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Spatial entanglement in interacting Bose-Einstein condensates
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The entanglement between spatial regions in an interacting Bose-Einstein condensate is investigated using
a quantum field theoretic formalism. Regions that are small compared to the healing length are governed by a
nonrelativistic quantum field theory in the vacuum limit, and we show that the latter has vanishing entanglement.
In the opposite limit of a region that is large compared to the healing length, the entanglement entropy is like in
the vacuum of a relativistic theory where the velocity of light is replaced with the velocity of sound and where the
inverse healing length provides a natural ultraviolet regularization scale. Besides the von Neumann entanglement
entropy, we also calculate Rényi entanglement entropies for a one-dimensional quasicondensate.
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I. INTRODUCTION

In the second half of the 1980s it was shown that the vac-
uum state of a relativistic quantum field theory violates Bell’s
inequalities [1–4] and, subsequently, the quantification of en-
tanglement within vacuum states became an important task.
Later it was shown that the entanglement entropy associated to
a spatial region in a relativistic quantum field theory displays
both ultraviolet (UV) and infrared (IR) divergences [5,6].

Initially entanglement in relativistic quantum field theories
was investigated mainly with a view on the black hole infor-
mation paradox [7–9], and more recently in the context of
holography [10,11]. Here we argue that a very similar kind
of entanglement is also at play in interacting Bose-Einstein
condensates when probed at long distances, where it may be
amenable to experimental investigation [12–14].

Formally we may start from the Rényi entanglement en-
tropy which quantifies entanglement between some region A
and its complement region B (such that A and B together
form a Cauchy hypersurface of space-time, for example a
hypersurface of constant time),

Sα (A) = − 1

α − 1
ln Tr

{
ρα

A

}
. (1)

Here ρA = TrB{ρ} is the reduced density matrix for the region
A. The von Neumann entanglement entropy is obtained from
Eq. (1) in the limit α → 1, and can be written as S(A) =
−Tr{ρA ln ρA}. It was observed that the leading UV divergence
of this quantity is proportional to the area of the boundary
that separates regions A and B [8] (see Ref. [15] for a more
detailed discussion and generalization to arbitrary number of
space dimensions).

While it is straightforward to introduce convenient UV
and IR regularizations (such as a spatial lattice and finite
volume), one is ultimately interested in universal quantities
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that are independent of the precise regularization scheme. One
possibility is to take derivatives of Sα (A), for example with
respect to the size of region A, until one arrives at a finite
result; another is to work with relative entanglement entropies
or mutual information, for which at least the UV divergences
cancel out. This is possible because the UV divergent terms
are actually independent of the state.

It was realized that conformal transformations substan-
tially simplify determinations of entanglement entropy on a
technical level. Accordingly, a rather detailed understanding
of entanglement entropy is now available for conformal field
theories [5,16–19]. For example, the entanglement entropy
associated to an interval of length L in a (1 + 1)-dimensional
conformal field theory is given by

S(L) = c

3
ln

(
L

ε

)
+ const (2)

In this equation c is the conformal central charge and ε is a
small length that regularizes the UV divergences. The additive
constant in Eq. (2) is not universal and depends on the details
of the UV regularization. Moreover, one expects this constant
to depend also on the IR regularization and it may even di-
verge logarithmically when the IR regulator is removed.

The issue of IR divergences is actually an interesting one,
and they are so far less studied than the state-independent
UV divergences. Infrared divergences arise typically in the
presence of gapless excitations, or massless particles in
the relativistic jargon, at least in d = 1 + 1 dimensions. In
Ref. [20] it was argued that the homogeneous or zero mode
is actually responsible for IR divergences because its ampli-
tude is not restricted energetically (see also Refs. [21–24] for
related work). Analytic as well as numerical calculations for
free theories showed an infrared divergence attributed to this
mode [15]. In our formalism we find an IR divergence asso-
ciated to a homogeneous mode, as well. We give an intuitive
physical explanation of this phenomenon in Sec. III. As a con-
sequence of gapless zero modes in the theory, even the relative
entropy and mutual information become infrared divergent
quantities; this is discussed in Refs. [8,15,25]. In Ref. [15] the
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infrared divergence of both the mutual information and the
entanglement entropy for a free one-dimensional relativistic
scalar theory was found proportional to

1
2 ln(− ln(mR)), (3)

where m is a small mass with m → 0 and R a characteristic
length scale. Besides introducing a small mass m there are
other ways to regularize the IR sector; for us it will be conve-
nient to introduce an infrared regulator at the momentum scale
μ/L by hand. A finite temperature also provides a physical IR
regulator, as shown in Ref. [26].

In the main part of this work we will calculate the entan-
glement entropy of a nonrelativistic, interacting quantum field
theory describing bosons with contact interactions, in a Gaus-
sian saddle-point approximation to the functional integral.
Fluctuations follow the well-known Bogoliubov dispersion
relation

ω =
√

p2

2M

(
p2

2M
+ 2λρ

)
, (4)

where p and M are the momentum and mass of the condensate
constituents, λ is the interaction coupling constant, and ρ is
the condensate density in number of particles. We note that
one can find two limits of Eq. (4): an effectively relativistic
limit for small momenta, with a linear dispersion relation
ω ≈ cs|p|, and a nonrelativistic free particle limit for high
momenta, ω ≈ p2

2M ; these correspond respectively to large and
small distances compared to the healing length ξ [defined in
Eq. (22) below]. The entanglement entropy in the “relativistic
regime” corresponding to large distances L � ξ is that of a
free quantum field theory, with an induced physical UV cutoff.
This physical cutoff arises from the fact that the theory be-
comes nonrelativistic for large momenta. The transition scale,
as well as the scale of the natural UV regularization, is given
by ξ . Interestingly, for small interval length L � ξ we find
vanishing entanglement entropy. This can be understood from
the vacuum limit of the nonrelativistic quantum field theory,
which does not show any entanglement between regions.

Because the low-momentum modes behave like a relativis-
tic theory of massless particles, we also observe an infrared
divergence which we regularize by introducing a lower mo-
mentum bound at the scale μ/L where μ is a small number.
For nonrelativistic atoms, this is ultimately also related to the
size of the entire condensate, because no real divergence is
expected for a finite number of atoms. For finite nonrelativistic
systems the entanglement entropy would be finite in both the
UV and the IR.

In this work we implement the approach developed in
Ref. [27] based on the symplectic eigenvalues formalism (see
also Refs. [28,29]), through which one can calculate entan-
glement for Gaussian states in a quantum field theory, solely
in terms of the connected two-point correlation functions. In
order to better arrange our results and compare them to the
noninteracting case, we discuss first briefly the entanglement
entropy for noninteracting Bose-Einstein condensates in num-
ber eigenstates in Sec. II. Subsequently in Sec. III we perform
another warmup exercise by investigating qualitatively entan-
glement through long-range phase correlations, specifically
the homogeneous phonon mode.

In Sec. IV we then discuss first the field-theoretic formal-
ism for the quantification of entanglement, and in Sec. V
we specialize to Bogoliubov theory. This anticipates already
some specific results: the entropy of the entire, unbounded
system, the noninteracting limit, and the vacuum limit of
vanishing condensate.

