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Quantum lock-in detection of a vector light shift
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We demonstrate detection of a vector light shift (VLS) using the quantum lock-in method. The method offers
precise VLS measurement with little affect from real magnetic field fluctuation. We detect a VLS on a Bose-
Einstein condensate (BEC) of 87Rb atoms caused by an optical trap beam with a resolution less than 1 Hz. We
demonstrate the elimination of a VLS by controlling the beam polarization to realize a long coherence time of
an F = 2 BEC in the stretched state. Quantum lock-in VLS detection should find wide application, including
the study of spinor BECs, electric dipole moment searches, and precise magnetometry.
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I. INTRODUCTION

The ac Stark shift or light shift plays a significant role in
atomic physics. One example is the optical trap [1], which has
been extensively used in cold-atom experiments and has been
the subject of intriguing and important research, including
low-dimensional [2] and uniform gases [3] and atoms in an
optical lattice with applications in quantum simulation [4]
and atomic clocks [5,6]. It has also enabled the study of
multicomponent gases and in particular spinor Bose-Einstein
condensates (BECs) [7].

The light shift has vector and tensor components and hence
is state dependent in general [8–10]. The state dependence has
been exploited for realizing state-selective transport [11,12]
and confinement [13]. However, a state-dependent shift is
often undesirable for situations in which well-controlled spin
evolution is required. Escaping from a vector light shift
(VLS), which is equivalent to a fictitious magnetic field, has
been an important issue in precise measurements, such as
the search for an atomic electric dipole moment [14] and
exotic spin-dependent interactions [15]. Reducing the VLS is
also important in atomic magnetometers, in which the VLS
introduces systematic errors. The quantum noise associated
with the light shift due to the probe field ultimately limits the
sensitivity [16].

The VLS restricts the potential use of optically trapped
atoms for magnetically sensitive experiments. While its effect
can be diminished by applying a bias magnetic field in a
direction orthogonal to the wave vector, the VLS can still be
a significant noise source in precise measurements [14]. It is
necessary to reduce the VLS when an ultralow magnetic field
is required. In addition, the relative direction cannot be chosen
satisfactorily in some situations, such as in three-dimensional
optical lattice experiments.

In order to eliminate the VLS caused by optical trapping
beams, the light polarization should be precisely controlled,
because the VLS is proportional to the intensity of a circularly
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polarized component [1,8–10]. However, it is a formidable
task to precisely extinguish the circular component at the atom
position located in a vacuum cell. Polarization measurements
and control outside the cell do not ensure the degree of linear
polarization due to the stress-induced birefringence of the
vacuum windows [17].

Therefore, a sensitive and robust polarization measure-
ment method using atoms themselves as a probe is important.
Most effective polarization measurements are accomplished
by using atoms themselves as a probe. Polarization measure-
ments with an atomic gas have been performed with various
methods including Larmor precession measurement [18], pre-
cise microwave spectroscopy [19], and frequency modulation
nonlinear magneto-optical rotation [20]. Differential Ramsey
interferometry has been developed for spinor condensates
[21]. Polarization measurements by fluorescence detection
have been recently demonstrated for ions [22].

In this paper we demonstrate VLS detection by applying
the quantum lock-in method [23,24], which is immune to en-
vironmental magnetic field noise and thus achieves excellent
accuracy in VLS detection. The quantum lock-in detection
has several advantages over other methods [23,24]. It belongs
to the ac detection method and offers better results than the
dc ones, which tends to suffer from large noises at dc or
low frequencies. Compared with other ac methods, the nar-
row detection bandwidth offers a better signal-to-noise (S/N)
ratio, as in the classical lock-in detection. Furthermore, the
frequent spin inversion (bang-bang control) in the lock-in
detection is helpful in reducing the undesired spin evolution
in a cold-atom gas under a (real or fictitious) magnetic field
gradient [25]. We detect a VLS induced by an optical trap
beam on a BEC of 87Rb atoms with a resolution less than 1 Hz.
This detection method is feasible to implement and should
have wide applications in various research areas involved with
optical fields.

