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Ground states of two-dimensional tilted dipolar bosons with density-induced hopping
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Motivated by recent experiments with ultracold magnetic atoms trapped in optical lattices where the orienta-
tion of atomic dipoles can be fully controlled by external fields, we study, by means of quantum Monte Carlo,
the ground-state properties of dipolar bosons trapped in a two-dimensional lattice with density-induced hopping
and where the dipoles are tilted along the xz plane. We present ground-state phase diagrams of the above system
at different tilt angles. We find that as the dipolar interaction increases, the superfluid phase at half-filling factor
is destroyed in favor of either a checkerboard or stripe solid phase for tilt angle θ � 30◦ or θ � 30◦, respectively.
More interesting physics happens at tilt angles θ � 58◦, where we find that as the dipolar interaction strength
increases, solid phases first appear at filling factor lower than 0.5. Moreover, unlike what is observed at lower tilt
angles, we find that at half filling, a stripe supersolid intervenes between the superfluid and stripe solid phase.
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I. INTRODUCTION

Long-range interactions have attracted a great deal of
attention in the cold atom community, as they have been
theoretically shown to stabilize a plethora of exotic quantum
phases [1]. State-of-the-art ultracold experiments have paved
the way to experimentally explore these exotic phases. Long-
range interactions can be realized with ultracold atoms with
large magnetic moments [2–4], by Rydberg dressing atoms
[5,6], or with ultracold dipolar molecules [7–12]. The latter
can realize strong dipolar long-range interactions, which may
demand an extension or a revision of the standard Bose-
Hubbard model [13–16]. Another way to realize long-range
interactions is implementing an optical lattice in an opti-
cal cavity where the long-range interaction is mediated by
strong matter-light interaction inside the cavity [17,18]. This
possibility has triggered extensive theoretical endeavors into
long-range interaction mediated by optical cavities [19–25].
Other theoretical notable works focused on long-range inter-
actions in the presence of disorder or doping [26,27], which
can be easily implemented in ultracold experiments. Since op-
tical lattices are remarkably versatile compared to solid-state
experiments, there have been several pioneering theoretical
works considering long-range interactions in optical lattices
with anisotropic tunneling rates [28,29]. These works so far
are limited to multiple layers of one-dimensional optical lat-
tices due to the large computational resources needed with the
increase of the number of nearest neighbors in three dimen-
sions. In ultracold experiments, both strengths and directions

*These authors contributed equally to this paper.
†chaozhang@umass.edu
‡jin-zhang@uiowa.edu

of magnetic or electric field can be freely tuned. As a result,
the direction of dipoles can be adjusted freely. In recent years,
many efforts have been directed toward exploring the physics
of long-range dipolar interactions with different tilt angles
[30–38].

Dipolar interactions are anisotropic. When two dipoles
are placed side by side, they repel each other; when they
are placed head to tail, they attract each other. Most of
the early studies on dipolar interactions focused on systems
with dipoles aligned perpendicular or parallel to the lattice
plane. Tilted dipolar interactions with arbitrary angles have
been theoretically studied in ultracold gases systems with-
out lattice potentials (and are thus not based on Hubbard
model) [35–40], or in lattices using renormalization group
[34], mean-field theory [30,31], and variational approaches
[1]. In Ref. [33], the authors used the quantum Monte Carlo
method and found the ground-state phase diagram as a func-
tion of tilt angle θ at half filling and for hard-core bosons.
For soft-core bosons, the ground-state phase diagrams have
been found for tilt angles in the range 0 � θ � 45◦ [32].
The above-mentioned studies do not consider density-induced
hopping, and, more generally, the details of how the parame-
ters tuned experimentally, i.e., the scattering length, the dipole
moment, and the depth of the optical lattice potential affect the
on-site interaction, the long-range interaction, and the hop-
ping strength entering the effective model used to describe the
system. A recent experiment [2] has realized dipolar bosons
in a three-dimensional lattice and considered how all the
experimentally tunable parameters, such as scattering length
and dipolar interaction strength, affect on-site and long-range
interaction and hopping. This experiment paves the way to
investigate quantum phase transitions of tilted dipolar lattice
bosons with density-induced hopping.
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FIG. 1. Schematic representation of the system. Dipoles are
trapped in a two-dimensional optical lattice and are aligned parallel
to each other along the direction of polarization, determined by an
electric/magnetic field. θ is the angle between polarization and z
direction, �rij is the relative position between site i and j. αij is the
angle between polarization and �rij.

