
PHYSICAL REVIEW A 103, 043332 (2021)

Finite-size scaling analysis of localization transitions in the disordered two-dimensional
Bose-Hubbard model within the fluctuation operator expansion method
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The disordered Bose-Hubbard model in two dimensions at noninteger filling admits a superfluid to Bose-glass
transition at weak disorder. Less understood are the properties of this system at strong disorder and energy
densities corresponding to excited states. In this work, we study the Bose-glass transition of the ground state
and the related finite energy localization transition, the mobility edge of the quasiparticle spectrum, a critical
energy separating extended from localized quasiparticle excitations. To study these the fluctuation operator
expansion is used. The level spacing statistics of the quasiparticle excitations, the fractal dimension and decay
of the corresponding wave functions are consistent with a many-body mobility edge. The finite-size scaling of
the lowest gaps yields a correction to the mean-field prediction of the superfluid to Bose-glass transition. In
its vicinity, we discuss spectral properties of the ground state in terms of the dynamic structure factor and the
spectral function which also shows distinct behavior above and below the mobility edge.
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I. INTRODUCTION

The inclusion of local disorder in the Bose-Hubbard model
is able to induce a superfluid to insulator transition at arbitrary
filling and low-energy densities. The resulting Bose glass
(BG) phase is distinct from the Mott phase at integer filling in
that it is nonconducting but has a vanishing gap similar to the
superfluid (SF) [1–5]. Numerous works have given numerical
evidence [6–11] and analytical results [3,4,12–18] showing its
existence. In addition the BG phase has been probed experi-
mentally in one- [19] and three-dimensional [20] cold atom
setups with an optical lattice as well as for bosonic quasiparti-
cles in a doped quantum magnet [21]. In two dimensions, the
scaling properties at criticality have been studied extensively
in the Bose-Hubbard model [22] and its hard-core boson limit
[23–26] using a wide range of advanced numerical tools, with
results comparing mostly quite well with earlier analytical
predictions [3,4,12].

In a recent work, we have studied the related localization
of quasiparticle (QP) excitations finding that disorder induces
mobility edges (ME) for all values of the local interaction
in the full QP spectrum of a disordered two-dimensional
Bose-Hubbard model (BHM) [27]. Earlier works have dis-
cussed localized QPs in one-dimensional weakly interacting
BHMs with correlated speckle [28,29] or quasiperiodic poten-
tials [30] involving a ME and with delta-correlated disorder
[31] but no ME. These indicate separate categories of lo-
calization as represented by distinct limiting bounds for the
correlation length scaling exponent ν in the respective cases.
For delta-correlated disorder, the Harris-Chayes-Chayes-
Fisher-Spencer bound ν > 2/d applies [32,33], whereas for
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quasiperiodic (thus correlated) disorder, the Harris-Luck
bound predicts ν > 1/d [34] suggesting separate universal-
ity classes. Thus QP MEs in one-dimensional BHMs with
quasiperiodic (correlated) disorder do not necessarily imply
QP MEs in two-dimensional BHMs with delta-correlated dis-
order [27]. These two universality classes are also expected to
generalize to strong interactions [35], the regime of so-called
many-body localization (MBL) [36–39], which has received
increased interest in recent years with exciting connections
to the fields of topological states [40–42] or quantum com-
puting [43] to name a few [44,45]. One of its most renown
features is its incompatibility with the eigenstate thermaliza-
tion hypothesis resulting from an extensive number of local
integrals of motion (LIOM) [46–48]. A complete demonstra-
tion of MBL in principle requires complete knowledge of
the spectrum, limiting exact diagonalization based analyses to
small system sizes [49–51]. Numerous perturbative arguments
[36,37,52,53] and increasing numerical evidence [38,39,54]
have supported its existence in two dimensions, involving a
ME separating mobile from localized states in the spectrum.
Due to its unconstrained local basis, bosonic lattice systems
have turned out to be especially hard for numerical simu-
lations, limiting most works to small scale one-dimensional
[49,55] and two-dimensional systems with a constrained local
basis [50], though strong arguments have been put forward in
favor of an MBL transition in a disordered continuum system
of ultracold bosons in two spatial dimensions [56,57], even as
a function of temperature consistent with a ME.

Nevertheless, despite a rigorous proof for certain one-
dimensional spin chains [58,59], recent numerical works have
challenged the possibility of a thermal phase transition for
two-dimensional systems [60–62] and even argued for the
absence of a proper localization-delocalization transition in
the thermodynamic limit for a one-dimensional spin chain
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[63] sparking some counter arguments in Ref. [64]. Also, it
has been argued recently that the necessary length and time
scales that have to be reached to uniquely identify a MBL-
type transition are currently out of reach both experimentally
and theoretically [65]. Nevertheless, some experimental re-
alizations have already shown strong signs of localization in
cold atom setups, where a disorder potential can be imprinted
onto the optical lattice in one [66–68], two [69,70], and three
dimensions [71], as well as for trapped ion [42] and solid-state
spin chains [72].

A. System

In this work, we analyze the quantum phases of the disor-
dered two-dimensional BHM in order to determine the critical
scaling of its ground state SF to BG transition on a mean-
field (MF) level and within the fluctuation operator expansion
(FOE) method. While we have already discussed the critical
scaling at the ME in Ref. [27], we focus on low-energy exci-
tations to study the localization of many-body QP excitations
and quantum glass phenomenology on equal footing [73,74].
In second quantization, the grand-canonical BHM with disor-
der using h̄ = 1 can be written as

Ĥ =
L2∑
�

(
μ�b̂†

�b̂� + U

2
b̂†

�b̂†
�b̂�b̂�

)
︸ ︷︷ ︸

Ĥ�

−t
∑
〈�,�′〉

(b̂†
�b̂�′ + H.c.) (1)

with μ� = −μ + ε� given by the local potential μ and
the random potential ε�, while U and t are the Bose-
Hubbard interaction and tunneling rate, respectively. We
always choose μ such that the mean occupation number
n = 〈n�〉d = 0.5, where 〈·〉d is the disorder average and n� =
〈b̂†

�b̂�〉. For ε�, we assume a Gaussian distribution P(ε�) =
(2πW 2)−1/2 exp (− ε2

�

2W 2 ) as has been realized in recent exper-
iments [69,70] with W its standard deviation. This describes a
homogeneous system insofar as 〈μ�〉d = −μ. We furthermore
consider a simple L × L square lattice with spacing a and
periodic boundary conditions.

The ground state of (1) has been investigated in the hard-
core limit U → ∞ to study the SF to BG transition [23–26].
Regarding the regime of moderate interaction strength, it has
been shown that due to disorder there is no direct SF to Mott
insulator phase transition at unit filling [9–11], which in the
ground state instead happens via an intermediate BG phase.
For noninteger filling or small U there is only the SF to BG
transition.

Here, we evaluate mean-field and quasiparticle spectral
properties of the disordered BHM (1) in terms of the FOE
method [27,75–77], a beyond mean-field quasiparticle expan-
sion method. For all disorder strengths, we find a critical
point in the ground state at sufficiently strong disorder that is
consistent with a SF to BG transition. Considering the fractal
dimension of an inhomogeneous Gutzwiller-type mean-field
representation of the ground-state wave function [4,78,79],
we find finite-size scaling exponents that match surprisingly
well with earlier (analytical) predictions [3,4,12] in contrast
to results from more advanced numerical simulations [25,26].
As the FOE method gives access to the complete spectrum
of QPs, we use it to discuss spectral properties of experimen-

tal interest by considering the beyond mean-field QP ground
state. We note that all QP excitations tend to resemble approx-
imate LIOM for sufficiently strong disorder.