In Sec. VI we specialize to an effectively (1 + 1)-
dimensional situation with a quasicondensate. In Sec. VI A
we calculate the matrix elements needed for our entropy cal-
culation (this is the main technical work), while Sec. VI B is
devoted to our numerical results. An analysis of the results
is given there, and our conclusions are presented in Sec. VII.
In the Appendix we present technical details about a Fourier
expansion scheme with arbitrary boundary conditions that we
use for our numerical calculations.

II. ENTANGLEMENT IN A NONINTERACTING
BOSE-EINSTEIN CONDENSATE

As a preparation to the quantum-field-theoretic discus-
sion for an interacting Bose-Einstein condensate let us recall
here the entanglement properties of finite, noninteracting
Bose-Einstein condensates at fixed particle number, which
can be described in a quantum-mechanical formalism [30].
Entanglement of these systems has been proved useful for
phase resolution, interferometry, entanglement swapping, and
creation of macroscopic superpositions (see, for example,
Refs. [31–34]).

The basic idea can be formulated in rather general terms.
We consider a situation with appropriate boundary conditions
such that the single-particle Hamiltonian has a unique ground
state with homogeneous amplitude. An example would be
a box with periodic boundary conditions and a unique zero
mode. A many-body state with N noninteracting atoms has a
ground state where all of them occupy the zero mode.

Now let us split the volume of the box into two parts, A
and B, with relative volumes w = VA/V and 1 − w = VB/V .
For a single particle one has now a probability w to find it
in region A and 1 − w to find it in B. For N particles one
expects a binomial distribution of the occupation numbers.
The N-particle state can therefore be written as

|ψ〉 =
N∑

k=0

√(
N

k

)
wk (1 − w)N−k eiαk |k〉A|N − k〉B, (5)

where |k〉A denotes a state with k particles in a homogeneous
state in region A and similarly |N − k〉B for region B. The
phases αk are not determined at this point. We assume a
normalization 〈m|n〉 = δmn for both subsystems.

One may now consider the density matrix for the entire
state ρ = |ψ〉〈ψ |, as well as the reduced density matrix for
subsystem A,

ρA = TrB{ρ} =
N∑

k=0

(
N

k

)
wk (1 − w)N−k|k〉〈k|, (6)

where we have dropped the index A on the right-hand side for
convenience. We observe that ρA describes now a mixed state,
except in the limiting cases w = 1, w = 0, and N = 0. These
limiting cases correspond either to VA = V , V → ∞, or a
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vanishing condensate. Otherwise, the particle number in
region A is fluctuating, and the local state is a mixed super-
position of the different possibilities.

Because Eq. (6) is diagonal, one can immediately de-
termine the corresponding von Neumann entropy as the
information entropy of a binomial distribution. For large N
the latter can be written as

S(ρA) = 1
2 ln(2πeNw(1 − w)) + O(1/N ). (7)

A limiting case is that of a very large particle number N → ∞
and a small volume VA, where w → 0 in such a way that the
expected particle number in region A given by M = wN re-
mains finite. In that case the binomial distribution approaches
a Poisson distribution,

(
N

k

)
wk (1 − w)N−k → Mk

k!
e−M . (8)

For M � 1, the entropy of the Poisson distribution can then
be approximated as

S(ρA) = 1

2
ln(2πeM ) − 1

12M
− 1

24M2

− 19

360M3
+ O(1/M4). (9)

More generally, the entropy of the Poisson distribution leads
to the expression

S(ρA) = M[1 − ln(M )] + e−M
∞∑

k=0

Mk ln(k!)

k!

= M[1 − ln(M )] + ln(2)

2
M2 − ln(4/3)

6
M3 + O(M4).

(10)

Note that the power series on the right-hand side in the first
line has infinite radius of convergence. For M � 1 it is dom-
inated by the first few terms as written out in the second
line. We observe that this result has still a dependence on the
particle number in region A but does otherwise not depend on
w anymore. For M → 0 one finds S(ρA) → 0 as expected.

For states with a fixed number of noninteracting parti-
cles in the ground state, the entanglement is essentially an
entanglement of particle number. Indeed, if one measures
particle number in subsystem A as k, one can immediately
infer the particle number in the complement subsystem B as
N − k. One can actually extend the above considerations to
states where particle number is fluctuating, such as coher-
ent states [30]. A coherent state describing a noninteracting
Bose-Einstein condensate at nonzero chemical potential, but
zero temperature, shows then no entanglement between spa-
tial regions at all. This is in agreement with the fact that no
information can be gained from measuring particle number
locally in a subregion. We will see below that things change
again in the presence of interactions and that the ground state
of an interacting Bose-Einstein condensate shows sizable en-
tanglement between regions.

III. PHASE ENTANGLEMENT THROUGH
THE HOMOGENEOUS MODE

As a further preparatory step for the field-theoretic discus-
sion of entanglement entropy, it is useful to consider another
simplified model. Here we consider a Bose-Einstein conden-
sate of infinite extent at finite density, with specific interest in
the homogeneous or zero-wave-number phonon mode. Let us
anticipate the following action, which describes Bogoliubov
phonons in the low-momentum or long-distance regime,

S =
∫

d4x

{
1

2
(∂tχ )2 − 1

2
c2

s ( 	∇χ )2

}
. (11)

The field χ = ϕ2/
√

2λρ is essentially the phase of the order
parameter field [see Eq. (19) for the precise definition of
ϕ2]. Equation (11) describes phonons propagating with the
velocity of sound cs as defined in Eq. (23). The Hamiltonian
corresponding to Eq. (11) can be written as

H =
∫

d3 p

(2π )3

{
1

2
π (−p)π (p) + 1

2
χ (−p) c2

s p2 χ (p)

}
, (12)

where π = ∂tχ is the conjugate momentum of χ . While
modes with p2 > 0 have a Hamiltonian (and therefore a
ground state) similar to the quantum-mechanical harmonic
oscillator, the situation is different for the homogeneous zero
mode with p = 0. The latter has a Hamiltonian as a free parti-
cle in quantum mechanics, H = const × π2. This implies that
the phase field χ is not constrained in the ground state; it can
have any (time-independent) value or superposition thereof.
This is directly related to the phenomenon of spontaneous
symmetry breaking and long-range order.

Let us now discuss what this implies from an entanglement
point of view. While all excited states are suppressed in the
limit of vanishing temperature, the homogeneous part of χ is
unconstrained by energy minimization. Therefore the vacuum
or ground state can be a superposition of different values. Such
a situation can lead to a large amount of entanglement between
regions. While the homogeneous part of the phase is a priori
in a superposition, it is fixed everywhere once it is measured
in one region. In this sense, different regions are therefore
entangled [35]. Moreover, because χ is a continuous degree of
freedom, the corresponding entanglement entropy can become
formally infinite.

We have identified here a physical reason for the infrared
divergence in the entanglement entropy which we will also ob-
serve in our field-theoretic calculations below. Note that this
phenomenon would be absent in the presence of a small en-
ergy gap, for example, when one replaces c2

s p2 → c2
s p2 + m2.

For a field-theoretic calculation of entanglement entropy also
the modes in the vicinity of p = 0 are expected to be impor-
tant. More detailed calculations are needed to show for which
theories, and for which states, infrared divergences actually
occur.

