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Nonlinear dynamics of coupled light and particle beam propagation
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Propagation of a light beam through a collisional and inhomogeneous beam of neutral particles is investigated.
The light beam can be manipulated through the refractive index that is affected by the gaseous medium.
Simultaneously, neutral particles experience optical dipole force and scattering force due to atomic polarizability,
leading to particle trapping. The simulation results of fully coupled light-particle propagation show agreement
with experimental data from the literature. The effects of particle density, detuning frequency with respect to the
resonance frequency, and light intensity on the mutual guiding of light and particle beams is studied for particle
beam densities below the critical density that results in single-mode operation of optical waveguides.
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I. INTRODUCTION

Manipulation of particles using light beams has been ap-
plied to many fields ranging from microbiology to atomic
physics and polymeric studies [1,2]. For instance, optical
tweezers can be used to isolate a small number of particles
or molecules and manipulate them precisely [1,3]. Further-
more, light beams can be guided with waveguides with
high-refractive-index contrast ratio [4–6], enabling speed-of-
light communications through fiber optic cables [7]. While a
collimated light beam naturally diffracts without any guiding
media and particles diffuse due to their thermal motion in
vacuum, precisely tailoring the coupling of the two can lead to
mutually self-guided beams [8,9], allowing for unprecedented
control over light-particle interaction.

The gradient of light intensity exerts an optical dipole force
on a gas particle with a finite polarizability, which leads to
trapping or defocusing of particles [10]. The amplification of
particle density due to the optical forces was first demon-
strated by Ashkin and co-workers: In their experiments, a
collimated beam of sodium atoms was propagated collinearly
with a converging light beam [11–14]. Trapping and defocus-
ing of the atomic beam were observed when tuning the light
frequency near resonance due to the changes in the atomic
polarizability. It should be noted that such experiments were
performed in relatively low-particle-density conditions, where
the observed modulation of the refractive index was insignif-
icant. Depending on the light intensity, particle density, and
polarizability, the contrast in refractive index with respect to
the surrounding medium (vacuum) can be large enough to
guide the light beam [15,16] while simultaneously trapping
the particles via optical forces.

*kenhara@stanford.edu

In this paper, a self-consistent simulation that couples the
light and neutral particle beams is developed and validated
against experimental results from relevant studies [11–14].
The light beam propagation is modeled by solving the paraxial
Helmholtz equation, which accounts for variations of refrac-
tive index due to the presence of neutral gas particles. The
transparent boundary condition [17,18] is revised and im-
plemented, enabling stable numerical calculations. For the
particle dynamics, optical forces on two-level atoms are sum-
marized and implemented. Both dipole and scattering forces
are taken into consideration. In addition, intermolecular col-
lisions are taken into account in the particle beam using the
direct simulation Monte Carlo method. It should however
be noted that the present study focuses on a high-Knudsen-
number case; thus the intermolecular collisions are considered
negligible under the conditions presented in this paper.

Fully coupled simulations of light-particle interaction are
performed in a configuration similar to the experimental setup
proposed by Pearson et al. [14], where a converging light
beam copropagates with a beam of neutral sodium atoms.
In Sec. II the physical processes involved in particle-light
interaction are reviewed. Section III discusses the compu-
tational model and implementation. In Sec. IV simulation
results show good agreement with experimental observations.
Furthermore, the degree of collimation of both the particle
and light beams with respect to propagation in the vacuum
condition is investigated by varying the light intensity, light
frequency, and particle density.

II. THE PHYSICS OF LIGHT-PARTICLE COUPLING

A. Light propagation

To model the propagation of a light beam, we employ an
axisymmetric paraxial Helmholtz equation [19]. The paraxial
equation is derived from the Maxwell equations assuming that

2469-9926/2021/103(4)/043502(10) 043502-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8454-7497
https://orcid.org/0000-0003-1973-0196
https://orcid.org/0000-0002-9502-5723
https://orcid.org/0000-0002-3356-2304
https://orcid.org/0000-0002-1816-165X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.043502&domain=pdf&date_stamp=2021-04-02
https://doi.org/10.1103/PhysRevA.103.043502


PRABHAT KUMAR et al. PHYSICAL REVIEW A 103, 043502 (2021)

the light intensity evolves slowly compared to the dynamics
of particles and that the beam envelope changes slowly with
respect to the wavelength. The first assumption is valid in the
case that the refractive index changes slowly with respect to
the speed of light, which is the case for a slowly evolving
medium. The second assumption, namely, the slowly varying
envelope approximation, is valid for a forward-propagating
wave predominantly in one direction. The light beam is de-
scribed by the complex amplitude of the electric field E . The
paraxial Helmholtz equation can be written as

