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Pairing and the spin susceptibility of the polarized unitary Fermi gas in the normal phase
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We theoretically study the pairing behavior of the unitary Fermi gas in the normal phase. Our analysis is
based on the static spin susceptibility, which characterizes the response to an external magnetic field. We obtain
this quantity by means of the complex Langevin approach and compare our calculations to available literature
data in the spin-balanced case. Furthermore, we present results for polarized systems, where we complement
and expand our analysis at high temperature with high-order virial expansion results. The implications of our
findings for the phase diagram of the spin-polarized unitary Fermi gas are discussed in the context of the state of
the art.
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I. INTRODUCTION

Pair formation in fermionic quantum matter is at the heart
of a wide range of physical phenomena and pervades physics
at vastly different lengths scales, ranging from ultracold quan-
tum gases to neutron stars. In spin- 1

2 systems with weak
attractive interactions, for example, pairing of spin-up and
spin-down particles at diametrically opposite points of the
Fermi surface (i.e., Cooper pairing) typically leads to a su-
perfluid phase at low enough temperatures, accompanied by
the opening of an energy gap in the quasiparticle spectrum.
Similar conclusions hold for strongly correlated systems,
where pairing and superfluidity have been addressed thor-
oughly in theory [1–20] and experiment [21–32]. A central
open question in this regard is whether signatures of strong
pairing fluctuations survive in the normal, non-superfluid
high-temperature phase, which is often referred to as a “pseu-
dogap regime,” obtaining its name from a (potentially strong)
suppression of the single-particle density of states around the
Fermi surface.

An intriguing system in the above sense is the unitary
Fermi gas (UFG), a spin- 1

2 system with a zero-range attractive
interaction tuned to the threshold of two-body bound-state
formation [33]. This strongly correlated system features non-
relativistic conformal invariance [34] and universal properties
[35,36] that have attracted researchers from several areas
across physics. The thermodynamics of this system has been
investigated via a broad range of theoretical methods [33] and
many of its properties have been measured experimentally
(see, e.g., Ref. [37]). However, a number of open questions
remain, in particular, regarding the appearance or not of the
abovementioned pseudogap [28,38].

*Corresponding author: lukas.rammelmueller@physik.uni-
muenchen.de

There is consensus on the qualitative features of a “pseudo-
gap phase,” which is expected to leave an imprint on quantities
such as odd-even staggering of the energy per particle and
suppression of the spin susceptibility above the critical tem-
perature Tc. However, there is no long-range order parameter
associated with the emergence of a such a behavior. An un-
ambiguous definition of this “phase” therefore does not exist.
The case of the UFG is especially challenging in this regard, as
it is in a strongly correlated nonordered (i.e., non-superfluid)
phase above the critical temperature Tc (see Ref. [39] for a
discussion and Refs. [13,18] for recent reviews). Moreover,
as argued in Ref. [40], the UFG is not described by (normal)
Fermi liquid theory at temperatures between Tc and the Fermi
temperature TF.

Consequently, the debate remains active due to the varying
opinions as to what the magnitude of the various signals for
a “pseudogap phase” should be (e.g., how much suppression
in the density of states or the susceptibility truly constitutes
a pseudogap?). This issue is further complicated by the lack
of a small expansion parameter or effective theory that would
allow to study this regime in a systematic manner. Thus, to
face this challenge and shed light on the pairing properties of
the UFG in the normal phase, one must use nonperturbative
methods that start from the microscopic degrees of freedom,
i.e., ab initio approaches.

In the superfluid, low-temperature phase, pairing is loosely
speaking parametrized by the pairing gap. However, at tem-
peratures above the phase transition, the gap is necessarily
zero in the long-range limit and therefore this quantity does
not allow us to quantify pairing effects unambiguously. Sev-
eral quantities have instead been proposed for that purpose.
A prominent example is the spectral function A(k, ω) which
should be suppressed around the Fermi energy in the presence
of extensive pairing fluctuations. While, e.g., T -matrix studies
report a substantial suppression of spectral weight [1,41], self-
consistent Luttinger-Ward (LW) studies have found almost no
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signature of a pseudogap in this quantity [42]. Notably, the
density of states ρ(ω) = ∫

d3k
(2π )3 A(k, ω) was also computed

via an auxiliary-field quantum Monte Carlo (AFQMC) ap-
proach combined with a numerical analytic continuation to
real frequencies [10]. There, a distinct suppression was found.
However, those results were obtained with a spherical cutoff
in momentum space which could lead to unphysical results
(see Refs. [17,18] for a discussion).

As an alternative probe to study pairing above the super-
fluid transition, one may focus on thermodynamic response
functions, such as the magnetic (or spin) susceptibility χ :

χ ≡
(

∂M

∂h

)
T,V,μ

= β(〈M2〉 − 〈M〉2), (1)

where M = N↑ − N↓ denotes the magnetization of the system.
In the context of cuprate superconductors, it was suggested
that the pairing gap would suppress χ , making it a good
candidate to study pairing in the normal phase [43,44]. Similar
conclusions hold for the specific heat (see, e.g., Ref. [17,18]).