B. Overview

The remainder of this work is structured in four main
sections and a summary. First, we determine the mean-field
ground state of the disordered BHM in order to characterize
the SF to BG transition in terms of the Edwards-Anderson
parameter and the fractal dimension in Sec. II. In particular,
we determine the finite-size scaling collapse for the fractal
dimension of the MF ground-state condensate order param-
eter. Next, we detail the FOE method used for the remainder
of this work to determine the quasiparticle spectrum beyond
the weak-coupling ansatz of the Bogoliubov method. In Secs.
III B and III D, we also discuss numerical tests of its appli-
cability for the disordered BHM (1). The following Sec. IV
focuses on a detailed discussion of the full quasiparticle
spectrum. There, we discuss the energy level statistics and lo-
calization properties of the fluctuation wave functions in order
to discern localized and nonlocal states separated by a ME.
By considering a simple finite-size scaling ansatz we further
establish a relation between the lowest excited QP fluctuation
states and the SF to BG transition in the ground state. In the
final Sec. V, we consider the spectral properties of the FOE’s
quasiparticle ground state in the vicinity of the SF to BG phase
transition which nicely reflect the phenomenology discussed
in the previous sections. We end with a brief summary in
Sec. VI.

II. MEAN-FIELD CRITICAL POINT

We start by characterizing the ground-state properties of
(1), specifically in relation to the aforementioned occurrence
of a Bose-glass phase [22–26] in and close to the ground state.
Here, we consider a simple Gutzwiller MF product ansatz
of the form |ψMF〉 = ∏

� |ψ0〉� where each |ψ0〉� is given
in terms of a linear combination over the local Fock-basis
truncated at some fixed number Nb. Throughout this work
at least a value of Nb = 9 or greater is used, sufficient to
guarantee convergence of the mean-field ground state and the
lowest local Gutzwiller excitations discussed in Sec. III A.
Their, in general, complex amplitudes can either be found via
a minimization of the energy or a self-consistent procedure
(see Sec. III A). On this mean-field level, we focus on two
observables to characterize the occurrence of a transition point
in the ground-state phase for an increasing disorder poten-
tial, where a SF to BG transition is expected. We note that
the superfluid fraction is expected to vanish at this transition
while the condensate fraction is not. While the former can be
determined using twisted boundary conditions [7], here we
consider complementary observables which are more closely
related to previous works [27]. Firstly, we define an Edwards-
Anderson-type order parameter

qEA = 1

L2

∑
�

(〈n�n�〉d − 〈n�〉d〈n�〉d ) (2)

with n� = 〈n̂�〉 the expectation value of the local boson num-
ber density and 〈·〉d the disorder average. By construction it is
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(a)

(b)

FIG. 1. Characterization of the MF critical point for the 2D BHM
with disorder. The Edwards-Anderson parameter qEA (a) and the
fractal dimension Dφ (b) are shown together with their respective
numerical derivatives in the insets. Both are given as a function of
the disorder W for fixed interaction U/t = 20 and various system
sizes (see legend).

always zero in a homogeneous state and only nonzero if the
correlations between the density and the disorder are extensive
[80,81]. Furthermore, we consider the fractal dimension Dφ

[82,83] of the condensate wave function φ� = 〈b̂�〉, for which
we use the definition [84,85]

Dφ =
〈

logL

( ∑L2

� |φ�|2
max�|φ�|2

)〉
d

. (3)

We evaluate both characteristics over a range of parameters
U/t ∈ [1, 25] and W/t ∈ [0, 15], and for the linear system
sizes L ∈ L = {10, 20, 24, 32, 40} while averaging over Nr =
60 disorder realizations each time.

As an example we show qEA and Dφ for U/t = 20 in Fig. 1.
As discussed in Ref. [80] qEA in panel (a) is nonzero for all
W > 0. While this parameter is almost independent from the
considered system sizes, it also barely exhibits any extremal
behavior except for the soft kink at W/t ≈ 5 visible in the nu-
merical derivative �qEA/�W [inset Fig. 1(a)]. Still, a nonzero
value of qEA indicates the occurrence a glassy ground state for
increasing disorder. The fractal dimension Dφ in panel (b),
on the other hand, features a much more pronounced drop in
the same disorder range, suggesting the presence of a phase
transition, usually accompanied by finite-size scaling effects
in the vicinity of the critical point. In order to quantify this
scaling we first consider the numerical derivative �Dφ/�W
[see inset Fig. 1(b)], which exhibits a minimum corresponding
to an inflection point of Dφ (W ) at W0 that shifts to small
disorder strength for increasing system sizes resulting in a
finite-size scaling of D0(L) ≡ Dφ[W0(L)] [see Fig. 2(a)]. We
observe such a minimum for all U/t � 10.

(a) (b)

(c) (d)

FIG. 2. Finite-size scaling and critical points for the MF ground
state of the disordered 2D BHM. (a) shows the shift of D0 at the in-
flection point as function of L for α = 0.44. Grey colors correspond
to L as in Fig. 1(b) and lines are best fits to Eq. (5) used to determine
D0 in the limit L → ∞. Corresponding best infinite system size
predictions for Dc (left pointing triangles) and Wc(U ) (right pointing
triangles) as determined by the crossing point in the partial collapse
[inset (c)] is shown in (b) for fixed values of α and U/t = 20.
The adjusted parameter of convergence of these fits is given in the
inset of (b). (c) shows the scaling collapse (4) of Dφ as a function
of the rescaled disorder (unscaled in the inset) for Wc/t = 2.9 and
U/t = 20. (d) depicts the MF critical disorder Wc determined via the
collapse of Dφ according to Eq. (4) and a corresponding collapse for
U/t = 3 in the inset.

A. Finite-size scaling

Such a finite-size shift indicates a critical point with a
scaling that is typically of the form [26]

Dφ;L,U (W ) − Dc = L−αD̃U ([W − Wc(U )]L1/ν ), (4)

with the critical fractal dimension Dc, the critical disorder
Wc(U ), a universal function D̃U with parameter U , as well
as the critical exponents α and ν. For the scaling collapse
of the inflection points D0;U (L) onto the inflection point of
the scaling function D̃U (W̄0), where W̄0 = [W0(L) − Wc]L1/ν

is the rescaled disorder, we thus expect

D0;U (L) = D̃U (W̄0)

Lα
+ Dc. (5)

As this expression has three unknown parameters, compared
to the five system sizes L ∈ L = {10, 20, 24, 32, 40} consid-
ered for each value of U , we first determine the best fit
parameters D̃U (W̄0) and Dc for fixed values of α and U/t ∈
{15, 20, 25} to obtain the functional relation Dc(α) shown
in Fig. 2(b), while exemplary fits for α = 0.44 are shown
in Fig. 2(a). By definition Dc is limited from above so the
collapse of the inflection points gives a lower bound α > 0.4
[see Fig. 2(b)]. As the finite-size scaling Eq. (4) is independent
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of the scaling exponent ν at the critical point Wc(U ), we can
further determine Wc(U ) if we scale only the fractal dimension
according to (Dφ − Dc)Lα to obtain the crossing point of all
system sizes, as shown in the inset of Fig. 2(c). This way we
get the best candidates for the critical point (Wc(U ), Dc) as a
function of α, exemplary depicted in Fig. 2(b) for U/t = 20.
To quantify the goodness of these fits we consider the adjusted
coefficient of determination R̃2 given in the inset of Fig. 2(b)

with errorbars representing the standard deviation when sam-
pling over U/t ∈ {15, 20, 25} and six distinct subsets of 10
disorder realizations each. The value of R̃2 for these fits is
almost constantly at its optimum for the considered range
of α.

For the full collapse, we only have to consider α and ν in
order to minimize the mean relative variance as a measure for
the goodness of the collapse:

χDφ
=

∑
U

χDφ
(U )

NU
=

∑
U

∑
L′>L

∑
W̄

(Dφ;L,U (W̄ ) − Dφ;L′,U (W̄ ))2

2
[
σD2

φ;L,U (W̄ ) + σD2
φ;L′,U (W̄ )

] 1

C̄Dφ

. (6)

Here, σDφ;L,U (W̄ ) are the standard errors of the mean deter-
mined from the disorder sampling while the normalization
constant C̄Dφ

is given by the total number of terms, C̄Dφ
=

NU
∑

L′>L

∑
W̄ 1 with NU the number of considered interac-

tion values. For an ideal collapse this measure should be on the
order of 1. In order to estimate the error of the obtained scaling
exponents, this finite-size scaling procedure is repeated for six
independent subsets of ten disorder realizations each, while
the interaction sum takes into account all considered values
U/t ∈ {1, 3, 5, 10, 15, 20, 25}. The free parameters of this
collapse are ν and α, the latter of which implicitly determines
Dc(α) via the scaling of the inflection points [see Figs. 2(a)
and 2(b)] as well as Wc(U ) via the unique crossing point of
the rescaled fractal dimension [as in inset Fig. 2(c)].