∇2
⊥E + 2ik0

∂E

∂z
+ k2

0 (n2 − 1)E = 0, (1)

where ∇2
⊥ is the Laplacian in the transverse direction, z is

the direction of beam propagation, k0 = 2π/λ is the wave
number in vacuum, λ is the wavelength, and n is the complex
refractive index. The refractive index is dependent on the
medium’s density, polarizability, and light intensity, which
will be discussed in the next section. Note that an analytical
solution of Eq. (1) can be obtained in the vacuum condition,
i.e., n = 1. Additionally, the light intensity can be given by
I = 1

2εc|E |2, where ε is the permittivity of the medium and
c is the speed of light. The net power can be calculated by
integrating I over an area.

B. Refractive index

Propagation of electromagnetic waves through a medium
can be described by the electric field E(r, t ) and induced
polarization P(r, t ), where r is the position and t is time.
The frequency-dependent field and polarization are related
by P(ω) = ε0χ (ω)E(ω), where ε0 is the vacuum permittivity,
ω is the light frequency, and χ is the electric susceptibility,
which measures the ability of a medium to become transiently
polarized [20–22]. For a rarefied medium such as low-density
gases, susceptibility can be written in terms of polarizabil-
ity as χ (ω) = N

ε0
α(ω), where N is the particle density and

α(ω) is the mean complex atomic polarizability. In view of
the relationship χ = n2 − 1, the refractive index n is then
given by

n2 = 1 + Nα

ε0
(2)

as a function of ω and is a complex number n = n′ + in′′. The
real part of the refractive index n′ is associated with changes in
the phase speed of the wave and leads to refocusing or guiding
of the light. The imaginary part n′′ represents the attenuation
by absorption and scattering. Equation (2) provides a relation-
ship between particle density, polarizability, and the refractive
index, which can be used to model the nonlinearly coupled
light-particle interaction.

C. Atomic polarizability

The complex atomic polarizability of a two-level atom
for frequencies near the atomic resonance is expressed as
[11,12,22,23]

α = α′ + iα′′ = 4πε0

1 + p( f )

λ3
0

16π3

γN

2

−( f − f0) + i
(

γN

2

)
( f − f0)2 + γ 2

N
4

, (3)

FIG. 1. Real (α′) and imaginary (α′′) parts of frequency-
dependent polarizability of sodium atoms for several light powers
near resonance. The detuning below resonance, i.e., 
 f < 0, cor-
responds to a positive α′, while detuning above resonance yields
negative α′ (not shown in this figure).

where the external laser frequency f = ω/2π is assumed to be
near the resonance frequency f0 = ω0/2π , λ0 is the resonance
wavelength, γN is the natural linewidth, and

p( f ) = I

Isat

γ 2
N/4

( f − f0)2 + γ 2
N/4

(4)

is the saturation parameter. Here Isat is the saturation intensity
given by

Isat = 2π2h f γN

λ2
, (5)

where h is the Planck constant. It should be noted that
the polarizability values obtained using Eq. (3) are consis-
tently three time smaller than the values reported in the
literature [24] at light frequencies off-resonance, e.g., f ∈
[192.9 THz, 999.3 THz]. There is a prefactor of 3 in the static
(i.e., off-resonance) polarizability estimate which arises from
orientation of atoms with light for the maximum absorption
cross section [25].

The real and complex parts of polarizability calculated
from Eq. (3) are shown in Fig. 1 for sodium atoms within a
range of detuning frequencies 
 f = f − f0 below resonance
(i.e., 
 f < 0). The resonance frequency of the 3 2S1/2 −→
3 2P3/2 transition is 508.9 THz, corresponding to a 589-nm
wavelength. Here γN = 9.795 MHz and I is calculated assum-
ing a Gaussian beam: I = 2P/πw2

0, where w0 is the beam
waist. For this case, the beam waist w0 is 100 μm (taken from
Pearson’s experiments [14]). Note that the static polarizability
of sodium is 2.68 × 10−39 C m2 V−1 [26], which is approx-
imately six orders of magnitude smaller than the dynamic
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polarizability near the atomic resonance. In this paper, we
primarily focus on the validation of the computational model
against the experimental results near but below resonance
(−10 GHz < 
 f < 0 GHz), resulting in α′ > 0.