The paper is organized as follows. In Sec. II our experimen-
tal method and setup are presented. The experimental results
are described in Sec. III. We discuss the applications and
potential performance of the quantum lock-in VLS detection
in Sec. IV. We summarize the paper in Sec. V.
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FIG. 1. (a) Experimental configuration. A BEC is trapped in the
axial trap beam along the z axis and the radial trap beam along
the x axis (not shown). (b) Typical TOF image of a BEC mea-
sured after rf pulses for the detection. The spin components (mF =
−2, −1, 0, 1, 2) are spatially resolved by the Stern-Gerlach method.
(c) Time sequence for the quantum lock-in detection of a VLS. The
beam power P(t ) is modulated with a frequency ωm. The phase
of the spin vector evolves with an angular frequency of ω(t ). The
accumulated phase � = ∫ T

0 ω(t )dt is finally measured.

II. EXPERIMENTAL METHOD AND SETUP

We produce a BEC in a vacuum glass cell. A BEC of
3 × 105 atoms in the hyperfine spin F = 2 state is trapped
in a crossed optical trap. The trap consists of an axial beam at
a wavelength of 850 nm and a radial beam at 1064 nm. The
axial and radial beam waists are approximately equal to 30
and 70 μm, respectively. The typical axial and radial trapping
frequencies are 2π × 160 and 2π × 12 Hz, respectively, and
the Thomas-Fermi radii are 4.0 and 52 μm. A magnetic bias
field B of 15 μT is applied along the axial beam to define
the quantization axis, as shown in Fig. 1(a). The atoms are
initially in the |F, mF 〉 = |2, 2〉 state, where mF denotes the
magnetic sublevel. The ellipticity of the axial beam at the
atomic position is controlled with a quarter waveplate (QWP)
in the VLS measurement described below. The QWP is lo-
cated between a polarization beam splitter for polarization
cleaning and the cell. The angle of the QWP is adjusted with
a precise manual rotation stage. The minimum scale of the
rotation stage is 0.28 mrad.

The time sequence for the quantum lock-in detection of a
VLS is shown in Fig. 1(c). The lock-in technique enables en-
hanced sensitivity at the modulation frequency while reducing
the effect of unwanted noise. We measure a VLS induced by
the axial optical trap beam with multiple rf pulses. The trap
beam power P(t ) is modulated with a frequency ωm during
the pulse application as

P(t ) = P0[1 + p sin(ωmt )] ≡ P0 + P1 sin(ωmt ), (1)

where P0 is the mean power and p is the modulation index.
Here P1 can be negative by changing the modulation phase
by π .

The frequency ωm should be set to avoid parametric heat-
ing of the atoms. We use ωm sufficiently higher than twice
the trapping frequency. In addition, the background magnetic
field noise at ωm needs to be small. Therefore, optimal ωm

should strongly depend on the environmental noise. The mul-
tiple of the ac line frequency (50 Hz in our experiment) at
low frequencies is not used in our experiment. While higher

modulation frequency is expected to be better to avoid low-
frequency noises, an upper limit is posed due to a finite rf
pulse width. Due to the available rf power, we cannot make
the π/2 pulse shorter than approximately 10 μs. In each
experiment, we try several modulation frequencies to obtain
a good S/N ratio, taking the above requirements into account.
The modulation generates an ac fictitious magnetic field to be
measured, given by

Bfic = − 1
4α(1)CI1 sin(ωmt ) ≡ B1 sin(ωmt ), (2)

where α(1) is the ac vector polarizability, C is the degree of the
circularity, and I1 is the beam intensity corresponding to P1.

The rf pulse set consists of an initial π/2 pulse at t = 0,
an odd number N of π pulses, and a readout π/2 pulse.
The pulses are equally spaced by �T . The spacing satisfies
ωm = π/�T so that the evolved phase due to the fictitious
field is constructively accumulated. The relative phase �ϕ

between the initial and readout pulses is set to π/2 for max-
imum sensitivity to small changes in the accumulated phase
�, which is explicitly given by

� = 2

π

gF μBB1

h̄
T ≡ 2

π
ω1T, (3)

where gF is the Landé g factor, μB is the Bohr magneton, h̄
is the reduced Planck constant, and T = (N + 1)�T is the
phase accumulation time. In addition, ω1/2π represents the
VLS corresponding to B1 in units of frequency.

The readout pulse converts � into the magnetization m as

m ≡
∑

i iNi

Ntot
= VF sin �, (4)

where Ni is the atom number in the |F, mF = i〉 state (i =
−2,−1, 0, 1, 2) after the readout pulse, Ntot = ∑

i Ni is the
total atom number, and V is the visibility. Here V is ideally 1,
but in practice it is less than 1 due to magnetic field noise
[23]. Imperfections in the initial state preparation and spin
manipulation also decrease V . The magnetization is measured
by standard absorption imaging after a time of flight with
Stern-Gerlach spin separation [see Fig. 1(b)].