We should also remark here that in a realistic physics sit-
uation there might be strong decoherence effects that destroy
the macroscopic entanglement associated to the homogeneous
part of the phase field χ . It should then be treated as a classical
variable, the value of which is chosen by spontaneous symme-
try breaking as in a classical treatment of the phenomenon.
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IV. SPATIAL ENTANGLEMENT OF QUANTUM FIELDS

We now wish to investigate spatial entanglement in an
interacting Bose-Einstein condensate from a quantum-field-
theoretic point of view. In a quantum field theory, the degrees
of freedom are of course the fields themselves. The density
matrix for the state at some time t becomes a functional of the
bosonic eigenstates φ+ and φ−, expressed as ρ[φ+, φ−]. One
may define a projection operator P such that Pφ(x) = φ(x) for
positions x in region A and Pφ(x) = 0 for positions x in the
complement region B. The reduced density matrix for region
A reads then

ρA[φ+, φ−]

= 1

ZB

∫
Dφ̃ ρ[Pφ+ + (1 − P)φ̃ , Pφ− + (1 − P)φ̃],

(13)

where ZB is chosen such that Tr{ρA} = 1.
The von Neumann entanglement entropy would then be

calculated through SA = −Tr{ρAlnρA}. Typically, a concrete
determination of the entanglement entropy for a quantum field
theory in a generic state ρ is difficult. Some simplification
takes place when ρ[φ+, φ−] is a Gaussian density matrix,
i.e., when ln(ρ[φ+, φ−]) is a quadratic functional of the fields
φ+ and φ−. For an interacting Bose-Einstein condensate, the
equilibrium state is not exactly Gaussian, but a Gaussian ap-
proximation is expected to be close to reality. Many of the
equilibrium properties can be well described by Bogoliubov
theory in terms of approximately free Bogoliubov quasipar-
ticles. This is in particular a good approximation when the
interaction strength is not too strong. In the following we will
investigate the entanglement entropy within the Bogoliubov
approximation, which corresponds to a Gaussian density ma-
trix.

As one may expect, in the case of Gaussian states, the
entropy depends only on connected two-point correlation
functions. This situation, and the corresponding mathematical
formalism, are discussed in detail in Ref. [27]. For the present
paper we can restrict to a particular situation, namely, where
the mixed statistical correlation function of fields φ and their
conjugate momenta π vanish, 〈φπ + πφ〉 = 0. In this case,
the Rényi entropy can be expressed through

Sα = 1

(α − 1)

{
Tr ln

((√
a + 1

4
+ 1

2

)α

−
(√

a + 1

4
− 1

2

))α}
. (14)

One can take the limit α → 1 of the above expression and see
that the von Neumann entropy is obtained through

S = Tr

{(√
a + 1

4
+ 1

2

)
ln

(√
a + 1

4
+ 1

2

)

−
(√

a + 1

4
− 1

2

)
ln

(√
a + 1

4
− 1

2

)}
. (15)

The matrix a is given in position representation by

a(t, x, y) =
∫

z
〈φ(t, x)φ(t, z)〉〈π (t, z)π (t, y)〉 − 1

4
δ(x − y),

(16)
where the correlation functions correspond to the statistical
equal time correlation functions (see below for a more detailed
discussion). The eigenvalues of matrix a are related to the
symplectic eigenvalues λ j of the covariance matrix defined by
the two-point correlation functions of a Gaussian state. This
relation is further discussed in Ref. [27], and reads formally
a jk = (λ2

j − 1/4)δ jk , once the matrix a is diagonalized.
A very interesting feature of Eq. (15) is that it holds both

for the global von Neumann entropy as well as for entangle-
ment entropies. The only difference in the latter case is that
the matrix or operator trace in Eq. (15) and the integral over
positions in Eq. (16) need to be restricted accordingly.

V. NONRELATIVISTIC BOSONIC QUANTUM
FIELD THEORY

We now consider the following microscopic action for a
complex nonrelativistic scalar field ϕ(x),

S[ϕ] =
∫

d4x

{
ϕ∗

(
i∂t + ∇2

2M
− V0

)
ϕ − λ

2
(ϕ∗ϕ)2

}
. (17)

Here V0(x) is an external potential and λ is a (bare) contact
interaction parameter. At finite density V0 can be replaced by
the chemical potential, V0 → −μ.

While Eq. (17) represents an interacting quantum field
theory that cannot be solved exactly, a good qualitative, and at
sufficiently small coupling λ also quantitative, understanding
can be gained from a Gaussian or steepest-descent approx-
imation. First, the action (17) has a stationary point with
homogeneous background field ϕ(x) = φ0 when

ρ = φ∗
0φ0 = μ

λ
. (18)

Furthermore, if one considers perturbations to this back-
ground field,

ϕ = φ0 + [ϕ1 + iϕ2]/
√

2, (19)

one obtains for the action to quadratic order in these perturba-
tions

S[ϕ1, ϕ2] =
∫

d4x

{
μρ + λ

2
ρ2 − 1

2
(ϕ1, ϕ2)

×
(− ∇2

2M + 2λρ ∂t

−∂t − ∇2

2M

)(
ϕ1

ϕ2

)}
. (20)

When written in momentum space, Eq. (20) directly yields the
inverse propagator for Bogoliubov theory, so that the propaga-
tor reads

G(p) = 1

−ω2 + p2

2M

( p2

2M + 2λρ
)
( p2

2M iω

−iω
( p2

2M + 2λρ
)).

(21)
The propagator has poles on the Bogoliubov dispersion rela-
tion (4). A characteristic length scale is given by the healing
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length,

ξ = 1√
2Mλρ

. (22)

For momenta that are small compared to the inverse healing
length |p| � 1/ξ the dispersion relation is linear, ω ≈ cs|p|,
while it becomes quadratic, ω ≈ p2

2M , for large momenta |p| �
1/ξ . Note also that in the low-momentum regime, correspond-
ing to the long-distance regime for the propagator, we have
a dispersion relation as for massless relativistic particles, but
involving instead of the speed of light the velocity of sound:

cs =
√

λρ

M
. (23)

Furthermore, from Eq. (20) we obtain the conjugate momenta
of the field ϕ1 and ϕ2, respectively,

π1(x) = δS

δϕ̇1(x)
= ϕ2(x), π2(x) = δS

δϕ̇2(x)
= −ϕ1(x).

(24)

This shows that in the low-momentum or long-distance
regime one can expect the theory to be equivalent to a rela-
tivistic theory with a single real massless scalar field φ = ϕ1,
while ϕ2 is simply its conjugate momentum.

