in the top-left and top-right panels of Fig. 10, which is sup-
plemented by a large modulation for the valleys of Re[ρ̃13(t )].
There exists a similarity for DFTOR between Im[ρ̃13(t )] and
Re[ρ̃12(t )] in Fig. 8 or Re[ρ̃23(t )] in Fig. 9, as expected from
the equation for dρ̃13(t )/dt in Eq. (15). For the renormalized
case, on the other hand, the periodic peak SFTOR in the
top-left panel of Fig. 10 changes into periodic valley SFTOR.
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FIG. 8. Comparisons of Re[ρ̃12(t )] (left) and Im[ρ̃12(t )] (right) as functions of time t with (bottom) and without (top) renormalized
Rabi coupling for a three-level quantum dot. Here, we have set ρ11(0) = 1, ρ22(0) = ρ33(0) = 0 as initial conditions, δ1 = 0.2 	R1, and
δ2 = 0.4 	R2.

Additionally, the DFTOR in the top-right panel converts into a
constant-amplitude oscillation plus a shoulder at the left-hand
side of each peak due to the presence of nonlinear contribu-
tions from the product ρ̃12(t ) ρ̃23(t ) in Eq. (15).

In Fig. 11, we display the Fourier spectra for calculated
transient Im[ρ̃12(t )] and Im[ρ̃23(t )], corresponding to the right
columns of Fig. 8 and Fig. 9, respectively. For the cases with a
bare Rabi coupling in the left column of Fig. 11 for Im[ρ̃12(t )]
and Im[ρ̃23(t )], we find two pairs of symmetric peaks resulting
from the periodic peak SFTORs in the top-right panels of
Fig. 8 and Fig. 9. Furthermore, we observe fine peak splitting
from two insets of the left column in Fig. 11, which are
associated with the beating features presented in the top-right
panels of Fig. 8 and Fig. 9. For the cases with a renormalized
Rabi coupling, on the other hand, the doubly split peaks in the
left column of Fig. 11 disappear, which agree with the absence
of beating features in the low-right panels of Fig. 8 and Fig. 9.

In Figs. 7–11, we have assumed an initial occupation only
for the lowest energy level, i.e., ρ11(0) = 1 but ρ22(0) =
ρ33(0) = 0. To explore the effect of initial distribution of elec-
trons, we set ρ11(0) = ρ22(0) = 1 but ρ33(0) = 0 in Fig. 12
for the unrenormalized case. Compared with the left panel
of Fig. 7, we see from the top-left panel of Fig. 12 that the
DFTOR for ρ33(t ) in Fig. 7 is replaced by modulated minima

but the DFTOR pattern for ρ11(t ) remains. We further find
that the peak SFTOR with switching strength for Im[ρ̃23(t )]
is kept in the top-right panel of Fig. 12, similar to the same
panel of Fig. 8, although the slope of peak-split pattern is
inverted. At last, compared with two top panels of Fig. 10, we
observe from the bottom-left panel of Fig. 12 that the phase of
Re[ρ̃13(t )] has been reversed while the beating pattern in the
bottom-right panel keeps the same.

The Coulomb-interaction based nonlinearity in Rabi oscil-
lations for three-level quantum dots, as shown in Figs. 7–12,
influence not only the quantum coherence as in two-
level quantum dots but also unique properties of quantum
interference for three-level quantum dots. Physically, the in-
duced depolarization field results from the photoexcitation of
electrons and is not an external field, and therefore, there is
no generation of higher-harmonic fields from wave mixing or
nonlinear crystals but only time-domain nonlinearity due to
Coulomb-renormalized Rabi coupling, such as peak doublet
splitting and slow beating in Fig. 8. Therefore, we mainly
present time dependence in Figs. 7–12 for three induced quan-
tum coherence, which are accompanied by the Fourier spectra
for Im[ρ̃12(t )] in Fig. 8 and Im[ρ̃23(t )] in Fig. 9 for fine peak
splitting. Here, the initial condition for occupied different
states of thermal-equilibrium electrons is determined by the
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FIG. 9. Comparisons of Re[ρ̃23(t )] (left) and Im[ρ̃23(t )] (right) as functions of time t with (bottom) and without (top) renormalized
Rabi coupling for a three-level quantum dot. Here, we have set ρ11(0) = 1, ρ22(0) = ρ33(0) = 0 as initial conditions, δ1 = 0.2 	R1, and
δ2 = 0.4 	R2.