The spin susceptibility allows for a clear definition of a
spin-gap temperature Ts based on the following arguments.
The spin susceptibility vanishes as T → 0 as a consequence
of the presence of a pairing gap in the quasiparticle spectrum
of a fermionic superfluid (or superconductor). At high tem-
peratures, on the other hand, the system enters the Boltzmann
regime and decays following Curie’s law χ = CT −1, where C
is the material-specific Curie constant. Therefore, χ necessar-
ily develops a maximum at some intermediate temperature,
which defines the aforementioned spin-gap temperature Ts

(see Ref. [11] for a discussion). Note that the suppression
of χ in the superfluid phase was dubbed “anomalous” since
the noninteracting case approaches the Pauli susceptibility
χP = 3

2
n
εF

monotonically as T → 0 (where n and εF are the
density and Fermi energy of the noninteracting case, respec-
tively). The spin-gap temperature Ts may be interpreted as
the highest temperature at which pairing correlations may
strongly influence the dynamics of the system. For T > Ts,
the spin susceptibility is dominated by thermal fluctuations
and approaches the noninteracting limit.

In this work, we use the complex Langevin (CL) approach
[45,46] to characterize the spin susceptibility and spin-gap
temperature of the polarized UFG and gain insight into pair
formation above Tc. Previous nonperturbative ab init io in-
vestigations [17,20] have also calculated the susceptibility as
well as odd-even staggering and the single-particle spectrum,
but have focused on the unpolarized case. Here, we review
and comprehensively compare extant susceptibility data for
the unpolarized system and extend the presentation to the
polarized case, showing results for several temperatures and
polarizations. In addition, we validate our findings at high
temperature using a Padé-resummed virial expansion (PRVE)
analysis [47,48]. Finally, we set our findings in context by
examining implications for the phase diagram of the spin-
polarized Fermi gas.

II. MODEL

We consider a spin- 1
2 Fermi gas with a short-range at-

tractive interaction between spin-up and spin-down particles.

The Hamiltonian describing this system (in natural units
h̄ = kB = m = 1) reads

Ĥ = −1

2

∑
s=↑,↓

∫
d3xψ̂†

s (x)∇2ψ̂s(x) − g
∫

d3xn̂↑(x)n̂↓(x),

(2)

where g is the bare coupling, ψ̂†
s (x) and ψ̂s(x) create and

annihilate fermions of spin s at position x, respectively, and
n̂s(x) = ψ̂†

s (x)ψ̂s(x) is the density operator.
Formally, this model is a simple nonrelativistic interacting

field theory which has been widely studied and therefore
many of its gross features are well known. As a function
of the coupling strength, in particular, this model realizes
the so-called BCS-BEC (Bose-Einstein condensate) crossover
[33,49], given by a smooth evolution from a gas of weakly
attractive fermions (BCS regime) to a gas of weakly repulsive
composite bosons (BEC regime), typically parametrized by
the dimensionless parameter (kFas)−1. Here, kF denotes the
Fermi momentum which is determined by the total particle
density n via kF = (3π2n)1/3 and as denotes the s-wave scat-
tering length. When as diverges, the system is at the threshold
of two-body bound-state formation and the scattering cross
section assumes its maximal value (only bounded by unitarity
of the scattering matrix) implying strong interactions. Since
as drops out of the problem in that limit, the density and
the temperature are the only physical parameters determin-
ing the physical behavior. The system is then said to exhibit
universality in the sense that the microscopic details of the
interaction become irrelevant.

The leading instability of the model is toward a super-
fluid state below a (coupling-dependent) critical temperature
Tc throughout the entire BCS-BEC crossover. In the limit
of weak attraction, mean-field theory is applicable and the
situation is well described by BCS theory. In that regime,
pair formation (i.e., the appearance of a pairing gap) and pair
condensation (i.e., the appearance of off-diagonal long-range
order and superfluidity) happen simultaneously, i.e., the so-
called pairing temperature T ∗ is identical to Tc. On the other
side of the resonance associated with the limit of an infinite
s-wave scattering length, the interatomic potential supports
a two-body bound state, such that the relevant degrees of
freedom are bound ↑↓-molecules that form at T ∗ 
 Tc and
condense below Tc to form a superfluid. While the situa-
tion appears to be comparatively clear in the aforementioned
two limits, the situation at unitarity above Tc has remained
ambiguous. In fact, the question of whether strong pairing cor-
relations survive above Tc is intrinsically challenging due to
strong interactions in the unitary limit. Nonperturbative meth-
ods, either stochastic approaches or semianalytic methods
(including resummation techniques) are therefore ultimately
required to analyze the UFG even above the phase transition.