D. Optical forces on neutral gas particles

The two types of optical forces exerted by light on neutral
particles include (a) the optical dipole force, which arises
from the Lorentz force acting on a moving charge dipole,
and (b) the scattering force due to absorption and spontaneous
emission of photons by particles. The optical dipole force is
given by

Fdip = −∇Udip, (6)

where Udip is the potential of the dipole moment p = α′E
induced by the driving field E:

Udip = − 1
2 〈p · E〉. (7)

Here, the angular brackets denote the time averaging over the
high-frequency terms [21]. The dipole force can be expressed
in terms of the real part of polarizability as

Fdip = 1

2ε0c
α′∇I. (8)

The dipole force is proportional to and acts in the direction of
the laser intensity gradient and pushes atoms in the regions of
higher intensity for laser frequencies tuned below resonance.

The other important force for light-particle interaction is
the scattering force due to particles absorbing and reemitting
photons, e.g., spontaneous emission, consequently undergo-
ing two processes of momentum transfer with a photon. The
mean scattering force Fscat exerted by the laser, averaged over
its optical period, can be written as [12,25]

Fscat = h̄k
�

2

p( f )

1 + p( f )
, (9)

where h̄ = h/2π is the reduced Planck constant, k is the wave
vector, and � = 2πγN is the spontaneous decay rate of the
excited state. In fact, the scattering force has two contributions
[12,13]. One arises from conservation of momentum between
the photons and particles during the absorption of light by an
atom, which effectively pushes the particles in the direction of
the light propagation. The other contribution is the scattering
due to the spontaneous emission, assuming that photons are
emitted isotropically, i.e., in a random direction [27,28]. This
results in heating of the atoms limiting the degree to which an
atomic beam can be focused [28]. For high light intensities,
p( f ) in Eq. (4) is large and the maximum scattering force the
laser can exert on the atom is h̄k �

2 . From Eqs. (3)–(5) and (9),
the scattering force exerted on a particle by the light can be
expressed in terms of the imaginary part of polarizability as

Fscat = k0

ε0c
α′′I k̂, (10)

where k̂ is the direction in which the scattering force is
applied.

III. COMPUTATIONAL MODEL

A. Field solver

The paraxial Helmholtz Eq. (1) is solved to obtain the
spatial distribution of an arbitrary initial electric field pro-
file propagated through a spatially heterogeneous dielectric
medium. Second-order accurate discretization of ∇⊥ is im-
plemented. It is observed from the present simulations that
spurious numerical oscillations occur using the second-order-
accurate Crank-Nicolson method particularly in the presence
of the gaseous medium. The first-order backward Euler
method [29] is therefore used for this paper since it is found
to be robust for a wide range of parameters.

B. Revisiting the transparent boundary condition

The Crank-Nicolson scheme, together with the transparent
boundary condition (TBC) [17,18] for outgoing radiation, is
widely used for finite-difference beam propagation and is
revisited here. Consider a diverging laser beam propagating
in the z direction with complex axial and radial wave numbers
kz and kr , respectively, near the boundary node. The TBC en-
forces that the beam behaves as a plane wave, i.e., a complex
exponential near the boundary,

ξ
j

M = E j
M

E j
M−1

= exp
(
ik j

r 
r
)
, (11)

where the superscript j denotes the nodes in the axial direc-
tion, the subscripts m = M, M − 1 correspond to the radial
nodes on the boundary and one node interior, respectively,
and 
r is the cell size in the radial direction. Although the
procedure above is fully adapted to well-collimated beams,
its effectiveness is somewhat limited for simulation of wide-
angle propagation waves and several improvements have been
proposed [30,31]. Considering that one knows the full profile
of E j

m (m = 1, 2, . . . , M), the boundary condition needed is
for the next axial location, i.e., E j+1

M .
Before application of Eq. (11) to the next axial location

j + 1, kr can be found using the solution at the jth axial
node and geometrical considerations, which take into account
the relative grid sizes and the angle at which the beam wave
front approaches the boundary. The real and imaginary parts
of these wave-vector components must satisfy the dispersion
relation k2

r + k2
z = k2, where k = k0η, in an inhomogeneous

medium. Here we define kr = k′
r + ik′′

r and kz = k′
z + ik′′

z ,
where the primed and double primed quantities are the real
and imaginary parts, respectively. Using Eq. (11), the real and
imaginary parts of k j

r can be obtained. Then k′
z and k′′

z can be
readily obtained by solving the system of equations

(k′
r )2 − (k′′

r )2 + (k′
z )2 − (k′′

z )2 = Re(k2), (12)

k′
rk′′

r + k′
zk

′′
z = 1

2 Im(k2), (13)

where Re(k2) and Im(k2) denote the real and imaginary parts
of k2, respectively. The real part of the wave vector signifies
the propagation of the wave front in the direction of k′, while
the imaginary part k′′ only affects the attenuation of the beam.
If k′

r > 0, the wave front reaching the boundary at the next
axial location j + 1 can be considered to originate from a
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distance 
R away from the boundary at the axial location j,


R = (k′
r ) j

(k′
z ) j


z = a
r, (14)

where a is a real number and 
z is the cell size in the longitu-
dinal direction, assuming a uniform mesh. If k′

r < 0, the wave
comes from outside the computational domain, which needs
to be a priori known. The boundary condition for E j+1

M , i.e.,
ξ

j+1
M , is obtained by interpolating or extrapolating the wave

front from the jth step solution

ξ
j+1

M = E j+1
M

E j+1
M−1

=
{
ξ

j
M−[a] if a � 1

aξ
j

M−1 + (1 − a)ξ j
M if 0 < a < 1.