B. Results

An exemplary collapse for U/t = 20 is given in Fig. 2(c)
which has the individual relative variance χDφ

(U = 20t ) =
0.44(15). In combination the mean relative variance Eq. (6)
for all interaction values together is χDφ

= 2.8(5). It is greater
then one primarily due to substantial finite-size corrections
far from the critical point at weak interaction resulting in
χDφ

(U = 3t ) = 11(2) [inset of Fig. 2(d)]. For all best col-
lapses taken together we find the scaling exponents

α = 0.44(2), ν = 2.0(2), (7)

and a critical fractal dimension Dφ
c /t = 1.97(3) indistinguish-

able from its upper limit. The corresponding critical line
Wc(U ) is depicted in Fig. 2(d).

To summarize, for weak interaction U/t � 10, the criti-
cal disorder strength is close to zero. At strong interaction
values U/t � 20, on the other hand, we find a ground-state
transition point that is consistent with previous predictions of
a superfluid to Bose-glass transition also at half-filling but in
the hard-core boson limit U/t → ∞ with the box disorder
ε� ∈ [−W,W ] for the local potential [23–26]. Additionally,
considering earlier results for this system [3,4,12] and the
nonzero qEA for W > Wc(U ) we associate this critical line
with a SF to BG transition. Notably, the MF scaling exponents
we find match some early Monte Carlo predictions surpris-
ingly well [23].

III. FLUCTUATION OPERATOR EXPANSION

We now discuss the fluctuation operator expansion (FOE)
[75,77] with a main focus on its application to systems with
broken translational invariance such as (1), in order to inves-
tigate its properties beyond the previous discussion of the MF
ground state. Given any such MF state the FOE constitutes
a systematic expansion of all beyond first-order fluctuation
operator terms of (1)—commonly consisting of only nonlocal
terms neglected on the MF level—in terms of a quadratic
map onto local complete sets of generators of MF exci-
tations, the Gutzwiller operators. Within the approximation
of a negligible small density of local Gutzwiller fluctua-
tions these operators are quasibosonic and their second-order
contribution to original Hamiltonian—beyond the mean-field
terms—can be brought into a diagonalizable Nambu-type
form. Its diagonalization results in pairs of QP excitation
energies ωγ and −ω∗

γ with corresponding wave functions x(γ )

and y(γ ), which allow for a characterization of the spectrum.1

A. Gutzwiller operator representation

The FOE is a quasiparticle method based on an expansion
of a second quantized Hamiltonian such as (1) in terms of the
eigenstates |i〉� of its local mean-field Hamiltonians (given a
truncation Nb of the local bosonic number states)

Ĥ (�)
MF = Ĥ� − t

∑
{�′|〈�,�′〉}

(b̂†
�φ�′ + H.c.). (8)

These are defined in terms of the fluctuation operators δ̂b� ≡
b̂� − φ� and the complex fields φ�

!= �〈0|b̂�|0〉� which are to
be determined self-consistently.2 Drawing from variational
concepts [86–88] the FOE allows for a systematic improve-
ment over standard Bogoliubov theory [89] by considering
in principle general local fluctuations, giving access to the

1It is furthermore straightforward to determine any type of correla-
tion given in terms of nonlocal products of local operators.

2We note that self-consistency is a necessary but not sufficient con-
dition when determining the mean-field ground state. This implies
that the FOE can just as well be used to characterize fluctuations of
mean-field-type states far from the ground state.
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complete QP spectrum of the original Hamiltonian (1)

Ĥ =
∑

�

Ĥ (�)
MF − t

∑
〈�,�′〉

(δ̂b
†
�δ̂b�′ − φ∗

� φ�′ + H.c.). (9)

Due to the completeness of each local eigenbasis {|i〉�}
with eigenenergies E (�)

i , the FOE representation δ̂b� =∑
i, j<N �〈i|δ̂b�| j〉�|i〉��〈 j| constitutes a quadratic map that is

exact in the limit N → ∞ with N the truncation of the local
Gutzwiller eigenbases. To ensure convergence of these bases,
Nb = 3N is usually sufficient. It is convenient to introduce the
local Gutzwiller raising and lowering operators as well as their
compound terms for all i > 0:

σ
(i)†

� ≡ |i〉��〈0|, 1N −
N∑

i>0

σ
(i)†

� σ
(i)
� = |0〉��〈0|, (10)

σ
(i)
� ≡ |0〉��〈i|, and σ

(i)†

� σ
( j)
� = |i〉��〈 j|. (11)

Using these operators one obtains the formally exact represen-
tation Ĥ = ∑

� Ĥ (�)
MF + H(2) + H(3) + H(4), where each term

H(n) refers to a different order n in the Gutzwiller operators.
We note that the self-consistency condition guarantees the
absence of first order terms. While the second order term H(2)

yields the full spectrum of noninteracting QP fluctuations,
the higher order terms introduce interactions among them. A
sufficiently low density of local Gutzwiller excitations implies
that the interaction terms can be neglected. We will thus con-
sider the beyond mean-field Hamiltonian Ĥ (2) ≡ ∑

� Ĥ (�)
MF +

H(2). This can be justified in the vicinity of the ground state
that can implicitly be defined as the state not containing any
QP excitations (discussed in Secs. III B and III D), resulting in
very good predictions both in Mott-type and superfluid phases
[77,90,91]. Furthermore, in the localized phase at strong dis-
order the eigenstates of this approximate Hamiltonian tend to
display similarities to approximate LIOMs, as discussed in
Sec. IV. These also have the property that their spectra are
(nearly) unaffected by one another, resulting in the absence
of level repulsion in the localized regime [92] and causing
the well-known Poisson statistics of the level spacings also
discussed in Sec. IV.

B. Quasibosonic commutation relations

Before we can attempt to diagonalize Ĥ (2) we first have to
bring it into a standard Nambu-type form, which is straight-
forward for regular bosons. To do so in our case we have
to consider the actual commutation relations that characterize
the Gutzwiller operators σ

(i)†

� and σ
( j)
� . One can easily show

that they obey quasibosonic commutation relations of the form[
σ

( j)
�′ , σ

(i)†

�

] = δi, jδ�,�′ − δ�,�′ R̂(i, j)(�), (12)[
σ

(i)†

�′ , σ
( j)†

�

] = [
σ

(i)
�′ , σ

( j)
�

] = 0. (13)

Here, we introduce the residual operator R̂(i, j)(�) quantifying
the deviation from bosonic behavior. It is given by the expres-
sion

R̂(i, j)(�) ≡σ
(i)†

� σ
( j)
� + δi, j

∑
j′>0

σ
( j′ )†

� σ
( j′ )
� , (14)

(a) (b)

FIG. 3. Disorder averaged mean fraction of local fluctuations κ

quantifying the goodness of the FOE. (a) κ as a function the disorder
W/t for fixed U/t = 20, N = 3, and various system sizes given in the
legend. (b) Contour plot of κ as function of W/t and U/t for fixed
system size L = 32 and N = 3.

which is on the order of the local occupation of Gutzwiller
fluctuations κ� = ∑

i>0 σ
(i)†

� σ
(i)
� . The essential approximation

of the FOE method amounts to taking the limit 〈R̂(i, j)(�)〉 →
0, following from the assumption of only sparsely populated
excited Gutzwiller modes, consistent with neglecting the in-
teractions between the local fluctuations H(3) and H(4).