III. MANY-BODY METHODS

In this section we briefly introduce the two theoretical
approaches that we use to analyze the spin susceptibility of
the polarized unitary Fermi gas in the normal phase.
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A. Lattice field theory

To evaluate the thermodynamics of the UFG in a nonpertur-
bative fashion, we use the CL approach. The partition function
is given by

Z = Tr[e−β(Ĥ−μ↑N̂↑−μ↓N̂↓ )], (3)

where β = 1/T is the inverse temperature. Moreover, we have
introduced the chemical potential μs and the particle-number
operator N̂s for the spin projection s. With this as a starting
point, we regularize our Hamiltonian by putting the problem
on a spatial lattice of extent V = Nx × Nx × Nx, where we set
the lattice spacing 
 = 1 for all directions. We also employ
a Suzuki-Trotter decomposition to discretize the imaginary
time direction into Nτ = β/�τ slices, leading to a (3 + 1)-
dimensional space-time lattice of extent N3

x × Nτ . Crucially,
we can now employ a Hubbard-Stratonovich transformation
to rewrite the quartic interaction term in Eq. (2) as a one-body
operator coupled to a bosonic auxiliary field φ. This allows
us to integrate out the fermions and thus express the above
partition function as

Z =
∫

Dφ det (M↑[φ]M↓[φ]) ≡
∫

Dφe−S[φ], (4)

where Dφ = ∏
τ,i dφτ,i is the field integration measure. Note

that the product runs over all space-time lattice points. This in-
tegral is amenable to Monte Carlo (MC) importance sampling
free from the sign problem when det M↑[φ] = det M↓[φ],
i.e., in the SU(2) symmetric case. In the case of unequal spin
populations, which is the case for unequal chemical potentials
in the grand-canonical ensemble, we may resort to the CL
approach. The latter is able to deliver accurate results despite
the possibly severe sign problem, as recently demonstrated for
a variety of nonrelativistic fermionic systems [50–53]. Further
details on the lattice approach to ultracold fermions as well as
on the CL approach can be found in Refs. [45,46,54,55].

To tune the system to the unitary point, i.e., the limit of
infinite s-wave scattering length, we choose the bare coupling
constant g in Eq. (2) such that the lowest eigenvalue of the
lattice two-body problem matches the eigenvalue obtained
from the exact solution in a continuous finite volume, which
is given by Lüscher’s formula [56,57].

In this work, we use periodic boxes of linear extent Nx =
11, which was previously found adequate for the study of
the normal phase of the UFG [52]. The inverse temperature
is set to β = 8.0, such that the thermal wavelength λT =√

2πβ ≈ 7.1 falls in the appropriate window 
 
 λT 
 Nx

for physics in the continuum limit. The temporal discretization
was set to τ = 0.05
2. Note that this choice of lattice param-
eters was previously used in several studies and found to be
suitable [52,58–61]. We fix the adaptive target discretization
of the Langevin time to values in the range �tL = 0.04 to
0.16 and extrapolate (linearly) to the limit �tL → 0. In our
implementation of CL, we also included a regulator term
to suppress uncontrolled excursions of the solver into the
complex plane. The strength of this regulator term can be
quantified in terms of a parameter ξ , which we set to ξ =
0.1 (see Refs. [45,50–53] for a detailed discussion). With
respect to the spin susceptibility, we found that the results
are independent of the regulator within reasonable bounds.

All results presented below reflect averages of approximately
4000 decorrelated samples, which give a statistical uncertainty
on the order of 1–2%.

B. Virial expansion

The dilute limit associated with the limit of vanishing
fugacity z = eβμ → 0 [with μ = (μ↑ + μ↓)/2] can be ad-
dressed using the virial expansion, where the ratio of the
interacting partition function Z to its noninteracting value Z0

is written as a series in powers of z (see Ref. [62] for a review).
More specifically, for an unpolarized system we have

ln(Z/Z0) = Q1

∞∑
n=1

�bnzn, (5)

Here, �bn is the interaction-induced change in the nth virial
coefficient and Q1 = 2V/λ3

T is the single-particle partition
function. While �b2 has been known for arbitrary coupling
strengths since the 1930s [63] (see also Ref. [64]), results for
�b3 only became available in this century [65–70] and those
for �b4 (only at unitarity) within the last decade [71–75], and,
more recently, calculations from weak coupling to unitarity
were extended up to �b5 [47,48]. At a given order n, �bn

accounts for the interaction effects of the n-particle subspace
of the Fock space. For the spin-1/2 system of interest here,
each �bn can be further broken down into polarized contribu-
tions �bm j , with m + j = n, coming from the subspace with
m spin-up particles and j spin-down particles. In this work, we
use the �bn calculated in Ref. [47]. We note that �b21 was
calculated in Ref. [65], and �b31 and �b22 were calculated
in Ref. [73] (see also Refs. [76,77]). These quantities are
essential for our purpose here as they are needed to calculate
the properties of polarized matter. Indeed, in this case, Eq. (5)
becomes

ln(Z/Z0) = Q1

∞∑
n=2

∑
m, j>0
m+ j=n

�bm jz
m
↑ z j

↓, (6)

where zs = eβμs and s =↑ and ↓. Using the knowledge of
�bm j and differentiating with respect to βμs, we obtain ex-
pressions for the density, polarization, compressibility, and
spin susceptibility within the virial expansion. In particular,
the interaction effect on the individual spin particle numbers
is given by

�Ns = Q1

∞∑
n=2

∑
m, j>0
m+ j=n

(mδs↑ + jδs↓) �bm jz
m
↑ z j

↓, (7)

where �Ns = ∂ ln(Z/Z0)/∂ (βμs). From this, one obtains
the particle number of the species associated with spin s as
Ns = N0(zs) + �Ns, where N0(zs) is the particle number for
a noninteracting spinless system at fugacity zs. Using the
latter expressions, the total particle number in the interacting
system is N = N↑ + N↓, the magnetization is M = N↑ − N↓,
and the relative polarization is p = M/N . In the same way, the
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interaction effect on the susceptibility is given by

�χ = λ2
T

8π
Q1

∞∑
n=3

∑
m+ j=n

(m − j)2�bm jz
m
↑ z j

↓, (8)

where χ is obtained from Eq. (1) using M, and M =
∂ ln(Z )/∂ (βh), with h = (μ↑ − μ↓)/2.