In this paper we use path-integral Monte Carlo simulations
based on the worm algorithm [41] to study the ground-
state phase diagram of dipolar bosons in a two-dimensional
lattice with density-induced hopping where the dipoles are
tilted on the xz plane. In the absence of a sign problem,
the path-integral Monte Carlo method in continuous time is
approximation-free and produces unbiased results, that is, er-
rors are controllable and purely statistical. We calculate the
parameters entering the effective model, i.e., the on-site inter-
action, long-range interaction strength, and density-induced
hopping, from the parameters that can be tuned experimen-
tally, such as the scattering length, dipolar interaction strength,
and optical lattice potential depth. The paper is organized as
follows: In Sec. II we introduce the Hamiltonian of the system
and the parameters that can be controlled in experiments. In
Sec. III we discuss various phases and the corresponding order
parameters. In Sec. IV we present the phase diagrams of the
above system at four tilt angles and discuss the nature of
the transitions. In Sec. V we briefly discuss the experimental
realization. We conclude the article in Sec. VI.

II. HAMILTONIAN

We study dipolar bosons with atomic mass m in a
square optical lattice created by a separable external po-
tential Vext.(x, y, z) = V0[cos2(kLx) + cos2(kLy)] + m�2

z z2/2.
The laser beams with a wavelength λ = 2a (a the lattice spac-
ing) in the xy plane generate a two-dimensional square lattice
with kL = 2π/λ the lattice momentum. The lattice depth is
written in units of recoil energy V0 = sER. The recoil energy
ER = h̄2k2

L/2m defines a natural energy scale of the system.
�z is the frequency of the harmonic trap in the z direction,
controlling the thickness of the two-dimensional sheet, from
which we define the lattice flattening constant κ = h̄�z/2ER

[14]. As shown in Fig. 1, we assume all dipole moments to
be in the same direction and to rotate in the xz plane with
tilt angle θ between the dipole moment and the z axis. The
many-body Hamiltonian describing this system in the second

quantization language reads

Ĥ =
∫

d3rψ†(r)

[
− h̄2∇2

2m
+ Vext. (r)

]
ψ (r)

+ 1

2

∫
ψ†(r)ψ†(r′)V (r′ − r)ψ (r′)ψ (r)d3rd3r′, (1)

where ψ† (ψ) is the bosonic creation (annihilation) field oper-
ator. The interaction between dipolar bosons contains contact
(Vc) and dipole-dipole (Vdd ) interactions,

V (r − r′) = Vc(r − r′) + Vdd (r − r′)

= g̃δ(r − r′) + γ̃
1 − 3 cos2(α)

|r − r′|3 , (2)

with g̃ = 4π h̄2as/m, as the s-wave scattering length, and
γ̃ = μ2

e/(4πε0) or μ0μ
2
m/4π , μe (μm) the electric (magnetic)

dipole moment of bosons, and ε0 (μ0) the vacuum permittivity
(permeability). α is the angle between the direction of dipole
moments and the relative position of two bosons. The bosonic
field operator can be expanded with Wannier functions [42]
in the lowest Bloch band ψ (r) = ∑

i Wi(x, y, z)âi. One then
arrives at the extended Bose-Hubbard (EBH) model:

H = −t
∑
〈i,j〉

a†
i aj + U

2

∑
i

ni(ni − 1) + 1

2

∑
i,j

Vi,jninj

−
∑
〈i,j〉

Ti,ja
†
i (ni + nj)aj − μ

∑
i

ni, (3)

where the first term is the kinetic energy characterized by the
hopping amplitude t . Here 〈· · · 〉 denotes nearest-neighboring
sites, and a†

i (ai) are bosonic creation (annihilation) opera-
tors satisfying the bosonic commutation relations [ai, a†

j ] =
δij. U is the on-site repulsive interaction, and ni = a†

i ai is
the particle number operator. Vij is the off-site interaction
between sites i and j. If the lattice is deep enough, Vij ≈
V [1 − 3 cos2(α)]/|i − j|3 (V is the nearest-neighbor interac-
tion when dipole moments are along z axis), which is widely
used in the EBH model to study phase transitions. For a
perfect two-dimensional system, cos(α) = sin(θ ) cos(φ) with
φ the polar angle of the relative position i − j in the xy
plane, the off-site dipole-dipole interactions in x̂ and x̂ + ŷ
directions are negative for θ > sin−1(1/