A. Spectral density and statistical correlation functions

It is also convenient to introduce the spectral density
ρi j (ω, p) for the different field components such that the prop-
agator can be written as

Gi j (p0, p) =
∫ ∞

−∞
dω

ρi j (ω, p)

ω − p0
, (25)

from which one can determine the spectral correlation func-
tion given by (we use the notation of Ref. [37])

�
ρ
i j (p) = 2πρi j (p0, p). (26)

By substituting in Eq. (25) with the corresponding el-
ements of Green’s function (21) one obtains the four
components of the spectral density matrix:

ρφφ (ω, p) = 1

2

√
p2

p2 + 4Mλρ

[
δ

(
ω −

√
p2

2M

(
p2

2M
+ 2λρ

))
− δ

(
ω +

√
p2

2M

(
p2

2M
+ 2λρ

))]
,

ρππ (ω, p) = 1

2

√
p2 + 4Mλρ

p2

[
δ

(
ω −

√
p2

2M

(
p2

2M
+ 2λρ

))
− δ

(
ω +

√
p2

2M

(
p2

2M
+ 2λρ

))]
,

ρφπ (ω, p) = − ρπφ (ω, p) = i

2

[
δ

(
ω −

√
p2

2M

(
p2

2M
+ 2λρ

))
+ δ

(
ω +

√
p2

2M

(
p2

2M
+ 2λρ

))]
. (27)

Given the spectral densities, one can immediately deter-
mine various versions of Green’s functions, such as retarded,
advanced, time ordered, and anti-time ordered (see, e.g.,
Ref. [37]). Moreover, in thermal equilibrium, statistical corre-
lation functions �S

i j (p) are related to the spectral correlation
functions �

ρ
i j (p) through the fluctuation-dissipation relation,

�S
i j (p) = [

1
2 + nB(p0)

]
�

ρ
i j (p), (28)

with the Bose-Einstein thermal distribution function nB(ω) =
1/(eω/T − 1). Note that the square bracket on the right-hand
side of Eq. (28) is antisymmetric under p0 → −p0.

Specifically we find the equal-time statistical correlation
functions

�S
φφ (x − y) =

∫
p

[
1

2
+ n(p)

]√
p2

p2 + 4Mλρ
eip(x−y),

�S
ππ (x − y) =

∫
p

[
1

2
+ n(p)

]√
p2 + 4Mλρ

p2
eip(x−y), (29)

where n(p) is now the Bose-Einstein distribution evaluated on
the dispersion relation (4). The mixed correlation functions
�S

φπ and �S
πφ vanish at equal times because the corresponding

spectral density is symmetric under p0 → −p0.

B. Entanglement entropy for three limiting cases

1. Homogeneous Bose-Einstein condensate without boundaries

As a preview exercise it is interesting to calculate the en-
tropy of the complete system, i.e., a Bose-Einstein condensate
at T = 0, in the ground state with no boundaries. In this case
one has vanishing occupation number for phonons, n(p) = 0,
and the matrix a is given by

a(x, y) =
∫

z
�S

φφ (x, z)�S
ππ (z, y) − 1

4
δ(x − y)

=
∫

p
eip(x−y)�S

φφ (p)�S
ππ (p) − 1

4
δ(x − y) = 0, (30)

which enforces a vanishing entropy S = 0. Allowing a non-
vanishing occupation number for phonons such that n(p) 
=
0, one finds instead the corresponding entropy for a free
gas of quasiparticles. If one considers instead an entangle-
ment entropy for some subregion A, the correlation functions
�S

φφ (x, y) and �S
ππ (x, y) do not change, but the position space

integrals need to be restricted to region A. This will lead to a
nonvanishing result even at T = 0.

2. Noninteracting Bose-Einstein condensate in a coherent state

Another interesting limit is the entanglement entropy of
a Bose-Einstein condensate in a coherent state at T = 0 for
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vanishing interaction λ = 0. The statistical equal-time corre-
lation functions (29) simplify to

�S
φφ (x − y) = �S

ππ (x − y) = 1
2δ(x − y), (31)

so that the matrix a results in

a(x, y) =
∫

z∈A
�S

φφ (x, z)�S
ππ (z, y) − 1

4
δ(x − y) = 0. (32)

This leads to vanishing entanglement entropy for any choice
of region A. This result has been obtained by different means
in Ref. [30]. Note that the conclusion would be different for a
number eigenstate in a finite volume as discussed in Sec. II.

3. Fluctuations on top of the vacuum

Another interesting limit to study is the one of a nonrel-
ativistic quantum field theory in vacuum, i.e., without any
particles. In that case one has ρ = φ∗

0φ0 = 0 and the statistical
correlation functions of the fluctuating fields are again of the
form (31), implying a vanishing entanglement entropy for
any choice of region A. This is an interesting result: while
the entanglement entropy is typically ultraviolet divergent for
a relativistic quantum field theory, it vanishes for a nonrel-
ativistic quantum field theory in the vacuum limit. In the
nonrelativistic theory, all nonvanishing contributions to the
entanglement entropy must be due to a nonvanishing number
of particles.

Another interesting conclusion can be drawn from this
finding: in a nonrelativistic quantum field theory the entan-
glement entropy does not have any ultraviolet divergences,
at least at Gaussian level. The reason is here that for very
large spatial momenta the dispersion relation always becomes
ω(p) → p2/2m as in the vacuum state, and the latter is not
entangled.

VI. ENTANGLEMENT ENTROPY IN AN EFFECTIVELY
ONE-DIMENSIONAL SITUATION

Up until now no assumptions were made regarding the
shape of region A or even the number of space dimensions.
In any case one could determine the quantum-field-theoretic
entanglement entropy for a Gaussian state from Eqs. (15)
and (16) with the appropriate choice of correlation functions
and operator traces. To do such calculations in practice can
be technically challenging because to compute the logarithm
appearing in Eq. (15), the matrix a must be diagonal, and
traces in functional spaces can be also difficult to take. One
strategy would be to work with a lattice regularization, as has
been done for relativistic field theories [15]. In order to obtain
the appropriate correlation functions one typically discretizes
the entire theory on a spatial lattice and eventually takes the
infinite volume and continuum limit numerically.

Here we follow a somewhat different strategy and aim at
a calculation of the operator traces directly for region A. To
this end we introduce an appropriate mode expansion for this
finite region. The advantage is then that this expansion can be
truncated for numerical calculations at a large enough wave
number (corresponding to a short distance regularization) and
the remaining calculations can be done numerically in the
resulting finite space. The concrete design of the mode ex-
pansion scheme is not always straightforward. In particular,

the fields in region A do not fulfill definite boundary condi-
tions, and accordingly no such boundary conditions should be
assumed for the mode expansion. We discuss a specific
scheme for a one-dimensional interval in the Appendix.

For higher-dimensional situations such as a three-
dimensional cube, one could use an adaptation of the given
scheme. The numerical effort would increase because one
would need an appropriate quantum number for each of the
spatial dimensions. Another interesting situation would be
one where region A corresponds to a ball of some radius
R. Here it would be convenient to work with spherical co-
ordinates and to use angular harmonics for the two angles
and an adaptation of the basis in the Appendix for the radial
direction. As a consequence of SO(3) rotation symmetry, the
two-point correlation functions that enter Eq. (16) can depend
only on coordinate differences on the unit sphere S2, and in
the appropriate Fourier representation a would be diagonal
with respect to the quantum numbers l, m conjugate to angles.
However, the correlation function would still be nondiagonal
with respect to the quantum numbers conjugate to radius r.

For all possible shapes of region A, the entanglement de-
pends also on the characteristic size L of the region. The
general expectation is that for large size L � ξ compared
to the healing length ξ one has an entanglement entropy in
an interacting Bose-Einstein condensate as in a relativistic
quantum field theory, but with an ultraviolet momentum reg-
ulator given by 1/ξ . In the present work we concentrate on
establishing this numerically and in finer detail for a one-
dimensional interval, region A, while we leave further studies
of more complex and higher-dimensional regions for the
future.