We note that (14) implies the relation δi, j〈κ�〉 <

〈R̂(i, j)(�)〉 < (1 + δi, j )〈κ�〉, so the approximation can be quan-
tified a posteriori via the expectation value 〈κ�〉 of the local
population of Gutzwiller excitations. It is given in terms of
the local overlap of the state in question with the mean-
field ground state due to the identity 〈κ�〉 = 〈1N − |0〉��〈0|〉 =∑

γ

∑
i>0 |v(γ )

i,� |2. The latter identity is the result for the QP
ground state |ψQP〉 which we will define in Sec. III D. From
this, we determine the disorder averaged mean fraction of
local fluctuations κ ≡ ∑

�〈〈κ�〉〉d/L2, which is shown in Fig. 3
for the complete parameter ranges considered in this work as
well as in Ref. [27].

For U/t = 20, N = 3, Nb = 3N = 9 as well as half-filling
and increasing system sizes L one can see that κ strongly
decreases down to a limiting value of κ � 0.05 [see Fig. 3(a)].
Also for U/t ∈ [1, 25], W/t ∈ [1, 15] and fixed L = 32 [see
Fig. 3(b)], we always find κ � 0.07 � 1, thus validating the
quality of the FOE approximation. With this in mind we can
confidently discuss the diagonalization of the quasiparticle
Hamiltonian, but first we give a short discussion of its form.

C. The quasiparticle Hamiltonian Ĥ (2)

In this section, we discuss the second order quasiparticle
Hamiltonian. It has a simple bilinear form which can be

written in terms of the vectors σ = (σ (1)
1 , . . . , σ

(N−1)
L )

T
and

σ† = (σ (1)†

1 , . . . , σ
(N−1)†

L )
T
. Using these and the approxima-

tion 〈R̂(i, j)(�)〉 → 0 in the commutation relation (12) one can
bring the Hamiltonian into a Nambu-type form, so

Ĥ (2) ≈ Ĥ(2)
QP ≡ 1

2

(
σ

σ†

)†

H(2)
QP

(
σ

σ†

)
− 1

2
Tr(h), (15)

with

H(2)
QP =

(
h �

�∗ h∗

)
. (16)
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As we have to get half of the normal ordered pairs σ†σ into
antinormal order, we obtain the scalar term Tr(h)/2 along the
way. Within this approximation the introduced Hamiltonian
matrix H(2)

QP has a size of 2(N − 1)L2 × 2(N − 1)L2. Its indi-

vidual entries are given in terms of �〈i|b̂�| j〉� matrix elements,
each within the local Gutzwiller bases, so the explicit matrix
entries are given by

h(i,�),( j,�′ ) = −t�,�′F (�,�′ )
i,0,0, j + δ�,�′δi, jE

(�)
i , (17)

�(i,�),( j,�′ ) = −t�,�′F (�,�′ )
i, j,0,0. (18)

Both expressions are given in terms of the tunneling matrix,
whose matrix elements t�,�′ = t ∀ {(�, �′)|〈�, �′〉} are nonzero
for all neighboring sites, and the excitation energies E (�)

i of
the ith Gutzwiller excited state at each site �. The remaining
terms are the matrix elements of the nonlocal products of local
operators

F (�,�′ )
i1,i2, j1, j2

= B(�)∗
j1,i1

B(�′ )
i2, j2

+ B(�)
i1, j1

B(�′ )∗
j2,i2

(19)

with

B(�)
i, j = �〈i|b̂�| j〉� − φ�δi, j,

where φ� are the previously defined self-consistent mean-field
values associated with the local annihilation operator.

D. Diagonalization of H(2)
QP

In order to preserve the bosonic structure of the opera-
tors, the diagonalization of (15) has to be performed on the
symplectic space, namely, by diagonalizing �H(2)

QP, where

� = (
1(N−1)L2 0

0 −1(N−1)L2
). This yields the representation of

Ĥ(2)
QP in terms of the generalized Bogoliubov-type QP modes

βγ ≡ x(γ )†
�

(
σ

σ†

)
≡ u(γ )†

σ + v(γ )†
σ†, (20)

β†
γ ≡ −y(γ )†

�

(
σ

σ†

)
≡ v(γ )T

σ + u(γ )T
σ†. (21)

These are given by the eigenvectors of the eigenvalue equa-
tions �H(2)

QPx(γ ) = ωγ x(γ ) with x(γ ) = (u(γ ),−v(γ ) )T and

�H(2)
QPy(γ ) = −ω∗

γ y(γ ) with y(γ ) = (−v(γ ), u(γ ) )†. Thus all
QP frequencies ωγ appear in pairs and those with a nonzero
imaginary part represent unstable QP modes.3 By requiring
the normalization condition |u(γ )|2 − |v(γ )|2 = 1 in analogy
to regular Bogoliubov theory, we preserve the (approximate)
bosonic commutation relations (12) and (13), so [βγ , β

†
γ ′ ] =

δγ ,γ ′ . We note that the two halves of the eigenvectors v(γ ) and
u(γ ) can be interpreted as dual wave functions associated with
particle and hole type fluctuations, respectively. As we will
discuss in the following sections, these generalized Bogoli-
ubov quasiparticles can be extended (with an associated lattice
momentum, see Figs. 9 and 10), localized [93] or posses a
finite core (see Fig. 8 and Sec. IV D).

3As an empirical observation, unstable QP modes are only encoun-
tered for MF states far from the ground state.

In the presence of a condensate one encounters a degen-
erate two-dimensional subspace constituted by an identity of
the energy pair ωγ = −ω∗

γ = 0, an expression which becomes
numerically exact only for N → ∞. In the case of an ex-
act degeneracy, the eigenvalue equation becomes �H(2)

QPp =
0 and can be solved by an eigenvector of the form p =
(u(0),−u(0)∗ )T . In order to complete the representation of this
two-dimensional subspace one has to introduce a second vec-
tor q within this subspace, which is best defined implicitly via
�H(2)

QPq = −ip/m̃, where m̃ is a masslike scalar. Therefore,
we obtain two different operators taking the places of the
Bogoliubov-like operators (20) and (21) for the doubly degen-
erate mode (these are discussed in further detail in Ref. [90]):

P ≡ p†�

(
σ̃

σ̃†

)
=

(
u(0)

−u(0)∗

)†

�

(
σ̃

σ̃†

)
, (22)

Q ≡ −q†�

(
σ̃

σ̃†

)
≡ −i

(
v(0)

v(0)∗

)†

�

(
σ̃

σ̃†

)
. (23)

We note that P is a momentumlike operator that can be con-
sidered as the generator of translations in the global phase of
the condensate mode [94], so it represents the free motion of
the complex phase factor of the condensate.

As a result of the (approximately) exact commutation rela-
tions of the QP mode operators, the second order Hamiltonian
H(2)

QP generally has the form

H(2)
QP ≈

∑̃
γ

ωγ β†
γ βγ + P2

2m̃
+ 1

2

(∑̃
γ

ωγ − Tr(h)

)
. (24)

This representation is given in terms of the generalized Bo-
goliubov creation (annihilation) operators β†

γ (βγ ) where the

notation
∑̃

γ represents the fact that the γ = 0 term in the
sum is to be replaced by P whenever a condensate is present
for N → ∞. Otherwise, for small N , the lowest mode re-
mains gapped such that the P term can be replaced by
ω0β

†
0β0. As all ωγ > 0 the form (24) implies that the quasi-

particle ground state is characterized by 〈ψQP|β†
γ βγ |ψQP〉 = 0

(〈ψQP|P2|ψQP〉 = 0), so we can use βγ |ψQP〉 = 0 (P|ψQP〉 =
0) for all γ as its implicit definition. This allows for the a
posteriori check of the central FOE approximation discussed
in Sec. III B. Regarding the spectral properties discussed in
Sec. V, consideration of P and Q only yields a subleading
[even self-canceling for the spectral function at ω = 0, see
Sec. V] correction in the thermodynamic limit [76], so we
may neglect both for our purposes. By expressing H(2)

QP with
β†

γ and βγ in normal order we find a further scalar contribution

proportional to
∑̃

γ ωγ . Note that both scalar terms generate a

shift of the total energy. While both contributions
∑̃

γ ωγ and
Tr(h) would diverge individually without truncation (N →
∞), even in a finite system, in combination they only yield
a finite correction of the quasiparticle ground-state energy.
They effectively lower the energy of |ψQP〉 in relation to the
energy of the MF state |ψMF〉 as a result of an average down
shift of the QP mode energies in relation to the energies of the
Gutzwiller excitations.