√
3) ≈ 35.3◦ and θ >

sin−1(
√

2/3) ≈ 54.7◦, respectively, while those in y direction
are positive and independent of θ because α = 90◦. It can be
shown that the contribution U dd from the dipolar interaction
to the on-site strength of the EBH model (see below) is zero
at angle 54.7◦ because of the rotational symmetry of Wannier
functions. T is the density-induced tunneling. We also intro-
duce the chemical potential in the last term to control the total
number of bosons. We neglect the pair tunneling term because
its strength is very small (see Appendix).

All interaction parameters entering the Hamiltonian in
Eq. (3) can be found from Eq. (1) by calculating inte-
grals involving Wannier functions (see Appendix) in units
of recoil energy and lattice coordinate r → r/a, where g =
8as/(πa), γ = mμ2

e/(2π3ε0h̄2a) or μ0μ
2
mm/(2π3h̄2a). Con-

tact interactions and dipolar interactions in Eq. (1) give us
two sets of parameters, U c, V c

i,j, T c
i,j and U dd , V dd

i,j , T dd
i,j ,

that determine the Hamiltonian parameters U = U c + U dd ,
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FIG. 2. Dipolar contribution to Hamiltonian parameters as a
function of tilt angle θ at γ = 1/π 3, s = κ = 10. The two verti-
cal dashed lines locate angles 35.3◦ and 54.7◦, respectively. The
dashed line by V dd

i,i+x̂/t is V (1 − 3 sin2(θ )). The dotted line by

V dd
i,i+x̂+ŷ/t is V (1 − 3 sin2(θ ) cos2(45◦))/(

√
2)3. Lines in the inset

show as/a vs γ at fixed on-site interaction U/t = 20 for θ =
0◦, 22.5◦, 45◦, 67.5◦, 90◦ from bottom up, where 0 < γ < 0.16 and
−0.137 < as/a < 0.082.

V = V c + V dd , T = T c − T dd [43]. We consider lattice
depth s = 10 so that the tight-binding approximation for con-
tact interactions holds. To obtain a valid approximation of a
two-dimensional system, we need κ � √

s so that the energy
gap in the z direction is much larger than the one in the xy
plane. We use lattice flattening κ = 10. Then the tunneling
t = 0.0192ER is fixed, where ER is the recoil energy, while
the parameters obtained from contact interactions (U c, V c

i,j,
T c

i,j) are proportional to g and those obtained from dipolar
interactions(U dd , V dd

i,j , T dd
i,j ) are proportional to γ . We cal-

culate off-site interactions V dd
i,j for relative lattice positions

|i − j| � 5 to keep track of long-range effects of dipolar in-
teractions, while we only keep nearest-neighbor terms for
hopping t and density-induced hopping T , since the decay
of hopping and density-induced hopping is exponentially fast
and the long-range part can be neglected.

In Fig. 2 we show how the parameters obtained from the
dipolar interaction depend on the tilt angle θ for γ = 1/π3.
Notice that the dipolar part of on-site interaction U dd is in
units of recoil energy. As we increase the tilt angle, U dd ,
the nearest-neighbor interaction in x̂ direction, V dd

i,i+x̂, and the
next-nearest-neighbor interaction in x̂ + ŷ direction V dd

i,i+x̂+ŷ

go from positive to negative; T dd
i,i+ŷ/t goes from −0.073 to

0.203; T dd
i,i+x̂/t is always negative from −0.073 to −0.131;

and V dd
i,i+ŷ/t does not change much as expected. V dd

i,i+x̂ = 0 at
θ � 35.3◦, and U dd = V dd

i,i+x̂+ŷ = 0 at angle 54.7◦. The widely
used approximation Vi,j ≈ V [1 − 3 cos2(α)]/|i − j|3 is also
plotted for V dd

i,i+x̂ (dashed line) and V dd
i,i+x̂+ŷ (dotted line) (V dd

i,i+ŷ

in the approximation is a constant). We see that for V dd
i,i+x̂ and

V dd
i,i+ŷ, the approximation slightly deviates from the numerical

results only at large angles, while it is good at all angles
for V dd

i,i+x̂+ŷ. The agreement between calculated parameters

TABLE I. Quantum phases and the corresponding order parame-
ters: superfluid density ρs, structure factor S(π, π ), and S(0, π ).