Here [a] denotes the smallest integer less than or equal to a.
Note that for a converging light beam that is coming from
outside the domain boundary, i.e., 
R < 0 from Eq. (14),
the boundary condition is set as ξ

j+1
M = 0 for simplicity, i.e.,

E j+1
M = 0, as can be seen from Eq. (11).

C. Particle dynamics

The computational grids are kept uniform in the axial
direction z. However, a uniform discretization in the radial
direction leads to large numerical noise due to particle statis-
tics near the axis of propagation (r = 0). This is addressed by
employing a nonuniform discretization in the radial direction
based on an equal cylindrical node volume formulation [32].

Particles are injected into the domain with a given velocity
distribution function. At each time step 
t , the forces on the
particles are calculated, the velocities are updated by dv/dt =
F/m, and the positions are updated as dr/dt = v, which is
similarly done in plasma simulations [33–35]. To determine
the total force F = Fdip + Fscat on the particle, the gradient of
the intensity (for Fdip) and the intensity itself (for Fscat) are
calculated at each of the points on the computational grids
using the second-order finite difference and are linearly inter-
polated to the (r, z) position of the particle. Updated particle
positions are then linearly interpolated to compute the density
distribution on the computational grids.

The direct simulation Monte Carlo (DSMC) method is
implemented to model collisions between the neutral particles
in the beam. The DSMC has been successfully implemented
in a variety of flow applications [36], and it conserves energy
and momentum, unlike the Monte Carlo collision model in
low-temperature plasmas [37]. Due to its relative advantage of
computational cost, the no-time-counter model is used [38].
For a single species flow, this model minimized the total
number of particle pairs to check for a collision using the
expression

Nc = Np(Np − 1)FN (σcr )max
t

2Vc
, (15)

where Np is the number of particles in a cell, FN is the
macroparticle weight, σ is the cross section, cr is the relative
velocity between two particles, Vc is the cell volume, and 
t
is the time step. Equation (15) effectively represents the total
number of possible collision pairs 1

2 Np(Np − 1) multiplied
with the maximum rate coefficient of a collision (σcr )max.
By choosing Nc pairs to check whether the particles actually

FIG. 2. Simulation setup. (a) Schematic of light-particle cou-
pling. The mirror is used to generate a converging light beam, which
copropagates with the particle beam emerging from an atomic beam
source 55 cm upstream from the mirror and enters the computational
domain through a 230-μm hole in the mirror. (b) Light intensity in
the absence of particles. (c) Number density of an effusing particle
beam without any collisions and light-particle interactions.

collide or not, the probability of a collision event that actually
occurs within the DSMC becomes

P = σcr

(σcr )max
, (16)

where the numerator values are obtained from the chosen
particle pair. Once Nc is determined, two random particles
are selected within the cell and their collision probability is
calculated. Using the acceptance-rejection technique, the col-
lision occurs if the probability is larger than a random number
between 0 and 1. Once a collision occurs, the postcollisional
velocities are calculated and update the particle velocities.
This process is repeated until Nc pairs have been checked.
Afterward, the maximum value for σcr from all the checked
pairs is updated as (σcr )max for the following time steps.

D. Simulation setup

We follow the experiments of Pearson et al. as described in
Ref. [14]. In their experiment, a linearly polarized laser was
reflected off of a 3-mm-thick slanted mirror having a 230-μm
hole. The laser was superimposed upon an effusive beam of
sodium atoms having a temperature of 773 K, emerging from
an atomic source 55 cm upstream of the mirror (not shown in
Fig. 2), which enters the field of the laser through the hole in
the mirror.

The simulation setup, as shown in Fig. 2, includes a Gaus-
sian laser source of wavelength 589 nm, which is focused to
a waist of w0 = 100 μm onto a virtual detector that is set
after 25 cm of the interaction region. In the simulation, an
effusive beam of neutral sodium atoms is injected through the
mirror hole. Distribution of the particle beam to be injected
is determined by the temperature, mirror hole dimensions,
and the distance of the mirror from the atomic source as
listed in the preceding paragraph. Changes in the velocities
of these atoms due to interaction with the mirror-hole walls
are accounted for assuming diffusive reflection.