Using results up to fifth order, it is possible and benefi-
cial to sum the virial expansion using the Padé resummation
method, as explained in Ref. [48]. Hence, for each physical
quantity, we calculate the coefficients of a rational function
of z,

F (z) = PM (z)

QK (z)
= p0 + p1z + · · · + pMzM

1 + q1z + · · · + qK zK
, (9)

for each fixed value of βh with M + K = nmax. Here, nmax = 5
is the maximum available order in the virial expansion. The
choice of M and K is otherwise arbitrary but we follow the
common practice of selecting M = K if possible or M = K +
1; i.e., we take either the diagonal or one-off-diagonal Padé
approximant. Note that the resummation F (z) is defined such
that the virial expansion is reproduced by expanding F (z) up
to order nmax in z.

IV. NUMERICAL RESULTS FOR THE SPIN
SUSCEPTIBILITY

In this section we present our results for the spin sus-
ceptibility as defined in Eq. (1). To put this quantity in
dimensionless form, we use the Pauli susceptibility χP =
3n/(2εF), which reflects the spin susceptibility of a nonin-
teracting Fermi gas at T = 0, where εF = TF = k2

F/2, kF =
(3π2n)1/3, and n is the total density of the interacting system
at a given value of μ = (μ↑ + μ↓)/2 and h = (μ↑ − μ↓)/2.
The spin-balanced limit corresponds to βh = 0, whereas val-
ues of βh > 0 reflect spin-polarized systems.

In Fig. 1(a), we show our results for the spin susceptibility
as a function of T/TF for βh = 0 (blue squares). We find
that, across all studied temperatures, the spin susceptibility
is lower than that of the ideal Fermi gas (gray dashed-dotted
line). At high temperature, we find excellent agreement with
the third-order virial expansion (dotted line). At even higher
temperature, our results tend to the expected ∼1/T decay
according to Curie’s law.

In addition to our CL results, a variety of other determina-
tions of the spin susceptibility of the balanced UFG is shown
in Fig. 1. Apart from the results from the Nozières-Schmitt-
Rink (NSR) formalism [12], all theoretical approaches are
found to be in agreement in the regime above T/TF � 1.
In the regime Tc/TF < T/TF � 1, curves obtained from the
NSR formalism [12] as well as from T -matrix approaches
[7,11] predict a substantial suppression of χ . Interestingly,
also an AFQMC study in the grand-canonical ensemble [10]
(yellow diamonds) predicts a substantial suppression of χ be-
low T/TF ≈ 0.25, which differs from a more recent AFQMC
study at fixed particle number [17]. This discrepancy was
traced back to the lattice momentum cutoff which appears
to leave a significant imprint in the results: while the earlier
study relied on a spherical cutoff in momentum space, the
latter considered the full Brillouin zone [17,18]. This was

(a)

(b)

FIG. 1. Spin susceptibility χ in units of the Pauli susceptibility
χP as a function of T/TF. The blue (dark) shaded area shows the
superfluid transition temperature in the balanced gas for orientation
(with Tc from experiment [27]), the gray (light) shaded area marks
the maximum of the balanced curve (blue squares) and the dash-
dotted line represents the noninteracting normalized susceptibility.
(a) CL values (squares) for the balanced UFG are compared to and
experimental value [79] (red circle) as well as theoretical results from
LW [8] (green triangles), T-matrix [7] (dark dashed line), extended T-
matrix [11] (red thin solid line), NSR [12] (dark solid line), spherical
cutoff AFQMC [10] (yellow diamonds) and two AFQMC studies
[17,18] (dark diamonds) and [20] (purple octagons). (b) CL results
for the susceptibility for nonzero Zeeman field βh = 0 to 2.0 (bottom
to top lines) along with the corresponding values from the PRVE
(thin solid lines). For comparison, the bare third-order VE is shown
(dotted lines).

confirmed by the recent AFQMC study of Ref. [20]. Our CL
results agree very well with the latter AFQMC studies as well
as with results from studies based on the LW formalism [8,78]
across the entire temperature range (see Fig. 1 for details).