Phase ρs S(π, π ) S(0, π )

Superfluid (SF) �0 0 0
Checkerboard solid (CB) 0 �0 0
CB Supersolid (CBSS) �0 �0 0
Stripe Soild (SS) 0 0 �0
Stripe Supersolid (SSS) �0 0 �0

and the approximation indicates that the 2D approximation is
valid. In the following we fix the on-site interaction U/t =
(U c + U dd )/t = 20 and study phase diagrams in the γ -n
plane for different tilt angles θ , where n is the filling factor.
The inset of Fig. 2 shows the dependence of as/a on γ with
fixed U/t = 20. The largest γ we use to calculate the phase
diagram is 0.16, and the s-wave scattering length in units of
lattice spacing goes from −0.137 to 0.082 as we increase the
tilt angle from 0◦ to 90◦.

III. QUANTUM PHASES AND ORDER PARAMETERS

In this section we list the phases stabilized by Eq. (3)
and the corresponding order parameters. Table I shows order
parameters for the superfluid (SF) phase, checkerboard solid
(CB) phase, checkerboard supersolid (CBSS) phase, stripe
solid (SS) phase, and stripe supersolid (SSS) phase. Each
phase corresponds to a unique combination of the order pa-
rameters. Here, three order parameters are needed in order
to characterize the quantum phases: superfluid density ρs,
structure factor S(π, π ), and S(0, π ).

The superfluid density is calculated in terms of the winding
number [44]: ρs = 〈W2〉/dLD−2β, where W is the winding
number and W2 = W 2

x + W 2
y . The structure factor charac-

terizes diagonal long-range order and is defined as S(k) =∑
r,r′ exp [ik · (r − r′)]〈nrnr′ 〉/N , where N is the particle

number. Here, k is the reciprocal lattice vector. We use k =
(π, π ) and k = (0, π ) to identify the CB and SS phases,
respectively.

IV. GROUND-STATE PHASE DIAGRAMS

In this section we present ground-state phase diagrams of
dipolar bosons in a square lattice and with density-induced
hopping. The dipoles are parallel to each other and are tilted
in the xz plane. Figure 3 shows the ground-state phase dia-
gram for four tilt angles θ = 0◦, 11.25◦, 45◦, and 67.5◦ at
fixed U/t = 20. The x axis is the filling factor n = N/Nsite,
where N is the particle number, and Nsite = L × L, with L
the system size. The y axis is the dipolar interaction strength
γ . The transition points on the phase diagrams are deter-
mined using system sizes L = 20, 40, and 60 and inverse
temperature β = L. This choice assures that temperature is
low enough so that we are effectively at zero temperature and
we are therefore probing ground-state properties. For second-
order phase transitions we have performed standard finite-size
scaling.

In Fig. 3(a) we plot the phase diagram for the system
with all dipoles tilted perpendicularly to the xy plane. If we
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(a)                                            (b)                                            (c)                                            (d)

SF

CB

θ = 45◦θ = 0◦ θ = 67.5◦

SF

CB

CBSSCBSS

SF

SS

SSSIP

SS

IP SSS

SF

n n n n

γ γ γ γ

CBSSCBSS

θ = 11.25◦

FIG. 3. Ground-state phase diagram for θ = 0◦(a), θ = 11.25◦(b), θ = 45◦(c), and θ = 67.5◦(d). The x axis is filling factor n and the y
axis is the dipolar interaction strength γ . For tilt angles θ � 30◦, the solid phase stabilized at half filling corresponds to a checkerboard solid
(CB) and the supersolid phase is a CBSS; for θ � 30◦, the solid phase corresponds to a stripe solid (SS) and the supersolid phase is a SSS. IP
stands for the incompressible ground states stabilized at rational filling factors. Dotted lines correspond to first-order phase transitions, while
solid lines correspond to second-order transitions. Dashed lines at filling factor n = 0.5 represent solid phases CB or SS. When not visible,
error bars are within symbol size.