The C standard general utilities library is used to gen-
erate random numbers for particle injection, intermolecular
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collisions, and the isotropic scattering force due to the emit-
ted photons. The computational domain has a longitudinal
size of zmax = 25 cm, which is uniformly discretized using
J = 250 cells. The radial domain is discretized as 
rm =
rmax(

√
m − √

m − 1)/
√

M, where rmax = 1.0 mm is the radial
domain size, j is the number of cells (m = 1, 2, . . . , M), and
M = 2000 is the number of cells in the radial direction. This
technique minimizes the numerical noise along the axis [32].
The time step is 
t = 1 μs and the computational results
are found to reach steady state at t = 20 ms. The results are
averaged over 5000 time steps once the simulation reaches
steady state.

A beam of neutral sodium atoms is focused using light
tuned below but near the 3 2S1/2 −→ 3 2P3/2 resonance fre-
quency of 589 nm. The detuning frequency and light power
are varied. The results using P = 25 and 250 mW are shown
in this paper.

The particle density is set below the critical density (cf.
waveguide theory [39]), which provides a single-mode oper-
ation in the optical fiber. This is often characterized by the
V -number given by V = 2πa0

λ

√
n2

1 − n2
0 , where a0 is the radius

of the fiber and n1 and n0 are the refractive indices of the
fiber and the housing (vacuum in our application), respec-
tively. It is observed from waveguide theory that V = V1 =
2.4, corresponding to the first zero of the Bessel function, is
a limit to the single-mode operation. If the refractive index
is made larger or the aperture of the optical fiber is made
smaller, the V -number increases and the light propagation
follows a multimode operation. Therefore, the critical density
for single-mode operation is given by

Nc = V 2
1 λ2ε0

4πα′(πw2
0

) , (17)

which is inversely proportional to the real part of
polarizability.

The coupled simulation is validated for particle beams
that are below the critical density, which is consistent with
the previous experimental conditions [11–14]. For the condi-
tions listed above, the critical density is Nc ≈ 1017 m−3. Here
we present two cases, (i) N0 = 1.0 × 1014 m−3 � Nc (low-
density regime, estimated from Pearson’s experiment [14])
and (ii) N0 = 5.0 × 1016 m−3 ≈ Nc (higher-density regime),
where N0 is the beam density at the injection, i.e., at the
mirror hole. The simulation results and physical processes
for particle density much higher than the critical density is
reserved for future work.

IV. RESULTS

A. Low-density regime

Figure 3 shows the steady-state laser intensities [Figs. 3(a i)
and 3(a ii)] with corresponding particle densities [Figs. 3(b i)
and 3(b ii)] for the 25-mW and 250-mW cases, respectively.
The light amplification, shown in Fig. 3(a iii), is defined as

ζI = I (N, r, z)

I (N0 = 0 m−3, r = 0 mm, z = 25 cm)
, (18)

i.e., the ratio of light intensity in the gaseous medium to that in
a vacuum condition at r = 0 cm and z = 25 cm. It can be seen

that the converging light amplification is virtually unchanged
in the presence of a particle density of N = 1014 m−3 regard-
less of the light power. The refractive index remains close to
unity (η ≈ 1) at a nominal density of 1014 m−3, which is three
orders of magnitude lower than the critical density.

The density amplification, shown in Fig. 3(b iii), is given
similarly to the light amplification as

ζN = N (I, r, z)

N0(I = 0 W/m2, r = 0 mm, z = 25 cm)
, (19)

i.e., the particle beam density normalized with the density at
r = 0 cm and z = 25 cm in the absence of the light, corre-
sponding to the pure effusion case. This metric is chosen to
illustrate how much trapping of particles resulted from the
light-particle interaction. Similar to the light amplification,
the density amplification without the use of light (i.e., 0 W)
is unity at r = 0 cm and z = 25 cm. When a light beam is
applied, the optical dipole force of the light pushes the atoms
in the region of higher intensity. At the same time, scattering
force acts on the particles in a random direction via sponta-
neous emission after the light is absorbed by the particle. This
results in some particle leaving the trap created by the dipole
force and appear as fringes, as can be seen in Fig. 3(b i).