The only experimental value [79] shown in Fig. 1 [depicted
by the red circle in panel (a)] differs by roughly two standard
deviations from the AFQMC results. Very recently, new ex-
perimental data for the spin susceptibility of the UFG became
available [32]. In the corresponding study, consistency with a
mean-field approach was found, suggesting Fermi-liquid-type
behavior. However, the presented values are trap averaged
such that a straightforward comparison to bulk properties as
presented here is not possible (see Appendix A for a compar-
ison of the integrated susceptibility). Finally, all theoretical
values are at odds with a previous experimental determination
of the spin susceptibility [25] (not shown in the plot). This
discrepancy is likely due to trap averaging in the analysis of
the experimental data (see also Ref. [78]).
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Among the aforementioned studies, the two recent
AFQMC determinations, our CL values, and the LW results
all display a very mild variation (on the order of a few percent
at most) of χ/χP as a function of T/TF in a region above Tc,
before decreasing monotonically at high enough temperature.
In other words, χ displays a very broad maximum centered
at the spin-gap temperature Ts > Tc. Notably, these results
clearly deviate from those for the noninteracting gas, which
is a signal of strong interaction effects, even above the su-
perfluid transition. Specifically, in the region around Ts we
have χ/χP � 0.6 for the noninteracting system (for all the
polarizations we considered, see below).

In Fig. 1(b), we show the spin susceptibility for polarized
systems with |βh| � 2.0. At very high temperature T > TF,
the curves for the polarized systems approach those from
the virial expansion (dotted lines, color-coding as for the CL
approach) and eventually agree with the noninteracting limit,
as in the balanced case. Moreover, at temperatures T > Tc,
we find excellent agreement of our CL results at large βh with
those from the PRVE (thin solid lines, color-coding as for CL)
up to fifth order, which is indeed not unexpected as interaction
effects are more suppressed in that region. Said agreement
deteriorates as the unpolarized limit is approached, where cor-
relations are strongest. For βh > 0, we find that the functional
form of χ/χP as a function of T/TF is qualitatively the same
as that for the balanced system. With increasing asymmetry
βh, we observe a mild shift of the spin susceptibility toward
larger values. As mentioned above, this is not unexpected as
the system tends to evolve slowly towards the noninteracting
gas with increasing polarization. However, even for βh = 2.0,
the spin susceptibility of the interacting system still clearly
differs from the one in the noninteracting limit.

Within the accuracy of our study, the aforementioned broad
maximum in χ as a function of the temperature evolves to
a plateaulike feature with increasing imbalance βh. Below
the plateau we find that the spin susceptibility χ decreases
rapidly with temperature, indicating the transition (or rather
a crossover due to the finite system size) into the superfluid
phase. Of course, the suppressed susceptibility by itself does
not yet allow us to make a statement on the phase transition
to the superfluid phase since even a rapid suppression may
be caused by, e.g., the formation of a pseudogap. However,
a peak in the compressibility of the UFG occurs at the tem-
peratures associated with the lower end of the plateaus (for
βh � 1.2) [52] which can be directly related to the transi-
tion temperature. Finally, we observe that, compared to the
balanced case, the rapid decrease of the susceptibility sets
in “delayed” when the temperature is lowered for increasing
βh. Together with the behavior of the compressibility, this
indicates a decrease of the critical temperature with increasing
imbalance (see also our discussion in Sec. V below).

We note that the occurrence of a plateau in χ above Tc is
not observed in studies of the attractive two-dimensional (2D)
Hubbard model where an “anomalous suppression” has been
found [43,44]. However, it should be pointed out that in such
2D models the effective interaction is much stronger than that
in the UFG, in the sense that in 2D a deep two-body bound
state forms even in the absence of a background density.
Similarly, Ref. [20] studied the 3D case for couplings stronger
than the UFG (where a bound state is present at the two-body

level) and found a clear increase in pairing correlations above
the critical temperature Tc.

From our analysis, we conclude that the UFG does not
show an anomalously suppressed spin susceptibility for im-
balances βh � 1.2 in the sense of the attractive 2D Hubbard
model. For βh � 1.2, the UFG may feature a pseudogap
region but its precise limits and characterization cannot be
conclusively studied with thermodynamic probes (e.g., the
spin susceptibility) used in our present work. In the follow-
ing, we relate these findings, as far as possible, to the phase
diagram of the spin-polarized UFG.

V. IMPLICATIONS FOR THE PHASE DIAGRAM

Despite intense theoretical and experimental investigations
during the past two decades, our understanding of the full
phase diagram of the polarized UFG is still incomplete. With
respect to the overall structure of the phase diagram, we
summarize main results obtained from nonperturbative studies
beyond the mean-field approximation [80]. A more complete
discussion of the precise nature of the superfluid phase, in-
cluding potentially occurring exotic superfluids, is beyond this
work (see, e.g., Refs. [3,81–83] for reviews).

A. Overview on the phase structure

In Fig. 2 we consider the phase diagram in two different
forms: Fig. 2(a) depicts the phase diagram as spanned by the
temperature T , measured in units of the chemical potential
μ, and the so-called Zeeman field h, also given in units of
μ. The color coding reflects the phase diagram as obtained
from a functional renormalization group (fRG) study [14],
the black solid line depicts the corresponding second-order
phase transition line between the normal and the superfluid
phase which terminates in a critical point (black dot) where
it meets a first-order transition line (see also Refs. [84,85] for
early studies of nonrelativistic Fermi gases with this approach
and Refs. [86–88] for corresponding reviews). In the balanced
limit (h/μ = 0), the fRG result for the critical temperature
result agrees well with two experimental determinations of
(T/μ)c ≈ 0.4 [23,27]. We add that more recent studies based
on the LW formalism also find this value for (T/μ)c in the
balanced limit [19,89].