compare with results in Ref. [27], where density-induced hop-
ping is not taken into account, we see that density-induced
hopping does not affect the shape of the phase diagram and
only enhances the superfluid region. This is because, at θ = 0,
one has Tx > 0 and Ty > 0. In Ref. [27], the SF-to-CB phase
transition at half-filling happens at around V/t ∼ 4.6, while
with density-induced hopping, this transition happens around
γ = 0.128 (equivalent to V/t ∼ 7.89), for which the density-
induced hopping Tx/t ∼ 0.355 and Ty/t ∼ 0.355. We were
not able to resolve the nature of the CB-SF phase transition
at n = 0.5. We did not detect a supersolid phase and found
no evidence of a first-order phase transition (we changed the
interaction strength γ in increments of 0.5%). For γ > 0.128,
upon doping with particles or holes from half-filling, we
enter the CBSS phase. Here diagonal long-range order and
off-diagonal long-range order coexist as shown from a finite
superfluid density ρs and a finite structure factor S(π, π ). The
CBSS phase is more robust on the particle side. For large
enough doping, on both particle and hole sides the supersolid
disappears in favor of a SF phase via a second-order phase
transition.

In Fig. 3(b) we show the phase diagram at tilt angle
θ = 11.25◦. The qualitative shape of the phase diagram is
the same as in Fig. 3(a) but with a more extended SF re-
gion (note the difference in the range of y axis). Here, too,
the density-induced hopping parameters are positive. At this
angle the repulsive interaction along the x direction has de-
creased, while the repulsive interaction along the y direction
does not change significantly. This leads to a larger su-
perfluid region compared to the θ = 0◦ phase diagram. We
investigated the SF-CB transition at filling factor n = 0.5
and found hysteresis curves as a function of the interaction
strength γ for the superfluid density ρs and structure factor
S(π, π ). These hysteresis curves signal a first-order phase
transition.

There exists a qualitative change in the phase diagrams
in going from θ = 11.25◦ to θ = 45◦. This change happens
at θ ∼ 30◦, where the solid phase and the supersolid phase
change from the CB pattern to SS pattern. From Ref. [33], we
know that there exists an emulsion phase at θ ∼ 30◦ which is
challenging to resolve numerically. Phase diagrams θ � 30◦
have a similar shape to the one at θ = 11.25◦, while phase
diagrams for 30◦ � θ � 58◦ have a similar shape to the one at
θ = 45◦. For larger tilt angles, phase diagrams are similar to
the one for θ = 67.5◦.

Figure 3(c) shows the ground-state phase diagram at tilt
angle θ = 45◦. At this angle the density-induced hopping
along the y direction, Ty, is negative while Tx is positive
with 0.063 < |Ty|/t < 0.128 and 0.27 < Tx/t < 0.373 for the
range of γ considered. The dipolar interaction along the x
axis is attractive, stabilizing a stripe solid phase at filling
factor n = 0.5 and γ � 0.068 69. Since Tx > |Ty|, compared
to the case with no density-induced hopping for which we
find that the SS phase at half filling appears at γ ∼ 0.0564,
we observe an enhanced SF region. We have studied the
transition from SF to SS at half filling and observed that
a supersolid intervenes in between within a narrow range,
0.066 11 < γ < 0.068 69. For 0.068 69 < γ < 0.0790, a SSS
phase also appears upon doping the stripe solid with particles
or holes. Interestingly, as γ further increases only the SSS
phase on the particle side survives (for low enough doping),
while on the hole side the SSS phase disappears in favor
of a succession of incompressible ground states stabilized
at rational filling factors (this succession will become dense
in the thermodynamic limit), similar to the classical devil’s
staircase [45–47]. This is seen in Fig. 4, where filling factor n
is plotted as a function of chemical potential μ/U at L = 40,
θ = 45◦, U/t = 20, and γ = 0.0967. When μ/U > −0.12,
one can observe several plateaus at different rational filling
factors. These plateaus correspond to incompressible ground
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μ/U

n

n

ρ
s

FIG. 4. Plots correspond to parameters U/t = 20, θ = 45◦, γ =
0.0967, and L = 40. Main plot: filling factor n as a function of μ/U .
Inset: superfluid density ρs as a function of filling factor n. When not
visible error bars are within symbol size.

states. For all filling factors considered, we have observed a
stripe phase similar to the one at n = 0.5, the only difference
being that the spacing between stripes changes with filling
factor and can be irregular to accommodate a certain filling.
The inset shows the superfluid density ρs as a function of
filling factor n. At lower filling factor, the SF density is finite
but goes to zero abruptly at n ∼ 0.25. This abrupt change
in ρs indicates that the SF phase disappears in favor of the
incompressible phase through a first-order phase transition,
as confirmed from hysteretic behavior in the n vs μ/U curve
(not shown here). Finally, we notice that we did not find any
staggered SF, expected for larger |Ty| and/or larger filling
factor [48].