III. RESULTS

We first confirm the validity of the detection scheme. We
perform a lock-in detection with ωm = 2π × 2 kHz (�T =
0.25 ms) and N = 27, and hence T = 7 ms. The mean power
P0 is fixed to 11 mW. The change in m is observed as p is
varied. The result is plotted in Fig. 2. Here the angle of the
QWP axis, θ , is approximately 4◦ apart from the optimal angle
θ∗ minimizing the VLS. The experimental determination of
θ∗ is described below. Here m is well fitted by a sinusoidal
function VF sin ap, indicating the VLS was successfully de-
tected. The visibility in this detection setting is found to be
V = 0.746(42) from an independent measurement with no
modulation (p = 0) where �ϕ is scanned.

The detection is used to minimize the VLS. We control the
VLS by changing θ with p fixed to 0.32. The θ dependence
of m is shown in Fig. 3(a). Because C ≈ sin 2(θ − θ∗) ≡
sin 2�θ when the birefringence in the optical path is small
[21] and |�θ | � 1, we fit m by VF sin β1(θ − θ∗). The fit
gives β1 = 6.2(2), which is in reasonable agreement with
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FIG. 2. Detected magnetization after the rf pulses. The error bars
represent the sample standard deviation. The red solid line is the fit-
ting curve by VF sin ap. The right axis represents B1, corresponding
to the magnetization. It should be noted that the right axis scale is not
linear since B1 is proportional to arcsin m

VF .

the calculation. Here θ∗ is found to be −(6.6 ± 1.1) mrad.
The VLS resolution is evaluated as δω = β1δθ

∗/T = 2π ×
0.16 Hz, where δθ∗ is the uncertainty in the θ∗ estimation.

We perform a fine estimation of θ∗ by extending T to
27.2 ms and applying a larger modulation. In this experiment,
ωm = 2π × 625 Hz and N = 33. While large T (or N if ωm is
fixed) should in principle offer a better S/N ratio, we observe
significant fluctuation of the background signal (m without
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FIG. 3. Polarization dependence of the magnetization signal.
(a) Measurement result with T = 7 ms. (b) Measurement result with
T = 28.2 ms. The blue circles and red squares represent m+ and
m−, respectively. (c) Plot of �m as a function of θ . Here �B1 is
the difference between the fictitious magnetic fields for positive and
negative P1. The solid lines in (a) and (c) are the fitting curves of
a sin b(θ − θ∗) (see the text for details). The error bars represent the
standard deviation.

optical intensity modulation) for larger N , possibly due to im-
perfectness of the spin control by rf pulses. Low ωm is chosen
to make T longer for better sensitivity, under the restrictions
that the parametric heating is not induced and the background
magnetic field fluctuation at ωm is quiet, as mentioned above.

We measure m for P1 = ±13 mW, referred to as m±, re-
spectively. In finding θ∗, we use �m = m+ − m− to cancel
the offset due to the background field and the systematic error
in the spin measurement. The results are shown in Figs. 3(b)
and 3(c). Here �m is fitted by 4VF sin β2(θ − θ∗), giving
β2 = 117(16) and θ∗ = (0.1 ± 0.4) mrad. The angle resolu-
tion is improved 2.8 times.

We observe a larger variance in m in the experiments for the
fine θ∗ estimation. The standard deviation of �m is on average
0.64, while that for the reference data without modulation
is 0.09. Therefore, a further improvement by a factor of at
least 7 is possible, because �m should ideally be independent
of T and the modulation strength. We ascribe the increased
variance to the actual variation of the vector shift over the
experimental runs, caused by beam polarization fluctuation.
The result of the sensitive detection implies that the beam
circularity varies with a standard deviation of approximately
3 × 10−3. On the other hand, from an independent experi-
ment, we expect that the retardance of the QWP should vary
by several milliradians due to the temperature change in our
experimental room (within approximately 0.6 K with a period
of around 20 min).

The BEC is subject to a fictitious magnetic field gradient
without the VLS cancellation, because it is located at the
shoulder of the optical trap beam due to gravity sag. While
the observed fictitious magnetic field is small, the gradient
in the fictitious field can be on the order of 100 μT/m. The
gradient displaces the trap potential for each spin state other
than the mF = 0 state, thereby driving spin-dependent motion.
We observe an actual motion in a transversally stretched BEC
in the hyperfine spin F = 2 state, prepared after the initial
π/2 pulse. We plot the vertical displacement of the spin com-
ponents in the TOF image, which reflects the momentum, in
Figs. 4(a)–4(d). The direction of the motion inverts depending
on the sign of �θ and the motion becomes small at �θ ≈ 0.
These observations indicate that the motion is induced by the
fictitious magnetic field.