While Tc in the balanced case is well understood [90],
much less is known about the critical field strength (h/μ)c at
which the system undergoes a transition from the superfluid
phase to the normal phase in the zero-temperature limit. This
transition is expected to be of first order [14,81–83,89] (see
also Ref. [91] for a recent discussion of quantum Lifshitz
points and fluctuation-induced first-order phase transitions
in imbalanced Fermi mixtures). In this regime of the phase
diagram, the results from fRG [14], experiment [23], and FN-
DMC [92] are in accordance (although not in full quantitative
agreement) but disagree with those from LW theory [89] and
the ε expansion [93] which find a significantly higher critical
value (h/μ)c.

In Fig. 2(b), an experimental measurement of the phase
diagram [color coding as in Fig. 2(a)] is shown in the plane
spanned by the temperature T in units of the Fermi tempera-
ture TF,↑ and the polarization p = (N↑ − N↓)/N↑ + N↓). The
solid black line represents an estimate for the phase transition
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FIG. 2. Phase diagrams of the spin-polarized UFG. (a) Phase diagram spanned by the dimensionless temperature (βμ)−1 and the
dimensionless Zeeman field h/μ. The black solid line depicts the second-order phase transition line from a fRG study [14] where the black
dot represents the location of the critical point. The thick line reflects the spin-gap temperature Ts as obtained from the PRVE along with an
uncertainty estimate (shaded area, see main text). (Right) Phase diagram spanned by T/TF,↑ and the polarization as measured in experiment
[22] (gray squares reflect experimental measurements, thick lines are the inferred phase boundaries) and compared to recent determinations
via LW theory [89,94] (dot-dashed line) as well as ETMA [11] (red dashed line). For the balanced limit Ts is shown as determined via AFQMC
[20] and ETMA [11]. In both panels, squares reflect the maximum of the CL data and thick lines indicate the uncertainty estimate (see main
text). The thin colored lines (color coding as in Fig. 1) reflect the the observed plateau in the spin-susceptibility (βh = 1.2, 1.6, 2.0 from left to
right) plateau in the spin susceptibility. Critical values correspond to experimental values from the MIT group [27] (red triangles) and the ENS
group [23,26] (green triangles), LW results [89] (orange triangle), fixed-node diffusion Monte Carolo (FN-DMC) calculations [92] (dark blue
triangles), ε expansion (purple triangle), and Worm-MC data [95] (light gray-shaded area) [see Appendix B for the corresponding numerical
values]. The black shaded areas in both panels mark potential pseudogap regions (see main text).

line as extracted from an analysis of experimental data for a
trapped gas based a local density approximation (see Ref. [22]
for details). The black dash-dotted line reflects the critical line
from LW theory [89] and a more recent fully self-consistent
T -matrix calculation [94] (both approaches are, in fact, iden-
tical) which agree well with experimental data at |p| = 0.
Although different from the experimental determination at
p > 0, we add that the flatness of the phase transition line at
small polarization observed in the LW studies is in accordance
with Monte Carlo studies based on the Worm algorithm [95]
which cover polarizations |p| � 0.035 (gray shaded area). The
latter study is the only stochastic determination of Tc beyond
p = 0 to date, to the best of our knowledge. Such a weak
dependence of the phase transition line on the polarization is
also suggested by a recent CL study of the compressibility
[52]. Note that there are further studies of the phase struc-
ture of the UFG based on a range of methods. For example,
determinations of the second-order transition line based on
the NSR formalism [12] and extended T-matrix approxima-
tion (ETMA, red dashed line) [96]. Both predict a Tc for the
balanced gas well above T/TF,↑ = 0.2. Moreover, an early RG
study reported quantitative agreement with the experimental
value for the critical temperature in the balanced case as well
as for the location of the critical point [83] (see also Ref. [49]
for a discussion).

At zero temperature, the experimental determination of the
critical polarization pc by the ENS group exhibits a large
uncertainty [23] and therefore does not allow one to discrimi-
nate between state-of-the-art predictions for this quantity from
theory. However, the latter are all well below the mean-field
estimate, which is pc ≈ 0.93 [83].

B. The pseudogap regime

In addition to the occurrence of (potentially inhomoge-
neous) superfluid phases at low temperatures, preformed pairs
in the normal phase could lead to non-Fermi liquid behavior
in some regions of the phase diagram, which we refer to
as the “pseudogap regime” in the following. Here, we relate
our results for the spin susceptibility χ to various regions in
the phase diagram by extracting an estimate for the spin-gap
temperature Ts. The latter is defined to be the maximum of
χ/χP (see Fig. 1 for our results for χ/χP as a function of
the temperature for various values of the Zeeman field h). As
mentioned above, χ/χP exhibits a relatively broad maximum,
which complicates a precise determination of its position.
Nevertheless, a search for such a maximum allows us to
identify the region where χ/χP starts to display an anomalous
suppression, potentially related to the onset of pairing effects.