Fermi energy EF at low temperatures, i.e., ρ j j (0) = �(EF −
Ej ) with unity-step function �(x), where the states blow the
Fermi energy are occupied while those above the Fermi en-
ergy remains empty. Moreover, these electronic states can be
either spin or orbital degenerate. Therefore, for two occupied
states, the natural selection is ρ11(0) = ρ22(0) = 1, ρ33(0) =
0 but not ρ11(0) = ρ22(0) = 1/2, ρ33(0) = 0. This is quite
different from single-electron case in atomic optics.

IV. NEAR-FIELD COUPLED QUANTUM DOTS

Now, let us turn to a system containing two quantum dots
coupled by a near field. For simplicity, we only consider a
two-level model for a pair of field-coupled quantum dots, as
illustrated in the bottom panel of Fig. 1. For each quantum
dot, we generalize Eq. (3) to [7]

dρ̃
α,β

12 (t | ω)

dt
= 1

ih̄

[
h̄ω − (

Eα,β

2 − Eα,β

1

)]
ρ̃

α,β

12 (t | ω) − 1

ih̄

[
ρ

α,β

11 (t ) − ρ
α,β

22 (t )
]

×{V α,β

12 − (
nα,β

d

(
dα,β

12

)2
/ε0εd

)
ρ̃

α,β

12 (t | ω) − (
nβ,α

d dα,β

12 dβ,α

12 /ε0εd
)

exp[−κβ,α (ω)D0] ρ̃
β,α

12 (t | ω)
}
,

dρ
α,β

22 (t )

dt
= 2

h̄
Im
{[

V α,β

12 − (
nβ,α

d dα,β

12 dβ,α

12 /ε0εd
)

exp[−κβ,α (ω)D0]
[
ρ̃

β,α

12 (t | ω)
]∗]

ρ̃
α,β

12 (t | ω)
}
,

ρ
α,β

11 (t ) = 1 − ρ
α,β

22 (t ), (17)
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FIG. 10. Comparisons of Re[ρ̃13(t )] (left) and Im[ρ̃13(t )] (right) as functions of time t with (bottom) and without (top) renormalized
Rabi coupling for a three-level quantum dot. Here, we have set ρ11(0) = 1, ρ22(0) = ρ33(0) = 0 as initial conditions, δ1 = 0.2 	R1, and
δ2 = 0.4 	R2.

where α, β = 1, 2 labels each quantum dot under the same laser field EL(t ) = E0 exp(iωt ), dα,β

12 corresponds to the dipole
moment of each quantum dot, and D0 represents the center-to-center distance between two spherical quantum dots. The wave
number κα,β (ω) introduced in Eq. (17) for DCI between two quantum dots is calculated as [14,30]

κα,β (ω) = ω
√

εd

c

√
3

εα,β (ω) + 2
, (18)

which strongly depends on ω through the dielectric function εα,β (ω). Furthermore, εα,β (ω) in Eq. (18) for electrons in a spherical
quantum dot takes the form [14]

εα,β (ω) ≈ Re[εα,β (ω)] = 1 − nα,β

d

(
dα,β

12

)2

ε0εd

{
h̄ω − (

Eα,β

2 − Eα,β

1

)
[
h̄ω − (

Eα,β

2 − Eα,β

1

)]2 + (
2dα,β

12 E0
)2

}
, (19)

where we have neglected the insignificant imaginary part of the dielectric function corresponding to optical loss. From Eq. (18),
we easily find the LSP modes, ωsp