The fictitious magnetic field gradient also causes nonlin-
ear spin evolution and thus a population change, as does
the real magnetic field gradient [25]. The initial stretched
atomic spin state breaks due to the spin mixing seeded by
the nonlinear spin evolution. We observe vertical separation
of spin components during this process. This observation is
consistent with the fact that the vertical size of our BEC is
slightly larger than the spin healing length ξs. We estimate
ξs = √

7/8π (a4 − a2)n = 3.7 μm, where aF is the s-wave
scattering length for the collisional channel of the total angular
momentum F and n is the mean atomic density. Even so, the
break of the stretched state can be inferred from the global
population change. We show p0 = N0/Ntot, p1 = (N−1 +
N+1)/2Ntot , and p2 = (N−2 + N+2)/2Ntot in Figs. 4(e)–4(h).
The population changes are observed at an earlier time (t <

100 ms) except for the case �θ ≈ 0. These changes can
be attributed to the fictitious magnetic field gradient. The
faster population change for �θ = 4◦ is consistent with a
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FIG. 4. Effects of the fictitious magnetic field on a transversally polarized BEC. The vertical displacement of the center of mass in the TOF
image is plotted for (a) �θ = −1◦, (b) �θ = 0.02◦, (c) �θ = 1◦, and (d) �θ = 4◦. The solid and dashed lines are guides for the eyes. (e)–(h)
Population evolution corresponding to (a)–(d). The values of p0 (blue circles), p1 (red diamonds), and p2 (yellow squares) are shown (pi is
defined in the text). The error bars represent the standard deviations.

qualitative estimation of the characteristic time for the change
of t∗ ∝ b−2/3, where b is the magnetic field gradient [25]. A
slow population change, which occurs regardless of �θ in the
data of Fig. 4, is caused by a residual axial magnetic field
gradient ∂Bz/∂z. The existence of the axial gradient in these
data is confirmed by the fact that the spin components separate
in the axial direction at later times. This slow population
change can be suppressed by reducing the axial magnetic field
gradient. We actually observed population conservation over
400 ms after the gradient adjustment, as will be shown later.

We next observed the change in the atom loss rate. Figure 5
shows the evolution of the atom numbers, corresponding to
the data in Figs. 4(b) and 4(d). The decay is faster when
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FIG. 5. Atom number losses (semilogarithmic plot). The solid
line is an exponential fit to the data with the optimized field gradient.
The inset shows the population evolution for the optimized case. The
dotted lines are the reference curves of the mean-field-driven evo-
lution within the SMA and assuming no inelastic collisional losses
[26].

� = 4◦ than for � ≈ 0◦. In the latter case, the decay rate starts
to increase from around t = 150 ms, where the population
changes occur [see Fig. 4(f)]. We take different data another
day with optimization of θ and fine adjustment of the axial
real magnetic field gradient. The axial gradient is scanned by
a step of 0.14 mG/cm to minimize the axial spin separation.
No increase in the loss rate is observed at the later time in this
case. The 1/e time for the optimized condition is found to be
742(31) ms. The change of the loss rate can be understood
from the property of the inelastic collisions in the F = 2
state [27], which is the hyperfine spin changing process to the
F = 1 state and leads to spin-dependent atomic loss. Note that
the inelastic collisional loss in the stretched state is inhibited
due to the restriction of the angular momentum conservation.
The break of the stretched state due to the field gradient results
in rapid atom losses.

However, the loss still occurs for the optimized condition.
Although the remaining loss may be due to the residual field
inhomogeneity, it is associated with the spin mixing induced
by the quadratic Zeeman energy [26,28]. We compare the
experimental result with the model under the single-mode
approximation (SMA) [26,28], which is a good starting point
to describe typical spin dynamics of a BEC in the stretched
state. According to [26], the population evolution in the limit
of small quadratic Zeeman energy q is approximately given
by

p0 = 3

8

[
1 + q

2g1n
(1 − cos 4g1nt/h̄)

]
, (5)

p1 = 1

4
, (6)

p2 = 1

16

[
1 − 3q

2g1n
(1 − cos 4g1nt/h̄)