While restricting the considerations in Secs. V and VI to
only one spatial dimension of infinite extent leads to techni-
cal simplifications, it has the conceptual drawback that real
Bose-Einstein condensation does not exist there. Indeed, the
more important role played by (hydrodynamic) fluctuations in
lower dimensions destroys proper long-range order [38,39].
In a strictly one-dimensional situation, the Bogoliubov-type
theory introduced in Sec. V is therefore not valid. How-
ever, the low-momentum excitations are still sound excitations
or phonons [40] with a linear dispersion relation, while at
very high momentum it must become quadratic. Furthermore,
even though the order parameter might be vanishing for a
one-dimensional scenario, it is shown in Ref. [40] that Bo-
goliubov’s approximation to the dispersion relation is valid
for a weakly interacting, high-density system. In the interme-
diate region, however, the dynamic structure function differs
substantially from the Bogoliubov result (see, e.g., Ref. [41]).

Given these remarks, in the following we will determine
the entanglement entropy for a one-dimensional quasicon-
densate within the Bogoliubov approximation described in
Sec. V. On the one hand, this is a preparation for an in-
vestigation of more general regions in higher-dimensional
setups, and on the other hand, it is also an interesting ap-
proximation to which more elaborate calculations of the
one-dimensional interacting Bose gas can be compared. For
the α = 2 Rényi entropy a numerical calculation of the en-
tanglement entropy within the Lieb-Liniger model is already
available [42]. As we will discuss below, our calculations
agree rather well with the results reported in Ref. [42], which
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can be seen as an a posteriori justification for the Bogoliubov
approximation.

In the following we specialize therefore to a one-
dimensional space and study how a subregion A (an interval)
of length L is entangled with its complement, the infinite space
of the real axis without region A. On the technical level, we
work with operators (or generalized matrices) a(x, y), where
x, y ∈ A, and we will represent these operators in a specifically
designed expansion basis, as described in the Appendix.

A. Matrix amn

In the following we calculate the entanglement entropy for
the vacuum state within Bogoliubov theory. The starting point
is the matrix of correlation functions in Eq. (16) which we will
determine in the form amn, where m and n are mode indices
according to the expansion introduced in the Appendix. While
details are given there, let us anticipate here that the scheme
expands functions f (x) on the interval x ∈ (0, L) as

f (x) = 1

L

[
f−1 + f0

2x − L

L
+

∞∑
n=1

fn sin

(
nπ

L
x

)]
(33)

[see Eq. (A12)].
It is convenient to start out with the momentum representa-

tion of the equal-time statistical correlation functions given by
Eq. (29) [we concentrate on the ground state where n(p) = 0].
To do so we translate these correlation functions to m, n space
by making use of the kernels t̃n(p) and s̃n(p) obtained in the
Appendix. This means that the matrix elements amn can be
written as (we use the abbreviation

∫
p = ∫ ∞

−∞ d p/2π )

amn + 1

4
δmn =

∞∑
l=−1

[
�S

φφ

]
ml

[
�S

ππ

]
ln

=
∞∑

l=−1

∫
p

∫
q

s̃m(p)�S
φφ (p)t̃l (p)s̃l (q)�S

ππ (q)t̃n(q)

=
∫

p

∫
q

s̃m(p)
1

2

√
p2

p2 + 2/ξ 2
PL(p, q)

× 1

2

√
q2 + 2/ξ 2

q2
t̃n(q), (34)

using a projector to region A in momentum space, PL(p, q),
as defined in the last step of Eq. (A31). We can explicitly
calculate the entries of Eq. (34) by integrating first over q,
which has no poles on the real axis, so that we can slide the
contour slightly below and integrate

Ia
0 (p) = 1

2

∫
q

e−i(p−q)ε

i(q − p)

√
q2 + 2/ξ 2

q2
t̃n(q), (35)

by closing the contour above, and

Ib
0 (p) = 1

2

∫
q

ei(p−q)(L+ε)

i(p − q)

√
q2 + 2/ξ 2

q2
t̃n(q), (36)

by closing below the real axis. The poles’ contribution from
Eq. (35) at q = p simply gives

Ia
0 (p)poles = 1

2

√
p2 + 2/ξ 2

p2
t̃n(p), (37)

so that when inserting back in the expression for amn, Eq. (34),
we get the contribution from poles,

[amn]poles = 1

4

∫
p

s̃m(p)t̃n(p) − 1

4
δmn = 0. (38)

This term above would lead to a vanishing entanglement en-
tropy.

Now we take into account the branch cuts in the inte-
grals (35) and (36). To do so we start by rotating q → −iq = y
and implement this change of variable in both expressions, so
that Eq. (35) becomes

Ia
0 (p) = − 1

4π
e−ipε

∫ −i∞

i∞
idy

e−yε

y + ip

√
2/ξ 2 − y2

−y2
t̃n(iy),

(39)
which now closes to the right, and Eq. (36) is written as

Ib
0 (p) = 1

4π
eip(L+ε)

∫ −i∞

i∞
idy

ey(L+ε)

ip + y

√
2/ξ 2 − y2

−y2
t̃n(iy),

(40)
which closes to the left. The total branch cuts contribution is
therefore given by

I0(p)bc = 1

2π

∫ √
2/ξ

0
dy e−yε

√
2/ξ 2 − y2

y

×
[

e−ipε

y + ip
+ (−1)n eip(L+ε)

ip − y

]
t̃n(iy). (41)

Here we have used that −e−yLt̃n(−iy) = (−1)nt̃n(iy). By tak-
ing the limit ε → 0 in the above expressions we arrive at

amn = 1

4π

∫ √
2/ξ

0
dy

√
2/ξ 2 − y2

y

∫
p

s̃m(p)

√
p2

p2 + 2/ξ 2

×
[

1

y + ip
+ (−1)n eipL

ip − y

]
t̃n(iy). (42)

On a next step we calculate

I1(y) =
∫

p
s̃m(p)

√
p2

p2 + 2/ξ 2

[
1

y + ip

]
(43)

and

I2(y) =
∫

p
s̃m(p)

√
p2

p2 + 2/ξ 2

[
eipL

ip − y

]
(44)

first for the case m = −1. We see that

I2(y)
∣∣
m=−1 =

∫
p

1

ipL

√
p2

p2 + 2/ξ 2

[
eipL − 1

ip − y

]
= −I1(y)

∣∣
m=−1

(45)

has no poles on the real axis, so we integrate Eq. (45) by
taking the contour slightly below, and closing above—note
that y ∈ (0,

√
2/ξ ) guarantees that there are also no poles

on the imaginary axis. In an analogous procedure to the one
before, Eq. (45) is integrated to the right of the complex plane
to give the branch contribution,

I2(y)|m=−1 = 1

πL

∫ √
2/ξ

0

dx√
2/ξ 2 − x2

[
e−xL − 1

x + y

]
. (46)
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In this way one arrives at the matrix row a−1n,

a−1n = 1

2π2L

∫ √
2L/ξ

0
dȳ

∫ √
2L/ξ

0
dx̄

1

ȳ

√
2(L/ξ )2 − ȳ2

2(L/ξ )2 − x̄2

×
[

1 − e−x̄

x̄ + ȳ

]
t̃n

(
i
ȳ

L

)
, (47)

setting ȳ = yL and x̄ = xL.
In a similar manner one calculates for m = 0

I1(y)|m=0 =
∫

p

[
2

(pL)2
[e−ipL − 1] − 1

ipL
[e−ipL + 1]