This concludes the diagonalization of the disordered BHM
up to second order in the Gutzwiller operators. The obtained
generalized Bogoliubov modes can be of varying character.
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Either they behave like extended Bogoliubov quasiparticles
with a well defined lattice momentum k, as will be discussed
in Sec. V, or they are localized at random sites with an
exponential tail far from the center, as will be discussed in
Sec. IV. These two regimes correspond to low and high energy
QP excitations, respectively, which are separated by the ME
previously determined in Ref. [27] and confirmed via the
diverging localization length of the QP excitations in Sec. IV.

We note that the obtained representation is reminiscent
of the emergent LIOMs predicted within the MBL phase
[46–48,93,95,96], albeit on the lowest order of approximation
where all coupling terms between the approximate LIOMs are
disregarded. Thus this parallel is expected to hold especially
for strongly localized QP states, where we consider the FOE
to yield a representation in terms of approximate LIOMs for
which the corresponding QP states have very small local-
ization lengths. This is indeed the case, as we show in the
following section where we characterize the corresponding
spectrum via its energies and the spatial localization of the
QP eigenstates. With regards to further studies these QP mode
operators may thus serve as an ideal starting point for the
construction of proper LIOMs, for example, using methods
discussed in Refs. [97,98].

IV. CHARACTERIZATION OF THE QP SPECTRUM

In this section, we extend our discussion beyond the ground
state by considering and characterizing the general QP fluc-
tuations obtained within the FOE method discussed in the
previous Sec. III. On the one hand, we analyze the distribution
of the QP energy levels and their gap statistics. On the other
hand, we specifically discuss the exponential localization of
the FOE wave functions associated with the QP excitations.
Both aspects can be summarized in terms of two simple
and fundamentally different measures related to localization.
These are (i) the QP energy level spacing ratio r ∈ [0, 1] and
(ii) the multifractality dimension D ∈ [0, 1] for the second
moment of the QP fluctuation wave functions. They reveal
and allow for an independent characterization of the many-
body ME as discussed in detail in Ref. [27]. However, before
doing so, we first asses the validity of assuming negligible
interactions between the Gutzwiller excitations for individual
QP modes.

A. Gutzwiller population of QP states

Similar to the a posteriori check of κ � 1 for the QP
ground state in Sec. III B, we now perform the correspond-
ing analysis for individual QP excitations β†

γ |ψQP〉 of the
QP ground state. We focus on the representative parame-
ters U/t = 20 and W/t = 5. For each realization, the local
Gutzwiller populations for a QP excitation γ and site � are
given by

〈κ�〉γ =〈ψQP|βγ

∑
i>0

σ
(i)†

� σ
(i)
� β†

γ |ψQP〉

=
∑
i>0

(∑
α>0

∣∣v(α)
i,�

∣∣2 + ∣∣v(γ )
i,�

∣∣2 + ∣∣u(γ )
i,�

∣∣2

)
. (25)

(a) (b)

FIG. 4. Disorder averaged fraction of local fluctuations κ for
the QP excitations as a function of their disorder average energy
ωγ . The vertical lines mark the inverse variance weighted mean
of the ME as determined in Ref. [27] As given in the legend, the
lattice average κ̄ and the disorder average of the (2nd to) maximum
(κ2nd) κ1st are shown for fixed U/t = 20 and W/t = 5. In (a), N = 3
and L ∈ {10, 20, 24, 32}, while L = 20 and N ∈ {3, 4, 5} in (b) as
specified in the respective legends. For all cases Nr = 25, except for
L = 10 where Nr = 50.

To quantify the assumption and its limits we consider the av-
erage Gutzwiller population κ̄ as well as the disorder average
of the (second-to) maximum Gutzwiller population (κ2nd) κ1st.
Given the site �

(γ )
m of the maximum Gutzwiller population for

each QP state and realization with 〈κ
�

(γ )
m

〉γ > 〈κ�〉γ for every
site �, these are defined as

κ̄ (ωγ ) =
〈∑

�

〈κ�〉γ
L2

〉
d

, (26)

κ1st(ωγ ) = 〈〈κ
�

(γ )
m

〉γ
〉
d
, (27)

κ2nd(ωγ ) =
〈

max
�∈L2\�(γ )

m

〈κ�〉γ
〉

d

. (28)

Here, the lowest mode γ = 0 is discarded as it is subleading
in the thermodynamic limit (see Sec. III D).

These disorder averages with at least Nr = 25 realiza-
tions are shown in Fig. 4, either for fixed N = 3 and L ∈
{10, 20, 24, 32} or for fixed L = 20 and N ∈ {3, 4, 5} using
identical disorder realizations for each N . The former shows
that there are strong finite size effects for very small systems,
especially for L = 10, while the latter shows that even a low
truncation of N = 3 is sufficient for a good convergence.
Compared to the QP ground state the average fraction of
local excitations κ̃ ≈ 0.06 is only slightly increased in any
QP mode. The maximum population κ1st on the other hand
is well below 1 for low-energy states, but κ1st increases con-
siderably for modes above the ME ωγ /t � 3.4 approaching
1 for energies ωγ > U . But these modes are very localized
as the second-to maximum κ2nd is nearly constant on either
side of the ME. Thus the QP modes above the ME are highly
localized fluctuations. Even in the presence of QP modes the
condition κ < 1 is thus typically fulfilled for excitation en-
ergies ωγ < U while sizable interactions between QP modes
(β†

γ ) become most relevant for either a large number of ex-
tended fluctuations or nearby pairs of localized fluctuations
(see also Sec. IV D).
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(a) (b) (d)

(c)

FIG. 5. Scaling of the lowest QP gaps �ω with the grayscale indicating the truncation N = 3, 4, 5, respectively, as given in the legend of
(d). (a) Exemplary data for different values of W/t given in the legend. Best fit parameters of the scaling ansatz Eq. (29) including one standard
deviation in the error of the fit are given in (b) (see legend) and (c). Dashed lines in (b) are guides to the eye. (d) shows the adjusted parameter
of convergence R̃2 of the fits. Dashed lines in (c) and (d) correspond to fitting results for fixed p = 2.

B. Superfluid versus Bose-glass gap scaling

Before we discuss the QP spectrum, we first take into
account the lowest QP excitations only, in order to discuss
their relation to the ground state. To do so, we consider the
n lowest QP excitations ωγ with γ � n. We note that for the
local basis truncation N → ∞ (see Sec. III A) in the presence
of a MF condensate follows ω0 → 0 in which case this mode
actually has to be represented by the momentumlike operator
P , as discussed in Sec. III C. Thus the lowest relevant average
n-gaps are given by �ωγ = 〈ωγ − ω0〉d . In a superfluid it is
well known that the lowest energy excitations are Goldstone
modes following a linear dispersion relation. Irrespective of
the spatial dimension the smallest possible lattice momenta
on an isotropic lattice have |kmin| = π/La,

√
2π/La, . . . im-

plying �ωγ ∝ 1/L for sufficiently small γ . In contrast, for
strong disorder, excitations are expected to be increasingly
uncorrelated such that the average level spacing becomes in-
versely proportional to the total number of levels. Therefore,
we expect �ωγ ∝ 1/L2 for sufficiently strong disorder as the
number of QP modes within the FOE is proportional to the
number L2 of lattice sites. As we are only interested in the
scaling with L, it is numerically beneficial to consider the
average of the 8 lowest gaps �ω ≡ ∑8

γ=1 �ωγ /8 correspond-

ing to the longest wavelength modes |k| ∈ {π/La,
√

2π/La}
of the superfluid. For this average, we assume the following
generic scaling:

�ω = ωl

Lp
+ ωoff. (29)

Here, the first term represents the system size scaling with
some power p and an effective local single-site gap ωl while
ωoff is an offset energy. These parameters are determined via
fitting. We perform this scaling for U/t = 20, W/t ∈ [0, 40]
and N ∈ {3, 4, 5} (corresponding to light grey, dark grey and
black in Fig. 5). Exemplary data for W/t ∈ {0, 10, 20} is
shown in Fig. 5(a) with errors of the mean from the disorder
sampling. The obtained values for ωoff, p and ωl are given
in Figs. 5(b) and 5(c), while the corresponding adjusted co-
efficient of determination R̃2 is shown in Fig. 5(d). All fits
are nearly exact with an adjusted parameter of convergence
R̃2 ≈ 1.