The shape of the ground-state phase diagram changes on
the hole side when θ � 58◦. Figure 3(d) shows the phase
diagram at tilt angle θ = 67.5◦. At this angle, the density-
induced hopping along the y direction Ty is negative, while Tx

is positive with 0.111 < |Ty|/t < 0.193 and 0.202 < Tx/t <

0.264 for the range of γ considered. Interestingly, we find
incompressible ground states at lower filling factor which are
stabilized for values of γ smaller than what is required to sta-
bilize the stripe solid at half filling. This incompressible phase
is realized at fractional filling factors, in analogy with what is
discussed in regards to the incompressible phase observed at
θ = 45◦. Evidence of this phase is shown in Fig 5(a), where
we plot the filling factor n as a function of chemical poten-
tial μ/U at L = 60, θ = 67.5◦, U/t = 20, and γ = 0.0387.
When μ/U < −0.202, corresponding to n < 0.38, we ob-
serve density plateaus which terminate with an abrupt change
of n from a finite value to zero. The plateaus correspond to
the incompressible ground states realized at fractional filling
factors, and the abrupt change indicates that the incompress-
ible phase terminates via a first-order phase transition, as
confirmed by hysteretic behavior in the n vs μ curve (not
shown here). For n  0.38, the system enters the SF phase
[note the reentrant shape of the phase diagram in Fig. 3(d)].
Superfluidity persists at n = 0.5, where a supersolid phase is
observed. Correspondingly, there does not exist a plateau in
the n vs μ curve at n = 0.5 (thus excluding the existence of
an incompressible phase at half filling for this value of γ ),

(a) 

(b)

n

μ/U

μ/U

n

ρ
s

n

1/L

ρ
s

S
(0

,π
)

FIG. 5. Main plots correspond to parameters U/t = 20, θ =
67.5◦, γ = 0.0387, and L = 60. (a) Filling factor n as a function of
μ/U . Inset shows the filling factor n as a function of μ/U around
half filling. (b) Superfluid density ρs and structure factor S(0, π ) as a
function of filling factor n. Inset shows the superfluid density ρs as a
function of 1/L at filling factor n = 0.5. When not visible error bars
are within symbol size.

as seen in the inset where we show a blowup of the main
figure around filling factor n = 0.5. Indeed, at n = 0.5, we
observe that a SSS phase intervenes between the SF and the
SS phase. This supersolid phase exists in the range 0.0384 �
γ � 0.0394. Evidence of the supersolid at half filling is shown
in Fig. 5(b), where we plot superfluid density ρs and structure
factor S(0, π ) as a function of filling factor n at L = 60,
θ = 67.5◦, U/t = 20, and γ = 0.0387. One can clearly see
the coexistence of superfluidity and solid order at n = 0.5.
Here a finite ρs persists (and increases) as the system size is
increased, as shown in the inset of Fig. 5(b) where we plot the
superfluid density as a function of 1/L at n = 0.5. Overall,
since Tx > |Ty|, we observe an enhanced SF region compared
to the case with no density-induced hopping, for which the SS
at half filling appears at γ ∼ 0.0358 and the transition from
SF to IP is shifted downward by ∼5%. We notice that in the
parameter region considered, we have not found any evidence
of staggered SF.