]

×
√

p2

p2 + 2/ξ 2

[
1

y + ip

]
= I2(y)|m=0, (48)

which can again be integrated through a contour closing above
the real axis. By rotating p → −ip = x the contour closes
to the right and captures the branch cut contribution, which
leads to

a0n = − 1

2π2L

∫ √
2L/ξ

0
dȳ

∫ √
2L/ξ

0
dx̄

1

ȳ

√
2(L/ξ )2 − ȳ2

2(L/ξ )2 − x̄2

×
[

2

x̄

[
e−x̄ − 1

x̄ + ȳ

]
+ 1 + e−x̄

x̄ + ȳ

]
t̃n

(
i
ȳ

L

)
. (49)

Finally, for m � 1 we obtain

amn = m

2πL

∫ √
2L/ξ

0
dȳ

∫ √
2L/ξ

0
dx̄

x̄

ȳ(x̄ + ȳ)

×
√

2(L/ξ )2 − ȳ2

2(L/ξ )2 − x̄2

[
1 − (−1)me−x̄

(mπ )2 + x̄2

]
t̃n

(
i
ȳ

L

)
. (50)

In all cases m and n have to be of the same parity for amn not
to vanish.

One can integrate the above expressions for amn numer-
ically, diagonalize the latter matrix for a chosen (truncated)
matrix dimension, and derive the entanglement entropy
through Eq. (15) for an increasing value of L/ξ . An important
thing to highlight is that the matrix row am(−1) has divergent
elements for all (odd) m, as y → 0 in the integral. This di-
vergence calls for an infrared cutoff μ to be set by hand, as
follows:

am(−1) = m

4π

∫ √
2L/ξ

μ

dȳ
∫ √

2L/ξ

0
dx̄

x̄

ȳ(x̄ + ȳ)

×
√

2(L/ξ )2 − ȳ2

2(L/ξ )2 − x̄2

[
1 − (−1)me−x̄

(mπ )2 + x̄2

]
[1 + e−ȳ],

(51)

while all other matrix elements remain finite. Note that n =
−1 corresponds to a homogeneous mode and the infrared
regulator μ introduced in Eq. (51) removes small imaginary
momenta |p| < μ/L. For an intuitive argument for the appear-
ance of infrared divergences see Sec. III.

B. Numerical results

In the following we present our numerical results for the
entanglement entropy as calculated with the method described

FIG. 1. Rényi entanglement entropies Sα as a function of the
interval length in units of the healing length x = L/ξ in logarithmic
scale. We compare different values of α, including the von Neu-
mann entanglement entropy S = Sα=1 as a special case. We find a
crossover behavior from vanishing entanglement entropy for small
intervals x = L/ξ � 1 (the “nonrelativistic” region) to a logarithmic
dependence at large x = L/ξ � 1 (the “relativistic” region). For the
slope at the relativistic region we recover the result of conformal field
theory calculation [19,42] [see Eq. (54)]. To obtain finite results we
have set an infrared regulator μ = 10−5 as introduced in Eq. (51).
Our results were obtained with the numerical scheme described in
Sec. VI A, through diagonalizing the matrix amn for a (truncated)
matrix dimension dM = 100.

above. In Fig. 1 we show the Rényi entanglement entropy

Sα = − 1

α − 1
ln Tr

{
ρα

A

}
, (52)

as a function of x = L/ξ , where ρA is the reduced density
matrix for the interval of length L. Besides α = 1 correspond-
ing to the von Neumann entanglement entropy, we also show
the results for α = 2, α = 3, α = 4, and α = 10. All these
results have been obtained from Eq. (14) where the matrix
a is evaluated in the Fourier expansion scheme introduced
in the Appendix, and truncated to a finite matrix dimension
dM = 100. The infrared regulator parameter introduced in
Eq. (51) has been set here to μ = 10−5. (The dependence on
dM as well as on μ will be discussed below.)

Qualitatively one observes in Fig. 1 a crossover behavior
from a vanishing entanglement entropy Sα = 0 when the in-
terval is small compared to the healing length L/ξ � 1, to
a logarithmically increasing entanglement entropy for L/ξ �
1. One may understand this as a crossover from a vacuumlike
entanglement entropy as in a nonrelativistic quantum field the-
ory (which in fact vanishes) for L/ξ � 1, to the vacuumlike
entanglement entropy in a relativistic situation for L/ξ � 1.

In the “relativistic region” our numerical result is well
represented by the behavior

Sα ∼ bα ln(L/ξ ) + cαμ, (53)

where the coefficient bα matches the result of conformal field
theory calculations [19]

bα = c

6α
(α + 1), (54)
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FIG. 2. Parameter cα,μ as introduced in Eq. (53) and describing
the offset of the entanglement entropy in the relativistic region, as a
function of the infrared regulator scale μ. We compare two values for
α. The dependence of cα,μ on μ is rather weak and one finds roughly
cα,μ ≈ 1 for reasonable values of μ.

with a central charge c = 1. The coefficient bα is entirely
determined by the relativistic regime and independent of the
infrared regulator μ. In contrast, the offset parameter cαμ

depends on both the parameter α and the infrared regulator
scale μ and is shown in Fig. 2. From Eq. (53) it is clear that the
value of cαμ determines where precisely the crossover from
nonrelativistic to relativistic entanglement entropy is located.
However, from Fig. 2 one can see that cαμ is close to unity for
reasonable values of μ so that the transition takes place around
x = L/ξ = e−cαμ/bα ≈ e−1/bα ≈ 1. Furthermore, as α → ∞,
bα converges to 1/6, while cαμ is finite and regulator depen-
dent, in particular cαμ ∼ 0.4 for μ = 10−5; this defines the
asymptotic behavior of Sα .

In Fig. 3 we show our numerical result for the von Neu-
mann entanglement entropy S as a function of x = L/ξ for

FIG. 3. Von Neumann entanglement entropy as a function of the
interval length in units of the healing length x = L/ξ . We chose
here μ = 10−5 and vary the dependence on the (truncated) matrix
dimension dM . The results agree to reasonable accuracy, showing that
the numerical scheme introduced in Sec. VI A indeed converges in
this sense.

FIG. 4. Von Neumann entanglement entropy S1 as a function of
the interval length in units of the healing length x = L/ξ for different
values of the infrared regulator μ as introduced in Eq. (51). In the top
graph we compare the numerical result to an analytic approximation
S1 = 1

3 ln(x) + c1μ for the relativistic region, where c1μ is as shown
in Fig. 2. In the bottom graph, we show the transition region between
the nonrelativistic and relativistic regimes and compare them to the
analytic approximation S1 = 1

2 ln(h1μx + 1), with h1μ related to c1μ

through Eq. (56).

different choices of the (truncated) matrix dimension dM . One
can see that the numerical result agrees reasonably well for
dM = 10, dM = 20, and dM = 100, which shows that the ex-
pansion scheme proposed in Eq. (33) and developed in more
detail in the Appendix works well and leads to convergent
results for the entanglement entropy. For the numerical cal-
culations shown in Figs. 1 and 2, as well as for all further
results discussed below, we have fixed dM = 100 so that cor-
relation functions are represented by 100 × 100 matrices. For
the result shown in Fig. 3 we have set the infrared regulator to
μ = 10−5.