Regarding p, a truncation N > 3 is sufficient to deter-
mine this scaling exponent in the vicinity of the SF to BG

transition for the considered system sizes (see Fig. 5), al-
though one has to be careful for disorder W/t > 20 [27].
Just as expected we find p = 1 for sufficiently weak disorder
consistent with a SF phase while the exponent increases ap-
proximately linearly beyond 1 above a critical disorder Wc,�ω.
Linear fits (dashed lines) in Fig. 5(b) cross p = 1 at Wc,�ω =
5.98(8), 7.5(2), 7.7(7) corresponding to N = 3, 4, 5, respec-
tively, and thus well above the MF result. Regarding the
effective single site gap ωl ≈ U for sufficiently weak disorder,
as one would expect in the single site limit. Notably, in the
opposite limit at strong disorder W > 20t (W > U ) we find
best fits with p > 2 and ωl � U,W which also have the
lowest fit quality [see Figs. 5(b), 5(c) and 5(d)]. As such a
runaway effective local gap seems unphysical, we also assume
a fixed value p = 2 as discussed earlier for W � 20t . We then
find fits of nearly identical quality [dashed lines in Fig. 5(d)]
but with much lower effective local gaps ωl [dashed lines in
Fig. 5(c)].

In conclusion, we find a finite-size scaling of lowest QP
excitations consistent with a dissolving spectrum of Goldstone
modes for increasing disorder, as expected for a SF to BG
transition. Furthermore, the behavior of the scaling exponent
p remains unclear at strong disorder W > 20t (W > U ) where
in earlier works we have shown the need for even greater
truncation N > 5 to obtain converged lowest energy QP
excitations [27].

C. Level spacing statistics

Next, we focus on the QP spectrum beyond the low-energy
regime. To characterize an MBL-like transition the gap ratio
r = rγ is the most prevalent measure, which in terms of the
QP energy gaps �ωγ = ωγ+1 − ωγ we define as

rγ ≡
〈

min[�ωγ−1,�ωγ ]

max[�ωγ−1,�ωγ ]

〉
d

. (30)

The statistical properties of r and the rescaled level spacing
s ≡ �ωγ /�ωγ , where �ωγ is the mean level spacing, are
well known from random matrix theory [49,99]. In the de-
localized regime the respective probability distributions P(s)
and P(r) are determined by the Gaussian orthogonal ensem-
ble (GOE), while in the localized regime these follow from
Poisson (P) statistics. The former case is well described by
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(a)

(b)

(c) (d)

FIG. 6. Gap and gap ratio distributions P(s) [(a) and (c)] and
P(r) [(b) and (d)], respectively, for the QP spectrum of (1) for
U/t = 20 and W/t = 5. For reference the analytic predictions related
to Poisson statistics (dashed lines) and for the GOE (dotted lines) are
included in all plots. In (a) and (b), each distribution covers an energy
window ωγ of width t centered at various ωγ /t ∈ [2, 7] (see legend),
with L = 40. For (c) and (d), the central energy is fixed to ωγ /t = 5,
while the linear system size L is varied (see legend).

Wigner’s surmise PW (s) = π
2 s exp(−π

4 s2) with

PW (r) = 27

4

r + r2

(1 + r + r2)5/2
, (31)

while the Poissonian has the simple form P(s) = exp(−s)
with P(r) = 1/(1 + r)2. In Fig. 6, we show distributions ob-
tained for the QP spectra at U/t = 20 and W/t = 5 in the
vicinity of the low-energy ME at about ωγ /t ≈ 3.5. While
the spectra at low ωγ reproduce the GOE prediction, the
distributions approach P behavior for increased energies [see
Figs. 6(a) and 6(b)], consistent with crossing a ME somewhere
in between. If, on the other hand, we increase the system size
while keeping the energy window fixed to ωγ /t = 5 ± 0.5
[see Figs. 6(c) and 6(d)], we again find that the distributions
interpolate from near GOE to P-like behavior. This finite-size
scaling behavior is consistent with QP states that are on the
localized side of the ME.

Random matrix theory furthermore predicts the expecta-
tion value of r within each ensemble to rG ≈ 0.5307 and rP =
2ln2 − 1 ≈ 0.3863 for the GOE and P statistics, respectively
[99]. In Fig. 7, we show r as a function of the QP energies ωγ .
For sufficiently low energies, most rγ ≈ rG, as expected for
nonlocalized states. Outliers towards extremely small values
result from a systematic finite-size effect. For not too strong
disorder, such as W/U = 0.25 in this case, the low-energy part
of the QP spectrum is only weakly disturbed, as visible by the
nearly plane wave character of the wave function in the first
inset of Fig. 7. Thus one finds clusters of near-degenerate QP
excitations in the spectrum for which the lattice momentum k
still is a good approximate quantum number. The number of
states in each cluster is related to the underlying 90◦ rotational

FIG. 7. Gap ratio r (left ordinate) and fractal dimension D data
(right ordinate) as functions of the QP energy ωγ /t for U/t = 20,
W/t = 5 and L = 32 averaged over 95 realizations. Black lines are
moving averages as a guide to the eye and dashed lines mark rP and
rG. The crossing point (vertical arrow) of the data with the critical
rc (shaded red, narrow) and Dc (shaded blue, wide) mark the ME.
(Insets) Exemplary squared QP wave functions |v(γ )

� |2 normalized to
the maximum. Reproduced from [27].

and reflection symmetries of the corresponding disorder-free
QP excitation bands, as can be seen in a clustering of the frac-
tal dimension D = D(γ )

L of the QP fluctuation wave functions
v(γ ) (see Fig. 7, blue dots) which we discuss in the following.

D. Decay of fluctuation wave functions

While the discussed level statistics are fully consistent with
a ME in the disordered BHM we now consider the local-
ization properties of the fluctuation wave function |v(γ )

� |2 =∑
i>0 |v(γ )

�,i |2 directly. Here, we analyze the typical radial wave
function amplitude A(r) oriented at its center of mass r0 for
each level and disorder realization. The most relevant notion
of distance is given by the minimal number of links between
two sites. Thus we define the norm | · | of a lattice vector r via
its spatial components x and y as

|r| =
∑
i=x,y

|ri| (32)

while we consider the center of mass r0 =
�∑� r�|v(γ )

� |2/∑
� |v(γ )

� |2� with �·� denoting a rounding
to the nearest site. Using these, we define

Ãγ (r) ≡
∑

{�||r�−r0|=r}
exp

[〈log |v(γ )
� |2〉d

]
, (33)

Ĩγ (r) ≡
∑
r′>r

Ã(r′) (34)

giving the angular integral of the typical wave function Ãγ (r)
and its radial integral Ĩγ (r). For convenience, we scale either
by its respective maximum: Aγ (r) = Ãγ (r)/maxr (Ãγ (r))
and the latter by the full sum: Iγ (r) = Ĩγ (r)/Ĩγ (0). For
U/t = 20, W/t = 7, and L = 32, a few examples of both are
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(a) (b)

(c) (d)

FIG. 8. Decay behavior of |v(γ )
� |2 for U/t = 20 in (1) with L =

32 and N = 3 if not specified otherwise. For W/t = 7 examples of
A(r) and I(r) are shown in (a) and (b). All distributions are aver-
aged over bins of 16 levels closest in energy to ω/t ∈ [0.75, 5.75]
increasing in steps of 0.5 from light gray to black (top to bottom
at large distances). Inset in (a) shows a corresponding typical state
〈log10 |v(γ )

� |2〉d at ω/t = 5.5. Dashed lines in (a) are exponential fits
of Eq. (35) and corresponding inverse decay lengths 1/λ are given
in (c) for W/t = 10 and W/t ∈ [1, 15] in (d). Data sets in (c) for
L ∈ [10, 20, 24, 32, 40] are accompanied by linear fits (solid lines)
and circles have L = 32 and N = 4 (see legend). Zeros of these fits
are given in the inset with solid (dashed) linear fit lines for all L
(L > 10). ωc in (c) and lines in (d) represent the ME determined
in [27] via fractal dimension D or gap ratio r (see legend), while
circles (crosses) are derived from the decay length λ (λ̃) for all sizes
(L > 10).

shown in Figs. 8(a) and 8(b), respectively. Above a certain
energy all QP wave functions decay exponentially which also
implies an exponential suppression of the third- and fourth-
order interactions between these localized QP excitations as a
function of the distance between the respective center of mass
of the involved QP modes. Such a behavior is also expected
for the LIOMs commonly considered to describe MBL.