V. EXPERIMENTAL REALIZATION

Various ultracold bosonic systems with different particle
species are capable of exploring the phase diagrams proposed
above. These systems include atoms with magnetic dipole
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moments such as Cr [3,49], Er [2,50,51], and Dy [11,12],
polar molecules such as Er2 [9], KRb [7], NaK [10], and
Rydberg dressing atoms [5,52]. The two-dimensional system
can be realized by loading BEC ensembles into optical lattices
formed by overlapping three perpendicularly crossed laser
beams with their retroreflected beams. While the trap depths
along two dimensions are equal, the trap depth along the third
dimension should be much larger to keep the lattice system
two-dimensional or quasi-two-dimensional. The orientation
of the electric or magnetic dipole moments can be adjusted
freely using external electric or magnetic fields, and the value
of γ depends on lattice constant, external fields, gas species,
and which states they are in. The filling factor n can be tuned
by changing trap depth and on-site interactions through the
Feshbach field. The Feshbach resonance also makes the as/a
ratios proposed in this work all accessible. When the lattice
constant equals 532 nm, for Cr which has a γ of ∼0.06, the su-
perfluid phase should be observed when θ = 0◦, 11.25◦, 45◦.
When θ = 67.5◦, the incompressible phase, SS phase, and
SSS phase are realized under different filling conditions. For
Er, Dy which have larger dipole moments (Er: γ ∼ 0.27, Dy:
γ ∼ 0.53), different quantum phases other than the superfluid
can be realized under different filling conditions at any tilt
angle. If the lattice constant changes from 532 nm to 266 nm,
the γ values above are changed by a factor of 2. When using
ultracold polar molecules, even larger dipole moments, cor-
respondingly γ , can be obtained. For example, the ultracold
polar molecule Er2 can give a γ as high as ∼6.20 and hence
the entire phase diagram can be explored.

Various detection methods are capable to detect the phases
arising under different conditions. The above-discussed sys-
tems with different tilt angles are in the SF phase when γ is
small. The SF phase can be detected by observing interfer-
ence patterns in the time-of-flight imaging of the ultracold
quantum gases released from traps [53,54]. Several other
quantum phases emerge after increasing γ . These phases
pose challenges to time-of-flight detection. However, ultra-
cold quantum gases in these phases have modulated density
distributions in lattices, for example, SS and SSS have peri-
odical density modulations in optical lattices, while CB has
particles distributed with a checkerboard pattern in lattices.
These patterns can be directly observed using state-of-the-art
quantum gas microscopes with single-site-resolved imaging
capacity [55–57]. The IP phase which has a modulated density
distribution can also be feasibly observed using quantum gas
microscopes.

VI. CONCLUSION

We have studied the ground states of soft-core dipolar
bosons with density-induced hopping as described by the
extended Bose-Hubbard model on a square lattice. Dipoles
are tilted in the xz plane. The parameters entering the ef-
fective model are calculated starting from the parameters
that can be tuned experimentally, e.g., scattering length and
dipole moment, which both contribute to the on-site interac-
tion, long-range interaction, and strength of density-induced
hopping. We have found the ground-state phase diagrams of
this system at tilt angles θ = 0◦, 11.25◦, 45◦, and 67.5◦. We
have observed that as the dipolar interaction increases, the

superfluid phase at half-filling factor is destroyed in favor
of either a checkerboard or stripe solid phase for tilt angle
θ � 30◦ or θ � 30◦, respectively. At tilt angles θ � 58◦, we
have found that as the dipolar interaction strength increases,
solid phases first appear at filling factor lower than 0.5. For
θ = 45◦ and 67.5◦, we have observed the presence of a su-
persolid phase intervenes between the superfluid and stripe
solid phase at half filling. All the phases discussed here
can be realized experimentally with magnetic atoms or polar
molecules.
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APPENDIX: CALCULATION OF HAMILTONIAN
PARAMETERS

In a separable lattice potential, the Wannier function
can be written as W (x, y, z) = w(x)w(y)w(z). w(x) is the
one-dimensional Wannier function in a one-dimensional op-
tical lattice. In the lattice coordinates, r → r/a, w(z) =
(πκ )1/4 exp(−π2κz2/2) is the ground-state wave function of
the harmonic trap in z direction. The contribution to the
parameters of the Bose-Hubbard model can be calculated
separately for contact interaction and dipole-dipole interac-
tion. Labeling the sites in the square lattice as i = (ix, iy),
the general interaction comes from integrals of four Wannier
functions at sites i, j, k, l. In units of the recoil energy, the
contact interaction gives

U c
i,j,k,l = 8as

πa

∫
drW ∗

i (r)W ∗
j (r)Wk(r)Wl(r)

= 8as

πa

√
κπ

2

∫
dxdyW∗

i W∗
j WkWl, (A1)

where Wi = wix (x)wiy (y) is the two-dimensional Wannier
function. Then the contribution to the Hamiltonian parameters
from contact interaction are U c = U c

iiii,V c
i j = U c

ijij + U c
ijji =

2U c
ijij, T c

ij = −(U c
iiij + U c

iiji)/2 = −U c
iiij, Pc

ij = U c
iijj. Typical

values of this contribution are U c/t = 30.5,V c/t =
0.006, T c/t = 0.104, Pc/t = 0.003 for as/a = 0.014,
corresponding to as = 100a0 for 87Rb at lattice spacing
a = 377 nm [58,59].