α,β , determined by the relation εα,β (ωsp
α,β ) + 2 = 0, which is related to κα,β (ω) → ∞. This leads

to

[
ω

sp
α,β

]
± =

(
Eα,β

2 − Eα,β

1

)
h̄

+ nα,β

d

(
dα,β

12

)2

6ε0εd h̄

⎧⎪⎨
⎪⎩1 ±

√√√√1 −
(

12ε0εdE0

nα,β

d dα,β

12

)2
⎫⎪⎬
⎪⎭, (20)

Here, we would like to emphasize that the key aspect of
the paper is to investigate the effect of Coulomb interac-

tion on transient optical response of electrons in quantum
dots. The spatial arrangement of dots is simplified to the
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FIG. 11. Comparisons of Fourier spectra for Im[ρ̃12(t )] (top) and Im[ρ̃23(t )] (bottom) as functions of time t with bare (left) and
renormalized (right) Rabi couplings for a three-level quantum dot. Here, we have set ρ11(0) = 1, ρ22(0) = ρ33(0) = 0 as initial conditions,
δ1 = 0.2 	R1, and δ2 = 0.4 	R2. For two unrenormalized cases, we further show insets in the left column to display fine splitting of peaks
corresponding to beating features presented in right columns of Figs. 8 and 9.

physical separation. The effects of resonators and surface
plasmons can be included by setting the E-field profiles in
the model. Specifically, let us consider a pair of optically
coupled quantum dots with radius R and tangential-surface
separation d . As illustrated in the bottom panel of Fig. 1,
if the condition d ≡ D0 − 2R � R is satisfied, we can ap-
proximately treat the interdot Coulomb interaction as one
between two charge distributions confined in different paral-
lel tangential planes separated by distance d . Therefore, the
nonretarded Coulomb potential will acquire a decay factor
exp(−qD0) for wave number q as determined from Poisson
equation. In this paper, we have generalized this nonretarded
interdot Coulomb interaction into a retarded one as given
by Eq. (17).

For numerical calculations in Sec. IV with n(1)
d = n(2)

d =
nd , r (1)

0 = r (2)
0 = r0, and κ1 = κ2 = κα , we set r0 = 23 Å

while nd = 0 and nd = 1.8 × 1016 m−3 for unrenormalized
and renormalized cases, respectively. Moreover, for the laser
field with frequency ω, we assume 	

(1)
R = 	

(2)
R /2 = 	R =

1.09 × 105 Hz for the Rabi frequencies. The other parameters,
such as D0 and καD0, in numerical calculations will be given
in the figure caption.

The calculated εα (ω) in Eq. (19) and the inverse decay
length κα (ω) in Eq. (18) as functions of h̄δ/(E2 − E1) are plot-
ted in Fig. 13 for different values of 	R. From Fig. 13, we find
that the variations in both εα (ω) and κα (ω) decrease dramati-
cally with increasing 	R due to enhanced power broadening.
Here, the peak and valley in εα (ω) correspond to the valley
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FIG. 12. Comparisons of occupations ρ11(t ) (blue solid), ρ22(t ) (green dot-dashed), and ρ33(t ) (red dashed) (top-left), Im[ρ̃23(t )] (top-
right), Re[ρ̃13(t )] (bottom-left), and Im[ρ̃13(t )] (bottom-right) as functions of time t in the unrenormalized case for a three-level quantum dot.
Here, we have set ρ11(0) = ρ22(0) = 1, ρ33(0) = 0 as initial conditions, δ1 = 0.2 	R1, and δ2 = 0.4 	R2.

and peak of κα (ω), as can be seen from Eq. (18). However,
the peak-valley asymmetry is found for κα (ω) with a much
stronger peak. Especially, the condition for exciting a spher-

ical LSP mode in Eq. (20) can be satisfied, as indicated by
a steep rise in κα (ω) for a very small positive h̄δ/(E2 − E1)
value, where the condition of εα (ω) = −2 can be met.