With an increase in light power from 25 mW to 250
mW, stronger focusing of the beam is achieved. As shown
in Fig. 3(b iii), the particle beam amplification for 25-mW
and 250-mW light beams is observed to be ∼10.5 and ∼28
at maximum, respectively. The detuning frequency is further
varied for the 25-mW and 250-mW light cases, and the re-
sult is shown in Fig. 4. Under the present conditions and
setup, the simulation results show that the optimal detuning
frequencies of 2.5 GHz for the 25-mW light and 7 GHz for
the 250-mW light maximize the amplification of the particle
density, respectively. These results are in good agreement with
experimental observations, where density amplifications of
12 and 32 are observed for the 25-mW and 250-mW cases,
respectively [14]. Note that the exact quantitative comparisons
between the simulation and experiments are difficult to make
since the numerical setup is likely different from the exact ex-
perimental conditions, e.g., particle beam profile and velocity
distribution functions. In fact, later in this paper, we show that
the particle density has a significant effect on the dynamics of
both the light and particle beams. It should still be noted that
good qualitative agreement is obtained if one considers the
ratio of the amplification between 25 and 250 mW, which is
equal to 2.67 for both the experimental and simulation cases.

Figure 4 shows the overall density amplification over a
wide range of detuning frequencies. The amplification ap-
proaches a small value near resonance since the scattering
force is large due to the large absorption, i.e., large α′′, as
shown in Fig. 1. The smallest detuning frequency shown in
Figs. 4(a) and 4(b) correspond to 0.1 and 1.0 GHz, respec-
tively. In the other limit, at off-resonance, the amplification
converges to unity, i.e., no trapping or defocusing, since the
optical trapping (due to α′) and scattering forces (due to α′′)
both become orders of magnitude smaller than near-resonance
values. The close-ups in the insets in Fig. 4 show the mean
value and the standard deviations of the results for each de-
tuning frequency near the maximum density amplification. In
the simulations, it is observed that the density amplification
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FIG. 3. Trapping of a particle beam by the optical forces of a laser for N0 = 1.0 × 1014 m−3. Light is tuned to a frequencies of 2 and 7 GHz
below the sodium D2 resonance for light power of (a) 25 mW and (b) 250 mW, respectively. (a i) and (a ii) Light intensity. The minimum
and maximum values correspond to 10 and 1.0 × 108 W m−2, respectively. (b i) and (b ii) Particle beam density. The minimum and maximum
values correspond to 1.0 × 1010 and 1.0 × 1015 m−3, respectively. The colormap is in logarithmic scale. (a iii) Light amplification at the exit
plane, i.e., light intensity normalized by the maximum light intensity at z = 25 cm of the vacuum condition. (b iii) Density amplification at the
exit plane, i.e., particle density normalized by the maximum density at z = 25 cm in the absence of light. Amplifications of 10.5 and 28 are
observed for the 25-mW and 250-mW cases, respectively.

slightly varies with each simulation run due to the randomness
associated with the scattering and collisional events. Thus,
the simulation is repeated approximately ten times under the
same conditions with different seed numbers of the random
number generator to obtain sufficient statistics for each detun-
ing frequency. The results illustrate that there is an optimal
frequency at which the peak amplification occurs. For the
25-mW case, the density amplification reaches 10.5 around

 f = −2.5 GHz. For the 250-mW case, the average density
amplification is largest around 27 between 
 f = −6 and
−10 GHz. It can be concluded that the optimal detuning
frequency for maximum density amplification is determined
due to the balance between the optical dipole force (dependent
on α′) and scattering force (dependent on α′′). It should be
noted that a theoretical expression for the optimal detuning
frequency 
 fopt to maximize the beam density amplification
is derived as a function of incident particle beam density
distribution [13]:


 fopt =
(

hγ 2
N

6πm2c

)1/2(
P

v3
0
θ2

)1/2

, (20)

where v0
θ is the maximum initial transverse speed of the
atom with 
θ the half angular divergence of the atomic beam.
However, as mentioned above, exact quantitative agreement

with experimental values is difficult to achieve since the the-
ory simplifies some key physical processes, including the
particle beam spread in the transverse direction to be a single
value, which is likely not the case in a realistic condition. Nev-
ertheless, the optimal detuning frequencies of 2.5 and 7 GHz
from the present simulation results are close to the values
obtained from the simplified theoretical formula (2.26 and
7.15 GHz, respectively), when 
θ = 3.0 × 10−4 rad. This
value of 
θ was obtained from the half angle of the atomic
beam divergence in our simulation.

In addition, Fig. 5 shows the effect of the Doppler redshift
due to the nonstationary atomic beams on the particle trapping
under the same simulation conditions as in the 25-mW case in
Fig. 3. The angular frequency seen in the frame of reference
of an atom moving with velocity v is

ω′ = ω − k · v, (21)

where k is the wave vector of the laser. The effective
frequency is smaller when the light and particle beams co-
propagate (k ‖ v). This shift in the effective frequency is
unique to each atom as they interact with the radiation at
their own velocities. Thus, the polarizability on each particle
accounts for the Doppler effect in Eq. (3). However, as shown
in Fig. 3(a iii), the light intensity remains nearly identical; thus
the refractive index is assumed to be unaffected when N � nc.
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FIG. 4. Effect of light detuning frequency on the density am-
plification for (a) 25-mW and (b) 250-mW lasers. The insets show
the close-up near the maximum amplification. The simulation is
repeated approximately ten times for each detuning frequency and
the statistical mean and standard deviation are shown.