In the following, energies are binned over consecutive en-
ergy levels so we discard the level index from here on and
instead consider the mean energies of the bins. The behavior
of either one is consistent with our findings so far. Note the
deviations from a circular shape of the contour lines for a
typical state 〈log10 |v�|2〉d , depicted in the inset of Fig. 8(a) for
ω/t = 5.5, justifying our distance definition. At this moderate
disorder the fluctuation wave functions become strongly local-
ized above some QP energy ωc associated with the mobility
edge as visible by the exponential decay of A and I for large
disorder. Especially the behavior of I at high energies implies
that the majority of QP state is constrained to the sites close
to some central site, while the examples given in Fig. 7 show
that of these sites usually only a few actually contribute. To

quantify the decay of the QP wave function, we consider the
following ansatz for the tail of A(r) fitted up to r � L/2:

A(r) ≈ exp
(
− r

λ
+ ξ

)
. (35)

Its parameters are an irrelevant offset ξ related to the onset of
the tail and the decay length λ. We always find 1/λ > 0 (with
an adjusted parameter of convergence that mostly is R̃2 >

0.99) for any QP excitation of sufficiently high energy—that
is, above the ME—in the thus localized part of the spectrum.
We find this behavior for any local interaction U and dis-
order W which is also strongly convergent for sufficiently
large L > 10 and N � 3. Thus we can consider the inverse
of the decay length as an order parameter, as λ diverges at the
transition from localized to extended states. Indeed, starting at
high energies [see Fig. 8(c)] or strong disorder [for sufficiently
low energy, see Fig. 8(d)] and lowering either the energy or
the disorder strength, 1/λ eventually tends to zero within the
resolvable states (limited by N and L). This is nicely captured
by linear fits for small 1/λ to

1

λ
= a(ω − ω0). (36)

Here, a is the slope with proper units and ω0 is the zero. Both
terms are determined by fits for different L [see Fig. 8(c) and
inset]. The scaling of ω0 in turn follows a simple relation of
the form

ω0 = ωc + ω̄

L1/ν
, (37)

with the critical energy ωc corresponding to the ME, the
rescaled energy ω̄ and the finite-size scaling exponent 1/ν =
0.91(4) determined in our previous works [27]. We note
however that determining λ for A(r) is problematic at small
system sizes L < 10 and for the least localized QP excitations
which have a substantial inner region such that the onset of
the decay is shifted outwards [see Fig. 8(a)]. Then λ may be
overestimated for small L and the least localized low-energy
excitations. This is visible in Fig. 8(c) where the deviation
in 1/λ for L = 10 and L > 10 increases with 1/λ → 0. When
fitting (37) to determine ωc we therefore distinguish two cases,
one with L = 10 included [solid line in the inset of Fig. 8(c)
and labeled λ in (d)] and the other with L = 10 excluded
[dashed line in the inset of Fig. 8(c) and labeled λ̃ in (d)].

Considering the drop in fit quality of (35) for L = 10 due
to the shift of the onset of decay and the weak decay when
approaching the ME from the localized side we find a ME
that closely overlaps with our earlier predictions, which re-
lied on the finite-size scaling of the gap ratio and the fractal
dimension of the QP excitation states [27]. For the sake of
completeness we therefore finish this section with a brief dis-
cussion of the fractal dimension of the QP wave functions to
show how the various observables related to the ME compare.

E. Fractal dimension of fluctuations

Analogous to the scaling of q-moments Rq = ∑
n |ψν |2q

of many-body eigenstates where n labels the partial ampli-
tudes of a given many-body basis [84,85,100], our analysis
is based on the local amplitudes of the wave function
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|v(γ )
� |2 = ∑

i>0 |v(γ )
�,i |2 (and q = 2):

D ≡ D(γ )
L = − logL2

[∑L2

�

∣∣v(γ )
�

∣∣4∑L2

�

∣∣v(γ )
�

∣∣2

]
. (38)

In contrast to many-body eigenstates the fluctuation wave
function preserves real-space information in its amplitudes, so
D(γ )

L characterizes the spatial extension of QP fluctuations in
relation to the system size (see insets in Fig. 7). As shown in
our previous work r and D can be used to determine the ME
of the QP spectrum [see Figs. 8(c) and 8(d)] via the critical
values rc(W ) and Dc(W ) [27]. As we have already seen for
the level statistics, where high energy QP excitations have
P statistics corresponding to localized states, also D quickly
tends to 0 above the ME where the QP states are centered
at arbitrary sites and only involve a few of the nearest sites
[see Figs. 7, 8(a), and 8(b)]. We note that this behavior is
very typical of LIOMs implying that the QP modes can be
considered their lowest order approximation via the definition
I (0)
γ = β†

γ βγ . In case of the existence of actual LIOMs, cor-
rections to this lowest order can be determined by the thus
far neglected Hamiltonian terms H(3) and H(4), analogous
to a weak coupling expansion [93]. However, as the FOE is
effectively a strong coupling expansion, already the lowest
order goes beyond a single particle description. In particular,
using the FOE method the QP ground state as well as its QP
excitations can be highly entangled as has been shown in the
previous work [27].

In summary, we have shown that the localization of the
QP states is well characterized by the level spacing statistics,
the decay length of the fluctuation wave-functions and their
related fractal dimension. From these we obtain matching
predictions of the ME. Notably, a very similar inverted many-
body ME and MBL transition has previously been found via
exact methods for small one-dimensional systems [49,51].
Furthermore, we have shown that the finite-size scaling of the
lowest gaps is consistent with a SF to BG transition of the
ground state. In the next section, we will complete this picture
by discussing various spectral functions of the quasiparticle
ground state |ψQP〉.

V. SPECTRAL FUNCTIONS

As shown in Sec. III D, one can derive a simple im-
plicit definition for a corrected QP ground state |ψQP〉
by requiring the condition βγ |ψQP〉 = 0 for all QP modes
γ (and P|ψQP〉 = 0). Using this definition it is straight-
forward to determine the single particle spectral func-
tions. Here, we focus on the normalized dynamic struc-
ture factor S̄(k, ω) and the spectral function A(k, ω) =
−sgn(ω)Im[

∑
�,�′ e−ik·(r�−r�′ )G��′ (ω)]/L2π defined via the

single-particle lattice Green’s function G��′ (ω). Using the no-
tation 〈·〉QP ≡ 〈ψQP| · |ψQP〉, their spectral representation for
the QP ground state can respectively be written as [77]

A(k, ω) = θ (ω)A(2)
> (k, ω) − θ (−ω)A(2)

< (k, ω) (39)

= θ (ω)〈〈b̂kδ(Ĥ (2) − E0 − ω)b̂†
k〉QP〉d

− θ (−ω)〈〈b̂†
kδ(Ĥ (2) − E0 + ω)b̂k〉QP〉d ,

S̄(k, ω) =〈〈n̂kδ(Ĥ (2) − E0 − ω)n̂k〉QP〉d/Np (40)

with θ (·) the Heaviside-Theta function, E0 = 〈ψQP|Ĥ (2)|ψQP〉
the QP ground-state energy, Np the total number of particles
and the label d signifying the disorder average. The spectral
function is defined in terms of the greater and lesser spectral
functions A(2)

> (k, ω) and A(2)
< (k, ω) characterizing particle

and hole excitations, respectively. Additionally, we consider
the static counter parts, the momentum distribution n(k) =
− ∫ 0