FIG. 13. Calculated dielectric function εα (ω) (left) and inverse decay length κα (ω) (right) as functions of scaled laser detuning h̄δ/E21

with nd = 2.5 × 1019 m−3 and various values of Rabi frequency 	R as indicated, where h̄δ = h̄ω − E21. Here, Rabi frequency 	R increases as
1.09 × 105 Hz (cyan dotted), 2.17 × 105 Hz (red dashed), 3.26 × 105 Hz (green dash-dotted), and 4.35 × 105 Hz (blue solid).
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FIG. 14. Density plots of loss function in logarithmic scale for displaying scaled plasmon energies as functions of scaled wave number qD0

for near-field coupled two identical (left) or different (right) quantum dots, where nd = 9.9 × 1024 m−3, 	R = 1.09 × 105 Hz, and γ = 10−8

represents the damping of plasmon modes.

On the other hand, by considering a system containing two electromagnetically coupled (EMC) quantum dots, we can
explicitly write down their nonlocal dielectric-function matrix ε

↔
r (q, ω), namely

ε
↔

r (q, ω) ≈ Re[ε↔r (q, ω)] =
[

ε11(ω) ε12(q, ω)
ε21(q, ω) ε22(ω)

]
, (21)

where q � 0 is the wave number of LSP field, and

ε11(ω) = 1 − n(1)
d

(
d (1)

12

)2

ε0εd

{
h̄ω − (

E (1)
2 − E (1)

1

)
[
h̄ω − (

E (1)
2 − E (1)

1

)]2 + (
2d (1)

12 E0
)2

}
,

ε22(ω) = 1 − n(2)
d

(
d (2)

12

)2

ε0εd

{
h̄ω − (

E (2)
2 − E (2)

1

)
[
h̄ω − (

E (2)
2 − E (2)

1

)]2 + (
2d (2)

12 E0
)2

}
,

ε12(q, ω) = −n(2)
d d (1)

12 d (2)
12

ε0εd
exp(−qD0)

{
h̄ω − (

E (2)
2 − E (2)

1

)
[
h̄ω − (

E (2)
2 − E (2)

1

)]2 + (
2d (2)

12 E0
)2

}
,

ε21(q, ω) = −n(1)
d d (2)

12 d (1)
12

ε0εd
exp(−qD0)

{
h̄ω − (

E (1)
2 − E (1)

1

)
[
h̄ω − (

E (1)
2 − E (1)

1

)]2 + (
2d (1)

12 E0
)2

}
, (22)

while Det[ε↔r (q, ω)] = 0 provides us with coupled nonlocal-
plasmon modes ω = 	±(q).

We present density plots in Fig. 14 for comparison of the
loss function γ /{|Det[ε↔r (q, ω)]|2 + γ 2} with respect to two
either identical (ω10 = ω20) or different (ω10 	= ω20) quan-
tum dots, where h̄ωα0 ≡ E (α)

2 − E (α)
1 and very small γ > 0

has been introduced to represent the damping of plasmon
modes. For two identical quantum dots in the left panel, we
find a low-energy out-of-phase acousticlike plasmon mode
	−(q)/ω0 with gapless-linear dispersion within the strong-
coupling regime qD0 � 1, as well as a high-energy in-phase
opticlike plasmon mode 	+(q)/ω0 with an energy gap for
q → 0. For the weak-coupling regime qD0 � 1, on the other
hand, the energy splitting between these two plasmon modes
	±(q) approaches zero, as seen from the left panel. In the
right panel for two different quantum dots, however, the en-
ergies of these two plasmon modes 	±(q)/ω0 are pushed
away, and meanwhile, a gap appears for 	−(q) even when
q → 0, in contrast to the low-energy acousticlike plasmon
mode in the left panel. Moreover, the splitting between

two plasmon modes [	+(q) − 	−(q)] remains as a constant
for qD0 � 1.