It can therefore be considered that the Doppler effect on
the light propagation is negligible in the low-particle-density
case. The broadening and shift of the spectral line due to the
Doppler effect modifies the real and imaginary parts of the
polarizability, leading to changes in both the optical dipole
force and scattering force. It is observed from Fig. 5 that

FIG. 5. Effects of Doppler shift on particle trapping for the 25-
mW case: blue dotted line, without the effect of the Doppler shift,
and black solid line, including the Doppler shift effects, which is
identical to the result shown in Fig. 3(b iii) for the 25-mW case. As
a reference, the no-light condition (0 W) is shown as a red solid line.

the atoms undergo a slightly stronger focusing without the
Doppler effect, primarily due to the larger α′. Its effect on
focusing is observed to be approximately 10% in the present
configurations.

B. Higher gas density

In order to investigate the effects of the particle density,
thus increasing the refractive index, the interaction of the light
and sodium atomic beams is investigated for particle number
density N = 5.0 × 1016 m−3, which is two orders of magni-
tude higher than what is used in the preceding section. While
the density is still below the critical density Ncrit = 1.37 ×
1017 m−3 so that multimode coupling [20] is not observed, the
larger refractive index results in the amplification of the light
beam and not only the particle beam. It should be noted that
n − 1 ≈ Nα/2ε0 ∼ 5.0 × 10−7 � 1 [cf. Eq. (2)]. All other
physical and numerical parameters are kept the same as in the
preceding section to quantify the effect of the increase in the
atomic beam density.

Figure 6 shows the time-averaged steady-state density pro-
file and corresponding light intensity distribution for two
different laser powers, 25 and 250 mW, respectively. At this
density, the nonlinear coupling between the laser and particle
beam is more evident. In comparison to the lower-particle-
density cases, the particles are similarly trapped due to the
light beam, but most notably the light beam is distorted due to
the particle beam, as shown in Figs. 6(a i) and 6(a ii).

The light amplification at the exit, z = 25 cm, in
Fig. 6(a iii) (for N = 5 × 1016 m−3) can be compared to
Fig. 3(a iii) (for N = 1 × 1014 m−3). The overall shape (in
the core) maintains a Gaussian-type distribution in the radial
direction. However, most interestingly, light amplification of
1.7 is observed at 25-mW laser power in the high-particle-
density case. Light amplification of 1.2 is also observed for
the 250-mW case, but this modest change is likely due to
the efficient particle trapping resulting in a narrow channel of
the particle beam in the core as a waveguide. Thus, it can be
considered that the profile of the particle beam in addition to
the particle density plays an important role in intensifying the
light beam. Due to the high particle density in the core of the
copropagating beam, there is also some evidence of additional
rays of the light beam, as can be seen from the tail of the light
beam in Figs. 6(a i) and 6(a ii).

The corresponding particle densities are shown in
Figs. 6(b i) and 6(b ii). The density amplification at the exit,
z = 25 cm, is shown in Fig. 6(b iii). A similar particle density
profile can be seen with these higher-density cases compared
to the lower-density cases; particularly in Fig. 6(b i), the par-
ticle trajectories due to the scattering from the light beam are
observed. Most notably, there is a 50% increase in the maxi-
mum density amplification at the higher density compared to
the lower-density case for 25-mW light. This is likely because
the light is more intensified due to the large refractive index,
leading to further trapping of particles. Thus, the nonlinear
coupling of the light and particles is evident. However, the
density amplification for 250-mW light is not significantly
affected by the particle number densities. This is due to the
fact that the dipole potential set by the light beam is so large
that the particles are deeply trapped within the potential well.
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FIG. 6. Mutual guiding of sodium atom beam and laser for atomic beam density N0 = 5.0 × 1016 m−3. (a i) and (a ii) Light intensity. The
minimum and maximum values correspond to 10 and 1.0 × 108 W m−2, respectively. (b i) and (b ii) Particle beam density. The minimum and
maximum values correspond to 1.0 × 1010 and 5.0 × 1017 m−3, respectively. The colormap is in logarithmic scale. (a iii) Light amplification
by 72% and 26% at the exit plane is observed for 25-mW and 250-mW lights, respectively. (b iii) Density amplification by factors of 14.9 and
29.8 at the exit plane is observed for 25-mW and 250-mW lights, respectively.