−∞ A(2)
< (k, ω)dω and the static structure factor S(k) =∫ ∞

0 S̄(k, ω). These are given in terms of Fourier transforms
of the local creation, annihilation, and number operators,

b̂k = 1√
L2

∑
�

e−ik·r� b̂�, (41)

b̂†
k = 1√

L2

∑
�

eik·r� b̂†
�, (42)

n̂k =
∑

�

eik·r� n̂�. (43)

Furthermore, due to the completeness of each eigenbasis {|i〉�}
of the local MF Hamiltonians (8) any local operator Ô(�) has
an exact representation within this basis, in terms of the local
Gutzwiller operators:

Ô(�) =
∑
i, j�0

�〈i|Ô(�)| j〉�|i〉��〈 j|

≡
∑
i, j�0

O(�)
i j |i〉��〈 j|

=
∑
i>0

(
O(�)

i0 σ
(i)†

� + O(�)
0i σ

(i)
�

) + O(�)
00 1N

+
∑
i, j>0

(
O(�)

i j − δi, jO
(�)
00

)
σ

(i)†

� σ
( j)
� . (44)

Using the inverse of (20) and (21) we can then use the implicit
definition for the QP ground state to compute the spectral
functions. We note that, while (44) is a nonlinear represen-
tation, (20) and (21) are linear. Thus, due to the implicit
definition of the QP ground state, only terms of even order in
the Gutzwiller operators matter for (39) and (40). As shown
in Sec. III B, the average number κ of local Gutzwiller excita-
tions in the QP ground state is on the order of a few percent, so
we neglect the fourth order terms which would only contribute
O(κ2).

For U/t = 20, we consider a system with 1600 sites (L =
40) at weak (W/t = 1) and moderate (W/t = 5) disorder av-
eraged over Nr = 10 disorder realizations using a truncation
of N = 4 to discuss signatures of localization in the static
properties of the ground state as well as in the spectrum of its
FOE excitations in relation to the inverse-variance weighted
mean of the gap ratio and fractal dimension predictions for
the ME determined in Ref. [27] and shown in Fig. 8(d).
Firstly, Fig. 9 depicts the weak disorder case for which the
momentum distribution (panel a) has a very pronounced peak
at k = 0 corresponding to the condensate fraction while the
static structure factor (panel c) displays only weak fluctuations
due to the disorder but otherwise follows the behavior of the
homogeneous case as well. The spectral function [panel (b),
inset panel (a)] and the dynamic structure factor [panel (d)] on
the other hand already present strong signatures of localized
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(b)

(d)

(a)

(c)

FIG. 9. Finite-size (L = 40) spectral functions for the QP ground
state (see text) of (1) at U/t = 20 and weak disorder W/t = 1.
Shown are (a) the momentum distribution n(k), [(b), inset (a)] the
spectral function A(k, ω) with separate color axis for the retarded
and advanced branches, (c) the static structure factor SSF (k), and
(d) the dynamic structure factor DSF (k, ω). All spectral functions
are shown along a path of high-symmetry points of the first Bril-
louin zone of the square-lattice, in units of π/a: (0, 1) → (0, 0) →
(1, 1) → (1, 0) → (0.5, 0.5). Dashed lines in (b) and (d) mark the
ME as determined in Ref. [27].

fluctuations, especially at large QP excitation energies in the
first gapped band where the spectral weights are spread over
all lattice momenta. Conversely, the ungapped (Goldstone)
band is well resolved as the ME [dashed line in Figs. 9(b)
and 9(d)] is identical to its upper band edge. Especially
the low-energy states are almost exactly the low-momentum
eigenstates following the linear dispersion of a SF.

In contrast, as visible for the spectral function [panel b,
inset panel (a)] and dynamic structure factor [panel (d)] given
in Fig. 10, at an enhanced disorder of W/t = 5, the entire
spectrum of QP states above the ME [dashed lines in panels
(b) and (d)] becomes smeared-out over all lattice momenta,
while both lowest bands are merging due to the disorder
driven local energy fluctuations. Only for QP energies below
the ME one can still find a prevailing linear dispersion of
low-momentum QP states [inset panel (a)]. Regarding the QP
ground state itself, the increased disorder results in a further
decreased zero-momentum peak in n(k) [panel (a)]. Also,
there is an almost complete loss of nontrivial nonlocal density
correlations, visible in the nearly flat static structure factor
[panel (c)] close to the BG phase, which indicates a nearly
uncorrelated distribution of particles. The value of the flat
background sb = 0.54(3) corresponds to the only nontrivial
(local) correlations via c(r) = NpL−2 ∑

k exp(ikr)L−2S(k) ≈
〈n̂�〉d (〈n̂�〉d + δr,0sb) where S(k) ≈ sb + δk,0Np. Here,
c(d) = ∑

q〈QP|n̂�n̂�′ |QP〉d/L2 is the lattice and disorder
average of the density correlations where d = r� − r�′ and

(a) (b)

(c) (d)

FIG. 10. Finite-size (L = 40) spectral functions for the QP
ground state (see text) of (1) at U/t = 20 and moderate disor-
der W/t = 5. Shown are (a) the momentum distribution n(k), [(b),
inset (a)] the spectral function A(k, ω) with separate color axis
for the retarded and advanced branches, (c) the static structure
factor SSF (k), and (d) the dynamic structure factor DSF (k, ω).
All spectral functions are shown along a path of high-symmetry
points of the first Brillouin zone of the square lattice, in units of
π/a: (0, 1) → (0, 0) → (1, 1) → (1, 0) → (0.5, 0.5). Dashed lines
in (b) and (d) mark the ME as determined in Ref. [27].

q = (r� + r�′ )/2. While an uncorrelated placement of parti-
cles would imply P correlations with cP(0) = n2 + n = 3/4,
the local correlations c(0) = 0.519(14) at this disorder are
sub-Poissonian due to the repulsive local interactions U .
This value increases towards the Poissonian value above the
critical disorder of the SF to BG transition. Altogether, this
discussion of spectral functions nicely reflects our predictions
of the ME and is consistent with a superfluid ground state
dissolving in favor of a Bose glass phase for increasing
disorder.

VI. SUMMARY

In this work, we have explored the properties of the two-
dimensional BHM with disorder, both in the ground state and
in its FOE quasiparticle spectrum, in order to obtain some in-
sight on the relation between the well-known BG ground-state
phase at moderate disorder and the more elusive localization
phenomena of (noninteracting) many-body QP excitations at
strong disorder. Regarding the BG phase, we find that a sur-
prisingly simple fractal dimension analysis of the mean-field
ansatz already suffices to reveal a critical disorder strength ac-
companied by a finite Edwards-Anderson parameter, implying
the onset of the BG phase. Furthermore, we show that FOE
gives corrections to this result by considering the finite-size
scaling of the lowest energy gaps.
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Regarding the QP excitations of this corrected ground state,
we find QP level spacing statistics that are consistent with
a quasiparticle ME. In the localized part of the spectrum,
fluctuation wave functions have exponential tails which im-
ply exponentially suppressed interactions between localized
quasiparticles reminiscent of the local integrals of motion ex-
pected for many-body localization. An analysis of the spectral
function and dynamic structure factor yields a weak broad-
ening of the spectrum of entangled QP excitations below the
ME while above it they become smeared out over all lattice
momenta. In addition, the static structure factor becomes flat
at the onset of the BG indicating the transition to a phase with
vanishing nonlocal density correlations.

Finally, the FOE method arguably yields a very good ap-
proximation of the ground state and its QP excitations, due
to the observed very low fraction of local fluctuations, the
interaction of which is neglected when deriving the FOE
spectrum. As this holds throughout the whole range of con-
sidered disorder and local interaction values, we expect the
method to be ideally suited to evaluate the dynamics of typical
experimental quenching protocols, for example, in order to

determine the evolution of the entanglement entropy after a
sudden quench of the disorder potential. Furthermore, consid-
ering their interactions the QP modes yield a promising basis
for the construction of LIOMs and to study the stability of the
noninteracting ME.
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