We begin by analyzing our CL data for |βh| � 0.8. The
maximum of the spin susceptibility obtained with the CL
approach is shown as solid squares in both panels of Fig. 2.
Since the resolution of the possible peak-position is limited by
the grid of input parameters to the simulation (we chose a con-
stant spacing of �βμ = 0.5 for fixed βh), the true maximum
could lie between those points. In order to give an estimate of
the uncertainty of the true maximum we have indicated half
the distance to the neighboring data points with thick lines.
Note that this estimate does not account for statistical and
systematic errors in our CL study. In Fig. 2(b), the original
determination of Ts for the balanced gas from an ETMA cal-
culation [11] as well as from a recent AFQMC study [20] are
shown for comparison. While the spin-gap temperature from
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the former study is found to be higher than the one presented
here (although within the above-described error), it is found
to be lower in the AFQMC calculations.

As mentioned above, for 1.2 � βh � 2.0, the CL data for
the normalized spin susceptibility do not show a distinct max-
imum but rather are characterized by a broad plateau. Towards
lower temperatures, we then observe a rapid decrease which
indicates the onset of the superfluid phase transition. Given
the accuracy of our present data, we refrain from indicating
the positions of the maxima of χ/χP by solid squares as we do
for |βh| � 0.8 but only represent the plateau as solid lines in
both panels of Fig. 2. The lower ends of these lines correspond
to the last data point before the aforementioned rapid decrease
at lower temperatures sets in. In the phase diagram spanned
by the temperature and polarization [Fig. 2(b)], we observe
that the lower ends of the plateaus for βh = 1.2, 1.6, and 2.0
overlap with the superfluid phase boundary obtained from LW
theory [89]. Taking at face value the position of the phase
boundary obtained from LW theory, our CL results suggest
that there is no room for a regime with an anomalously sup-
pressed spin susceptibility in this region of the phase diagram.
We emphasize that the lines associated with the plateaus for
βh = 1.2, 1.6, and 2.0 should not be confused with the thick
solid lines for |βh| � 0.8 which indicate an estimate for the
uncertainty of the spin-gap temperature Ts.

Similarly, in the phase diagram spanned by the temperature
and the Zeeman field [Fig. 2(a)], the lines associated with the
plateaus of the spin susceptibility for 1.2 � βh � 2.0 extend
down to the phase boundary obtained from a fRG study [14].
In the latter study a precondensation regime has been identi-
fied (blue hatched band). In this regime, the gap vanishes in
the long-range limit but “local ordering” is still present on
intermediate length scales, leading to a strong suppression
of the density of states above the superfluid transition. As
discussed in Ref. [14], this precondensation regime may be
used to estimate the emergence of a pseudogap region in the
phase diagram. However, the definition of this regime cannot
be straightforwardly related to the definition of the pseudogap
regime based on the spin susceptibility underlying our present
analysis.

In addition to the CL results above, we have performed the
same analysis for the PRVE. The position of the maximum
of χ/χP as a function of T/TF is indicated by the thick line
(continuous and dashed, see below) in Fig. 2(a). The corre-
sponding uncertainty estimate (dark and light shaded areas,
see below) reflects the distance between the points where
χ/χP is 99.7% of the maximum value. The solid thick line and
corresponding dark shaded area reflect the parameter region
where we expect the PRVE to be quantitatively trustworthy;
in particular, part of the dark shaded area overlaps (and agrees
with) the CL results described above. The dashed thick line
and corresponding light shaded area display the parameter
region where resummation techniques begin to fail due to
strong interaction effects, in particular, at low polarizations.

Judging from our analysis of the spin susceptibility in the
light of other phase-diagram studies, we presently expect that
a notable pseudogap regime may only develop in the regime
βh � 1.2, if present at all. In particular, we do not observe
a pseudogap regime of the form reported for the attractive
Hubbard model [43,44]). Our data are compatible with the

picture of a narrow “pseudogap band” above the superfluid
phase which continuously shrinks as βh is increased until it
eventually disappears. In this scenario one could interpret the
observation of the plateaulike feature in the susceptibility for
βh � 1.2 as the absence of a pseudogap regime in this part of
the phase diagram. The black shaded areas in both panels of
Fig. 2 highlight the most-likely regions in which a pseudogap
may develop, based on our findings.

VI. DISCUSSION AND OUTLOOK

To summarize, we have presented a numerical calculation
of the magnetic susceptibility for the spin-imbalanced UFG
based on the CL approach. In the balanced case, our results
agree with several previous results from the literature across
the entire temperature range in the normal phase. For the spin-
polarized case, we validate the accuracy of these CL results
with a PRVE up to fifth order, with good agreement ranging
from high temperatures until well below TF. Furthermore,
we use this quantity as a probe for the influence of pairing
in the normal phase. Our data show a slight suppression of
χ/χP for small imbalances with a spin-gap temperature well
above Tc. A strong suppression, as it is for instance observed
in 2D Hubbard models superconductors [43,44], is not ob-
served. Nevertheless, the occurrence of a pseudogap regime
for smaller imbalances (βh � 1.2) cannot be ruled out with
our present study.