The contributions from dipole-dipole interactions can be
calculated by Fourier transform,

Di,j,k,l =
∫

drdr′W ∗
i (r)W ∗

j (r′)Vd (r′ − r)Wk(r′)Wl(r)

= 1

(2π )3

∫
dkW̃il(−k)Ṽd (k)W̃jk(k), (A2)
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FIG. 6. Dipolar contribution to Hamiltonian parameters as a function of lattice depth s for κ = 3, 6, 10, 20, 40 at tilt angle θ = 67.5◦ and
γ = 1/π 3. We plot (a) on-site interaction U dd/t ; (b) nearest-neighbor interaction in x̂ direction V dd

i,i+x̂/t ; (c) nearest-neighbor interaction in
ŷ direction V dd

i,i+ŷ/t ; (d) next-nearest-neighbor interaction in x̂ + ŷ direction V dd
i,i+x̂+ŷ/t ; (e) density-induced tunneling in x̂ direction T dd

i,i+x̂/t ;
(f) density-induced tunneling in ŷ direction T dd

i,i+ŷ/t ; (g) pair tunneling in x̂ direction Pdd
i,i+x̂/t ; and (h) pair tunneling in ŷ direction Pdd

i,i+ŷ/t .

where the Fourier transform of the product of two Wannier
functions with the same coordinate r is

W̃il(k) =
∫

drW ∗
i (r)Wl(r)e−ik·r

= e− k2
z

4π2κ

∫
dxdyW∗

i (x, y)Wl(x, y)e−i(kxx+kyy).

(A3)

The Fourier transform of dipolar interaction reads

Ṽd (k) = 4πγ
(
cos2(β ) − 1

3

)
, (A4)

where β is the angle between k and the dipole moment. We
can further integrate out kz,

Di,j,k,l = 1

(2π )2

∫
dkxyW̃il(−kxy)Ṽ (kxy)W̃jk(kxy), (A5)

and the effective two-dimensional interaction is

Ṽ (kxy) = 2πγ

{√
2πκ

(
n2

z − 1

3

)
+

[
(nxkx + nyky)2√

k2
x + k2

y

− n2
z

√
k2

x + k2
y

]
e

k2
x +k2

y
2π2κ Erfc

⎡
⎣

√
k2

x + k2
y

2π2κ

⎤
⎦}

, (A6)

where n = (nx, ny, nz ) is the unit vector along the
dipole moments, and Erfc(x) is the complementary error

function. The dipolar part of Hamiltonian parameters are
U dd = Diiii,V dd

ij = Dijij + Dijji, T dd
ij = Diiij, Pdd

ij = Diijj.
Some results for tilt angle θ = 67.5◦ and γ = 1/π3 are

depicted in Fig. 6, where we show the dipolar contribution to
Hamiltonian parameters as a function of lattice depth s for κ =
3, 6, 10, 20, 40. As the lattice depth s is increased, the dipolar
contribution to on-site interaction increases from negative to
positive for small κ = 3. For larger κ instead, it becomes
more negative by increasing either s or κ . These behaviors
are opposite to those at small tilt angles. The nearest-neighbor
interaction in x̂ direction V dd

i,i+x̂ and the next-nearest-neighbor
interaction in x̂ + ŷ direction V dd

i,i+x̂+ŷ are negative as expected
and become more negative by increasing either s or κ , while
the nearest-neighbor interaction in ŷ direction V dd

i,i+ŷ behaves
just the opposite. The dependence of off-site interactions on
κ becomes negligible for large enough κ because we are
approaching a perfect 2D lattice. The density-induced tunnel-
ing in x̂ direction is negative and becomes more negative by
increasing s for κ � 20. If we increase κ with fixed s, it be-
comes more negative first but then increases and goes towards
positive values. In the ŷ direction it becomes more positive
by either increasing s or increasing κ . The dependence on s
is very small for small κ . We notice that at small angles the
density-induced tunneling goes from positive to negative as
we increase κ . The pair tunneling is very small compared to
other parameters, so we neglect it in the Hamiltonian.
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