]
, (7)

where g1 = 4π h̄2

m
a4−a2

7 . Populations p0 and p2 would un-
dergo oscillations following these equations. We plot curves,
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substituting experimental parameters (q/h = 1.2 Hz and
g1n = 1.4 Hz) into Eqs. (5)–(7) in the inset of Fig. 5. On the
other hand, we observe population conservation, shown in the
same inset. As the small-q limit and the SMA are not perfectly
valid, the curve is only shown as reference. We however
note that the population conservation is not expected around
q ∼ g1n within the SMA under the assumption of no inelas-
tic losses [26,28]. While the discrepancy may partly come
from beyond the SMA effect, which can cause very different
dynamics, we suppose it is more likely that the population
conservation is due to polarization purification by inelastic
collisional losses [29]. It should be noted that the observed
population conservation contrasts with the case of the F = 1
state, in which the magnitude of the polarization modulates
[30].

IV. DISCUSSION

The quantum lock-in VLS detection is of practical use
in cold-atom experiments. It can be used for evaluating the
degree of circular polarization of an optical trap beam at the
atomic position, as we have shown. As the vacuum window
birefringence introduces a maximum ellipticity of 10−2 or
10−1 [19], a beam with no special care taken with respect
to the invacuo polarization may generate a fictitious field of
several nanotesla or a VLS of tens of hertz, even with a
shallow trap for ultracold-atom experiments. Quantum lock-in
detection is sensitive enough to ensure better linear polariza-
tion at the atomic position and therefore will greatly improve
the magnetic conditions in cold-atom experiments. The sensi-
tivity is sufficient to suppress the VLS below the requirements
for magnetically sensitive experiments, including studies of
spinor BECs. Although a homogeneous linear Zeeman shift
does not affect the spinor physics due to spin conservation
[31], a magnetic field gradient below several μT/m is typi-
cally required to prevent magnetic polarization and observe
the intrinsic magnetic ground state [32] or dynamics. The
subhertz VLS resolution of quantum lock-in detection meets
this demand.

Reducing the VLS is also important for precise measure-
ments. In addition to a direct energy shift, an inhomogeneous
fictitious field is also detrimental to measurement accuracy
[33]. A VLS reduction leads to a long coherence time, which
is a mandatory requirement for highly sensitive measure-
ments. We have constructed a precise BEC magnetometer
using a transversally polarized F = 2 BEC with a long co-
herence time, realized using VLS elimination as we have
shown. Details of the F = 2 BEC magnetometer are presented
elsewhere [34].

We finally discuss the sensitivity limitations. The sensitiv-
ity of the quantum lock-in detection is essentially the same
as that of a Ramsey interferometer with an equal phase accu-
mulation time. As the atom shot noise is dominant over the
photon shot noise in typical absorption imaging, the standard
quantum limit in the VLS measurement is given by [35,36]

δω = 1

T
√

Ntot
. (8)

Here we replace the factor 2
π

in Eq. (3) due to the sinusoidal
modulation with the maximal value of 1, which is realized
with a rectangular waveform modulation. Substituting Ntot =
3 × 105 and T = 30 ms into Eq. (8), we obtain δω = 2π ×
10 mHz. This is equivalent to a single shot field sensitivity of
approximately 1 pT.

For very sensitive detection of the VLS, careful atten-
tion should be paid to distinguish the VLS signal and the
technical noises, including ac magnetic field fluctuation. The
suppression of the ac magnetic effect is realized by using an
appropriate modulation frequency at which the noise compo-
nent is small. In practice, the best parameter is determined
to reduce the uncertainty of the background signal without
optical power modulation. The narrowing of the detection
bandwidth with a large number of pulses should improve
the performance, while increasing pulse numbers does not
deteriorate the signal. The reduction of the technical noise in
the detection, such as the imperfection in the rf pulses and the
spin detection, is also mandatory.

V. CONCLUSION

We have demonstrated precise detection of a VLS due to
an optical trap using the quantum lock-in method. We have
applied the detection to eliminating the VLS, to observe the
extension of the lifetime of a transversally polarized F = 2
BEC. The attained subhertz resolution is sufficient to suppress
the VLS below the required level for magnetically sensitive
research, including the study of spinor BECs. Although our
demonstration was performed with a BEC, the scope of the
detection method is not limited to cold-atom gases; the pro-
posed method can be applied to spin systems such as trapped
ions and diamond nitrogen-vacancy centers, where coherent
spin control is possible.
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