It is also interesting to investigate how the entanglement
entropy depends on the infrared regulator scale μ. In Fig. 4 we
show the von Neumann entanglement entropy S1 as a func-
tion of x = L/ξ for different choices of μ. Interestingly, for
increasing μ one finds that the crossover from nonrelativistic
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FIG. 5. Rényi entanglement entropy for α = 2, for different
choices of the infrared regulator μ. In this case the slope at the
relativistic region is 1/4, in accordance with conformal field theory
calculations [see Eq. (54)]. The transition regime between the non-
relativistic and relativistic regions can be approximated by Eq. (55)
with parameter hαμ, related to the offset of the entanglement entropy
through Eq. (56). In particular h2μ = −19 ln(7μ)/51.

vanishing entanglement entropy to a relativistic behavior is
moved to larger values of L/ξ , but the dependence is only
weak. For very small values μ � 10−5 one can observe that
a transition region between nonrelativistic and relativistic be-
havior builds up, which we show in the the bottom graph in
Fig. 4. The functional form in this transition region might be
described with reasonable accuracy by

Sα ≈ 1
2 ln(hαμx + 1), (55)

with α = 1 in this particular case. The parameter hαμ is cho-
sen so that the values for the entanglement entropy calculated
through Eqs. (53) and (55) coincide at L = ξ , namely,

cαμ = 1
2 ln(hαμ + 1). (56)

This gives, for instance,

h1μ = −32 ln(3μ)/51, h2μ = −19 ln(7μ)/51. (57)

Relation (56) implies that the entropy on both regions can be
fitted by only one free parameter, which depends on the value
of the chosen regulator μ.

We also observe that Eq. (55) together with hαμ ∝ − ln(μ)
and x = L/ξ leads to the same dependence on the infrared
regulator as in Eq. (3). It is therefore likely that one must
attribute the behavior of the entanglement entropy in the
transition region between the nonrelativistic and relativistic
regime for μ → 0 to the entanglement of the homogeneous
mode. We should note that the dependence of Sα on μ is
double logarithmic, and therefore so weak that it is unlikely
to be of relevance for experiments.

In Fig. 5 we investigate the α = 2 Rényi entanglement
entropy and its dependence on the infrared regulator μ. For
large x = L/ξ we find here the behavior S ≈ ln(x)/4 + c2μ,
while for the intermediate x = L/ξ region the ansatz S ≈
ln(h2μx + 1)/2 gives a reasonably good description, at least
when μ � 10−5.

Our result for the α = 2 Rényi entanglement entropy can
be compared with a calculation for a similar setting using
the Lieb-Liniger model [42]. More specifically, Ref. [42] has
investigated a situation with a fixed number of particles in a
ring with periodic boundary conditions. This is in contrast to
our calculation for fixed chemical potential corresponding at
T = 0 to a coherent state. Nevertheless, for x = L/ξ � 1 we
find the same logarithmic increase of entanglement entropy as
Ref. [42] corresponding to the conformal field theory predic-
tion in Eqs. (53) and (54). The differences in the setup explain
why the result of Ref. [42] and ours differ somewhat in the
region L/ξ � 1. While we obtain there S2 = 0, the result of
Ref. [42] approaches a functional form that can be understood
in terms of a quantum-mechanical calculation for vanishing
interaction λ as described in Sec. II. For the transition region
to the relativistic regime, as well as in this regime, our result
agrees rather well with the one of Ref. [42] which is based
on a more sophisticated approximation to the ground state of
interacting bosons in one spatial dimension.

VII. CONCLUSIONS

We have investigated here spatial entanglement in an
interacting Bose-Einstein condensate. The result shows an
interesting crossover between two limits that are actually both
interesting on their own. First, for spatial regions that are small
compared to the healing length ξ = 1/

√
2Mλρ we find that

the entanglement entropy approaches zero. This corresponds
to the entanglement entropy of the vacuum state for a non-
relativistic quantum field theory. That nonrelativistic quantum
field theories have in their vacuum state a vanishing entangle-
ment entropy is interesting, because that differs greatly from
the vacuum state of relativistic quantum field theories, where
the entanglement entropy is actually ultraviolet divergent.
Second, for regions that are large compared to the healing
length, the entanglement entropy for the ground state of an
interacting Bose-Einstein condensate behaves in fact like in a
relativistic theory, where the sound velocity cs replaces the
velocity of light, and with a natural ultraviolet momentum
cutoff given by the inverse healing length 1/ξ .

This result is particularly interesting because it shows
how one can use the Bose-Einstein condensate for quantum
simulations of particular aspects of relativistic quantum field
theories. While an experimental investigation of the entan-
glement entropy seems difficult or out of reach for most
fundamental relativistic quantum field theories, the situation
is very different for analog systems such as Bose-Einstein
condensates of ultracold quantum gases. Experimental control
is already rather good there—and still getting better.

The result is also interesting from a theoretical perspec-
tive, since it shows how a natural and physical ultraviolet
cutoff for the entanglement entropy can actually arise in a
quantum field theory that is relativistic in the soft regime.
In the short-distance or ultraviolet regime of the regularized
theory, Lorentz boost symmetry is replaced by Galilean boost
symmetry. It might be interesting to explore further whether
this insight helps to understand entanglement-related prob-
lems further, such as the black hole information paradox or
the entropy of de Sitter space. A rather interesting perspec-
tive is here again that simulations with analog systems are

043327-10



SPATIAL ENTANGLEMENT IN INTERACTING … PHYSICAL REVIEW A 103, 043327 (2021)

possible, where the space-time metric is replaced by an acous-
tic metric [43].

Other conclusions can be drawn on a more technical level.
In particular we have developed a scheme by which the en-
tanglement entropy of a continuous variable system can be
calculated from correlation functions within region A only.
While the scheme for discrete systems has been already devel-
oped and discussed in, for example, Refs. [15,28], working in
the continuum limit involves a specifically designed Fourier-
type expansion scheme as presented in the Appendix. The
information about the exterior enters here in fact only through
the boundary conditions, precisely as one would expect. The
computation and numerical effort needed for this scheme is
moderate—all our calculations have been done on a desktop
computer within a few hours. In a next step it might actually
be interesting to develop an effective action for region A and
the correlation functions therein, which would have to involve
an appropriate boundary action.

An interesting issue that warrants further study is presented
by the infrared divergences of entanglement entropy in the
presence of massless particles or gapless excitations in the
spectrum. We associate them to entanglement of the homo-
geneous part of the phase. In general, the infrared divergences
are interesting also because they depend on the specific state.

In summary, the spatial entanglement properties of an
interacting Bose-Einstein condensate are actually very inter-
esting from a quantum-field-theoretic point of view, and we
are looking forward to further investigations—both theoreti-
cally and experimentally.
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APPENDIX: FOURIER TRANSFORM ON A FINITE
INTERVAL WITH ARBITRARY BOUNDARY CONDITIONS

In this Appendix we develop a Fourier expansion scheme
on a finite interval that does not make any definite assumptions
about boundary conditions such as, e.g., periodic, Dirichlet,
or von Neumann. This is needed to represent correlation func-
tions on a finite interval efficiently.