For βh � 1.2, we report a plateaulike feature of the spin
susceptibility just above the phase transition and a subsequent
abrupt drop at low temperatures. Such a suppression is ex-
pected to eventually occur in the low-temperature limit due to
the formation of a pairing gap. Notably, we find that the onset
of the rapid decrease of the normalized spin susceptibility
χ/χP is shifted towards lower temperatures when βh is in-
creased, which suggests a decrease of the critical temperature
for superfluidity with increased imbalance, in agreement with
previous studies of the phase diagram. In our case, this inter-
pretation is supported by the fact that the position of the lower
end of the plateau in the susceptibility coincides with the peak
of the compressibility [52]. However, for a rigorous determi-
nation of the βh dependence of the critical temperature, a
finite-size scaling analysis as well as an extrapolation to the
zero-density limit (as, e.g., in Ref. [31]) should be performed.

The shrinking of a potential pseudogap regime with
increasing βh deduced from our analysis of the spin suscepti-
bility supports the picture that the nature of the normal phase
above the critical polarization at low temperatures is well
described by Fermi liquid theory. This has been previously
conjectured based on qualitative results from a T -matrix study
[97] as well as FN-DMC [92] and also agrees with exper-
imental findings for large imbalances at low temperatures
[23,24,26]. It must be noted, however, that our present study
cannot be conclusive in this regard as our analysis solely relies
on thermodynamic observables.

In summary, our findings further corroborate that thermo-
dynamic quantities are not ideal probes for pseudogap physics
in the UFG. In particular, these results show that an analysis of
the spin susceptibility and the associated spin-gap temperature
is not sufficient by itself to fully understand pairing effects,
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TABLE I. Selected list of values of critical quantities of the UFG in the grand-canonical and canonical ensembles. Uncertainties are
indicated, where available. Note that the results for the critical temperature Tc, the spin-gap temperature Ts, and the related pairing temperature
T ∗ are the ones for the balanced UFG. Acronyms: FN-DMC, fixed-node diffusion Monte Carlo; auxiliary-field Monte Carlo, AFQMC.

Technique Authors Year Tc/TF pc (βμ)c

(
h
μ

)
c

T ∗/TF Ts/TF

Experiment (MIT) Shin et al. [22] 2008 ∼0.15 ∼0.36 – ∼0.95 – –
Experiment (ENS) Nascimbène et al. [23,26] 2010 0.157(15) 0.33(14) 3.13(29) 0.878(28) – –
Experiment (MIT) Ku et al. [27] 2012 0.167(13) – ∼2.5 – – –
FN-DMC Lobo et al. [92] 2006 – 0.388 – 0.96 – –
ε expansion Nishida and Son [93] 2007 – – – 1.15 – –
Extended T -matrix Tajima et al. [11] 2014 0.21 – – – – 0.37
Functional RG (fRG) Boettcher et al. [14] 2015 – – 2.5 0.83 – –
Luttinger-Ward Frank et al. [89] 2018 0.152 – 2.65 1.09(5) – –
Fully self-consistent T -matrix Pini et al. [19] 2019 0.1505 – 2.658 – 0.183(2) –
AFQMC Richie-Halford et al. [20] 2020 0.16(2) – – – 0.21(3) > 0.24(1)
CL This work 2021 – – – – – 0.33(5)

low-energy excitations, and the potential formation of a pseu-
dogap regime above the critical temperature.

As a consequence for experiments, this suggests that a
more complete characterization of a potential pseudogap
regime is likely best achieved by probing the spectral function
as in Refs. [4,28,38], where a back-bending of the dispersion
relation near kF would indicate pairing effects [33]. However,
these experiments are subject to ambiguous interpretation and
consensus has yet to be reached.

Perhaps a combination with the recent development of flat
trap geometries in ultracold Fermi gases [98,99] will lead to a
more complete understanding of the UFG above the superfluid
transition. Moreover, modern spectroscopic techniques, which
allow one to discern between two- and many-body pairing
in 2D Fermi gases [30], could shed some more light on this
matter. Finally, we note that a viable alternative to spectro-
scopic probes could be the investigation of density-density
correlations in momentum space, the so-called shot-noise,
which exhibits distinct signatures of pairing [53,100]. This is
work in progress.

FIG. 3. Integrated susceptibility χ̄ as numerically obtained in
this work (blue squares) compared to a recent experimental mea-
surement (red circles and pink triangles). For low fugacity (large
negative βμ), also the third-order virial expansion is shown (gray
dashed line).
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APPENDIX A: COMPARISON OF INTEGRATED
SUSCEPTIBILITY

As mentioned in the main text, a recent experimental study
[32] presented trap-averaged data for the spin-susceptibility
of the spin-balanced UFG. For the bulk system, as studied
here via periodic boundary conditions, also the integrated
spin-susceptibility

χ̄ =
∫ μ

−∞
dμ′χ (μ′)λ3

T (A1)

was measured. We show a comparison of our data in the
normal phase (i.e., βμ � 2.5) to this measurement in Fig. 3.
We observe overall good agreement. The error bars of the CL
values reflect linearly propagated statistical errors from the
bare data.

APPENDIX B: LITERATURE DATA FOR CRITICAL
VALUES

In Table I, we summarize values for the critical polarization
pc and the critical magnetic field hc (in units of μ) at zero
temperature together with results for the critical temperature
Tc, the spin-gap temperature Ts, and the related pairing tem-
perature T ∗ in the balanced limit.
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