Similar to the discussions in Sec. III on indirect transition
of electrons by quantum interference in a three-level quantum
dot, we know from Eq. (17) that similar phenomenon will
occur in the case of EMC quantum dots, in which the finite
occupation ρ

β

22(t ) > 0 for a directly pumped quantum dot
with V β

12 	= 0 can lead to a finite occupation ρα
22(t ) > 0 for an

unpumped quantum dot with V α
12 ≡ 0 through near-field cou-

pling between these two quantum dots. Such a phenomenon
can be verified by the appearance of a finite tunneling current
through this separately contacted unpumped quantum dot. For
this two-dot system, the unpumped (off) state can switch to
an isolated one-dot excited (partial-open) state, if the other
quantum dot sits at the field node and the interdot near-field
coupling can be ignored. Moreover, the same off state can also
switch to coupled two-dot excited (full-open) state with strong
interdot near-field coupling to the other unpumped dot. Such a
switching process can be sensitively controlled by frequency
detuning of an incident laser field.
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FIG. 15. Calculated ρ11(t ) (blue solid) and ρ22(t ) (red dashed) as functions of time t (left) and Re[ρ̃12(t | ω)] (right) as a function of t
within the rotating-wave frame for the renormalized case. Here, two identical dots are illuminated by the same incident laser. We have set
nd = 1.8 × 1016 m−3, D0 = 5 nm, καD0 = 0.0242 for a selected h̄δ value corresponding to 	R = 1.09 × 105 Hz, and the enhanced-amplitude
Rabi oscillations in the left panel can be seen clearly for EMC dots.

The selection of a large decay length can be fulfilled by a
positive but very small laser-frequency detuning h̄δ, as seen
from the right panel of Fig. 13. The increased Rabi-oscillation
amplitudes for ρ11(t ) and ρ22(t ), as well as the SFTOR in
Re[ρ̃12(t | ω)], are also expected for small h̄δ, as displayed
in both panels of Fig. 5. Here, we present comparisons in
Figs. 15 and 16 for the renormalized case of two identical
quantum dots under the same laser irradiation, where these
two dots are electromagnetically coupled to each other by an
induced evanescent field. For a stronger interdot coupling in
Fig. 15, the smaller selected h̄δ value leads to large-amplitude
Rabi oscillations in both ρ11(t ) and ρ22(t ) as seen in the left
panel, which are further accompanied by the appearance of
doubly split peaks for Re[ρ̃12(t | ω)] in the right panel due to
enhanced Coulomb interaction between electrons in different
quantum dots. As the interdot coupling is slightly reduced
in Fig. 16 with a shorter decay length at a relatively large
selected h̄δ value, the Rabi-oscillation amplitudes of ρ11(t )
and ρ22(t ) in its left panel decrease greatly due to weakened

interdot Coulomb interaction between electrons. In addition,
the nonlinear doubly split peak in Re[ρ̃12(t | ω)] disappears as
can be verified from the right panel of Fig. 16.

We know the spatial distribution of a laser field within an
optical cavity is inhomogeneous and can be controlled by the
cavity length under the resonance condition. Therefore, the
strength of a laser field acting on a quantum dot will depend
on its specific position inside the cavity. To simulate this field-
distribution effect, we take 	

(1)
R = 	

(2)
R /2 = 1.09 × 105 Hz in

Figs. 17 and 18.
When the field coupling between two dots is strong,

for a relatively smaller separation between two quantum
dots as assumed in Fig. 17, we observe a new very slow
(∼|	(1)

R − 	
(2)
R |/2) but very strong amplitude modulation for

Re[ρ̃ (1)
12 (t | ω)] in the right panel, which is superposed on very

fast oscillations (∼|	(1)
R + 	

(2)
R |/2) with respect to time. The

same amplitude modulation also appears in the left panel for
both ρ

(1)
11 (t ) and ρ

(1)
22 (t ) but having a much smaller magnitude.

FIG. 16. Calculated ρ11(t ) (blue solid) and ρ22(t ) (red dashed) as functions of time t (left) and Re[ρ̃12(t | ω)] (right) as a function of t
within the rotating-wave frame for the renormalized case. Here, we have set nd = 4.1 × 1016 m−3 and D0 = 5 nm for two identical dots,
καD0 = 0.0598 for a selected h̄δ value corresponding to 	R = 1.09 × 105 Hz, and the reduced-amplitude Rabi oscillations in the left panel
can be seen clearly for decoupled dots.
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FIG. 17. Calculated ρ
(1)
11 (t ) (blue solid) and ρ