To explain the dependence of light power on the light
amplification due to the presence of the particle beam, we con-
sider the transverse (i.e., radial) velocity change of the particle
beam via the optical dipole force exerted by the converging
light beam, assuming that the injected particle beam radius is
approximately equal to the light beam waist. Here it is hypoth-
esized that the maximum spatial overlap between the particle
beam and light leads to the coupled guiding effects. When the
inward velocity change due to the dipole force coincides with
the initial outward velocity spread from the effusing particle
beam, the particles are neither undertrapped or overtrapped
with respect to the light beam profile and therefore achieve an
optimal profile as a guiding medium for the light propagation.
A particle in the system will gain a velocity increase inward
in the radial direction by the optical dipole force


vr = Fr,dip

m

T = α′

2mε0c
∇rI
T, (22)

where 
T is the time spent by the particle in the region
of light intensity before it reaches the focus position at
z = 25 cm. An order-of-magnitude analysis can be made
using Eq. (22). The characteristic transverse velocity spread of
the effusing particle beam is set approximately to 
vr,init = 1
m/s (which is two to three orders of magnitude smaller than
the axial particle velocity). Under the present configuration,
α′ ≈ 10−34 F m2, m ≈ 4 × 10−26 kg, ∇rI ≈ I0/w0 ≈
108 W/m2 for 25-mW light power, and 
T ≈ zR/vz (here

zR = 5.3 cm is the Rayleigh range and vz ≈ 250 m/s is the
characteristic axial speed vz). Using these values in Eq. (22),
we find 
vr ≈ 1.6 m/s, which can be shown to be on the
same order as 
vr,init. This analysis can be extended to the
250-mW laser power case, where the velocity change 
vr

will be a magnitude larger, i.e., 
vr ≈ 16 m/s due to the
converging dipole force, leading to 
vr � 
vr,init. Thus, the
majority of the particles remain deeply trapped close to the
axis of propagation, which is consistent with the observations
in Fig. 6(b ii).

This validated computational model will serve as a tool
to study precise tailoring of light and particle beams, which
can lead to mutually self-guided beams, allowing for unprece-
dented control over light-particle interactions. For a diverging
laser beam propagating through a gaseous medium, scattering
of particle and optical beams is expected and the maximum
distance of mutual guiding between the light and particle
beams can be estimated. It should also be noted that an atomic
medium can attain a refractive index much larger than unity
with an increase in gas density [40,41], which is reserved for
future work.

V. CONCLUSION

A computational model and simulation framework were
developed and presented to investigate the copropagation of
the light beam through an inhomogeneous beam of neutral
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particles. The coupled equations governing the particle mo-
tion and light wave were derived from Maxwell equations
for propagation in heterogeneous media. We discretized the
paraxial Helmholtz equation on a two-dimensional nonuni-
form axisymmetric mesh. The transparent boundary condition
was revisited and implemented to minimize reflections of the
light beam at the boundary of the computational domain.
Particles were moved by taking into account the dipole and
scattering forces.

Simulations were performed to model the experiment de-
scribed by Ashkin and co-workers. The results were compared
to experimentally measured amplification of the sodium atom
density for particle beam densities below the critical density,
which is the density at which the waveguiding mode is known
to achieve single-mode operation. Contributions of dipole and
scattering forces were analyzed and the effect of the Doppler
frequency shift was quantified. Simulation results showed
great agreement with the experimentally measured density
amplification for a laser tuned below the 3 2S1/2 −→ 3 2P3/2

resonance frequency of 589 nm. The dependence of the detun-
ing frequency on density amplification was also investigated.
The present simulations showed that the detuning frequen-
cies of 2.5 GHz for 25-mW light and 7 GHz for 250-mW
light maximize the amplification for the parameters simulated,
which qualitatively agrees with the experimental observations.

With the validated computational model, the simula-
tion results at a higher particle density approaching the

critical density demonstrated the effect of coupled light-
particle propagation. The particle and light amplification
exhibited similar behavior regardless of the particle atom
density in the 250-mW case, since the light power was large
enough that particles became deeply trapped inside the dipole
potential. Most interestingly, a nonlinear amplification in both
the particle beam density and light intensity was observed for
the 25-mW case due to the nonlinear coupling of the two
beams. It was hypothesized in this paper that the nonlinear
effects play an important role when the particle spatial profile
matches the profile of the light propagation. A simple analysis
based on the velocity spread (balance between the inward
velocity change due to optical dipole force and the initial
outward velocity spread due to the effusing particle beam) was
provided.
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