(1)
22 (t ) (red dashed) as functions of time t (left) and real part of the quantum coherence

Re[ρ̃ (1)
12 (t | ω)] (right) as a function of t within the rotating-wave frame for the renormalized case. Here, two dots are illuminated by laser fields

with different strengths, i.e., 	
(1)
R = 	

(2)
R /2 = 1.09 × 105 Hz. We have set nd = 1.8 × 1016 m−3, D0 = 50 nm, καD0 = 0.92 for two selected

h̄δ(1,2) values corresponding to 	
(1,2)
R , and strong variations in the amplitude of Re[ρ̃ (1)

12 (t | ω)] in the right panel can be seen clearly for EMC
dots.

Meanwhile, the low-frequency amplitude modulation in the
right panel is further accompanied by the occurrence of asym-
metric SFTORs with switching peak strength, in contrast to
the symmetric doubly split peaks found in the right panel of
Fig. 15.

As the interdot separation D0 increases from 50 nm to
150 nm in Fig. 18, however, the interdot coupling is ex-
pected to be reduced dramatically for a fixed decay length
as in Fig. 17. As a result, the amplitude modulation for
Re[ρ̃ (1)

12 (t | ω)] in the right panel becomes weakened, and si-
multaneously, almost no sign of amplitude modulation can
be seen in the left panel for occupations ρ

(1)
11 (t ) and ρ

(1)
22 (t ).

Additionally, the asymmetric doubly split peaks observed in
the right panel of Fig. 17 has largely been symmetricalized
in the right panel of Fig. 18 but still acquiring slightly varied
depths in the profile of split peaks of SFTORs. The amplitude-
modulation effect in Re[ρ̃ (1)

12 (t | ω)] is found weakened for a

weaker interdot coupling, and the modulation period becomes
larger.

V. CONCLUSIONS AND REMARKS

In conclusion, we have employed the DMT for explor-
ing coherent electron dynamics, namely, occupations as well
as directly or indirectly induced quantum coherence under
laser irradiation in both single- and double-quantum-dot sys-
tems. The inclusion of renormalization to Rabi coupling
results from the SCIDF of photoexcited electrons, which cor-
responds to DCIs between two electrons within the same
or different quantum dots. Based on the evanescent LSP-
field description, the near-field coupling, relating to interdot
quantum-mechanical DCI, has been introduced and leads to
second-order sum- and difference-frequency transient opti-
cal responses of electrons within dual EMC quantum dots

FIG. 18. Calculated ρ
(1)
11 (t ) (blue solid) and ρ

(1)
22 (t ) (red dashed) as functions of time t (left) and Re[ρ̃ (1)

12 (t | ω)] (right) as a function of t
within the rotating-wave frame for the renormalized case. Here, two dots are illuminated by laser fields with different strengths, i.e., 	

(1)
R =

	
(2)
R /2 = 1.09 × 105 Hz. We have set nd = 1.8 × 1016 m−3, D0 = 150 nm, καD0 = 2.75 for two selected h̄δ(1,2) values corresponding to 	

(1,2)
R ,

and weak variations in the amplitude of Re[ρ̃ (1)
12 (t | ω)] in the right panel can be seen clearly for decoupled dots.
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in a two-level model. For a three-level quantum dot, we
have further explored the quantum interference between two
consecutive laser-induced quantum coherence and its unique
effect on indirectly induced quantum coherence under the
irradiation of dual laser beams.

Although the occupations of electronic states, correspond-
ing to two energy levels of a quantum dot, only produces
a normal Rabi oscillation under a continuous laser-field ex-
citation, they demonstrate a unique and fully controllable
switching between these occupations under femtosecond-
laser-frequency-comb excitations. In addition, by introducing
a near-field coupling for two close-by quantum dots, one
can selectively engineer the phase entanglement of these two
laser-dressed quantum dots, which is expected to be very
important and useful for facilitating quantum communication,

quantum sensing and ultrasensitive quantum-dot photodetec-
tors, as well as dramatically enhancing the electro-optical
response in many infrared optoelectronics devices.
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