1. Fourier transform on the interval [0, π]

Let us first consider the finite and closed interval [0, π ].
We want to construct a Fourier-type expansion on this interval
that does not assume periodic, Dirichlet, or von Neumann
boundary conditions. We explore the ansatz

f (z) = f−1 + f0
2z − π

π
+

∞∑
n=1

fn sin (nz), (A1)

which has the following properties:

(i) On the boundaries we have f (0) = f−1 − f0, f (π ) =
f−1 + f0, and vanishing contributions from fn with n � 1.

(ii) One may decompose f (z) = f+(z) + f−(z) into a
symmetric and an antisymmetric part with respect to reflec-
tions on the point z = π/2,

f+(z) = f+(π − z) = f−1 +
∑
n odd

fn sin (nz),

f−(z) = − f−(π − z) = f0
2z − π

π
+

∑
n even

fn sin (nz).

(A2)

(iii) For the derivatives one has

f ′(z) = 2

π
f0 +

∞∑
n=1

fnn cos (nz),

f ′′(z) = −
∞∑

n=1

fnn2 sin (nz), (A3)

and similar for higher-order derivatives.
(iv) The expansion coefficients can be obtained from f (z)

through the relations

f−1 = 1
2 [ f (0) + f (π )], f0 = 1

2 [− f (0) + f (π )], (A4)

and for n � 1

fn = 2

π

∫ π

0
dz

[
f (z) − f−1 − f0

2z − π

π

]
sin(nz). (A5)

For odd n � 1 this simplifies to

fn = 2

π

[
−2

n
f−1 +

∫ π

0
dz f (z) sin(nz)

]
, (A6)

while for even n � 2 one obtains

fn = 2

π

[
2

n
f0 +

∫ π

0
dz f (z) sin(nz)

]
. (A7)

Note that we have a linear relation between the function f (z)
in position space and the expansion coefficients fn, which
provide a variant of a Fourier space representation.

Let us define sn(z) according to

s−1(z) = 1, s0(z) = 2z − π

π
,

sn(z) = sin(nz) for n � 1. (A8)

This allows us to write

f (z) =
∞∑

n=−1

fnsn(z), (A9)

for z in the interval [0, π ].
Similarly, we can define the integration kernels tn(z)

through

t−1(z) = π

4
[δ(z)+ δ(z− π )], t0(z) = π

4
[−δ(z)+ δ(z − π )],

tn(z) =
[
−1

n
δ(z)+ (−1)n

n
δ(z− π )+ sin(nz)

]
for n � 1.

(A10)
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One has then

fn = 2

π

∫ π+ε

0−ε

dz f (z)tn(z). (A11)

With Eqs. (A9) and (A11) it is now possible to translate be-
tween the continuous position or x space and discrete Fourier
or n representation.

The ε shift of the boundaries is necessary to make clear
that the distributions δ(z) and δ(z + π ) must be included in
the integral. Keeping this in mind, we will drop all ε’s when
no further clarification is important.

2. Extension to interval [0, L]

Let us now extend the expansion developed above to posi-
tions x on an interval [0, L] with length 0 < L < ∞. To that
end we will use the linear coordinate transformation x = L

π
z.

Using the kernels (A8) we write

f (x) = 1

L

∞∑
n=−1

fn sn

(xπ

L

)

= 1

L

[
f−1 + f0

2x − L

L
+

∞∑
n=1

fn sin
(nπ

L
x
)]

. (A12)

The factor 1/L has been introduced because this convention
has the advantage that for L → ∞ one has the limiting behav-
ior

1

L

∞∑
n=1

fn sin
(nπ

L
x
)

→ 2i
∫ ∞

0

d p

2π
f̃ (p) sin(px) (A13)

with fn = i f̃ (p) = −i f̃ (−p) for p = nπ
L . The right-hand side

of Eq. (A13) is of course just the standard Fourier transform.
The inverse relation using the kernels (A10) is given by

fn = 2L

π

∫ π

0
dz f

(Lz

π

)
tn(z) = 2

∫ L

0
dx f (x) tn

(xπ

L

)
. (A14)

Note that one can alternatively expand a function in position
space through the basis tn,

f (x) = 1

L

∞∑
n=−1

f̄n tn
(xπ

L

)
, (A15)

with the inverse relation

f̄n = 2
∫ L

0
dx f (x) sn

(xπ

L

)
. (A16)

Inserting Eq. (A14) in Eq. (A12) and vice versa, one
finds the completeness and orthogonality relations (for x, y ∈
[0, L])

δ(x − y) = 2

L

∞∑
n=−1

tn
(yπ

L

)
sn

(xπ

L

)

= 2

L

∞∑
n=−1

sn

(yπ

L

)
tn

(xπ

L

)
, (A17)

and

δmn = 2

L

∫ L

0
dx sm

(xπ

L

)
tn

(xπ

L

)

= 2

L

∫ L

0
dx tm

(xπ

L

)
sn

(xπ

L

)
. (A18)

These relations allow to translate chains of operators from
position space to the discrete Fourier representation. For ex-
ample, the trace of an operator can be evaluated in different
representations,

tr{O} =
∫ L

0

∫ L

0
dx dy O(x, y)δ(x − y)

= 2

L

∫ L

0

∫ L

0
dx dy O(x, y)

∞∑
n=−1

sn

(xπ

L

)
tn

(yπ

L

)

=
∞∑

n=−1

Onn, (A19)

where we use

Omn = 2

L

∫ L

0
dx

∫ L

0
dy sm

(xπ

L

)
O(x, y)tn

(yπ

L

)
. (A20)

Alternatively one can also use

Omn = 2

L

∫ L

0
dx

∫ L

0
dy tm

(xπ

L

)
O(x, y)sn

(yπ

L

)
, (A21)

and the operator trace becomes tr{O} = ∑
n Onn.

3. Relation to continuous Fourier transform

It is useful to relate the discrete Fourier representa-
tion (A12) to a standard continuous Fourier transform on the
real axis,

f (x) =
∫

p
eipx f̃ (p). (A22)

We use here the abbreviation
∫

p = ∫ ∞
−∞

d p
2π

. Specifically, one

would like to express the coefficients fn in terms of f̃ (p),

fn = 2
∫ L

0
dx f (x)tn

(xπ

L

)
=

∫
p

f̃ (p)t̃n(p). (A23)

This uses the kernels

t̃n(p) = 2
∫ L

0
dx eipxtn

(xπ

L

)
. (A24)

Concretely one finds

t̃−1(p) = L

2
[1 + eipL], t̃0(p) = L

2
[−1 + eipL],

t̃n(p) = 2L

π

[
−1

n
+ (−1)n

n
eipL

]

+ 2
∫ L

0
dx eipx sin

(nxπ

L

)
for n � 1. (A25)

Similarly we use kernels

s̃n(p) = 1

L

∫ L

0
dx e−ipxsn

(xπ

L

)
. (A26)
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We can then write

Omn =
∫

p

∫
q

s̃m(p)Õ(p, q)t̃n(q). (A27)

Concretely we find

s̃−1(p) = 1

ipL
[eipε − e−ip(L+ε)], (A28)

s̃0(p) = 2

L2

[
e−ip(L+ε) − eipε

p2

]

−
(

L + 2ε

L

)
1

ipL
[e−ip(L+ε) + eipε],

s̃n(p) = 1

L

∫ L

0
dx e−ipx sin

(nxπ

L

)
for n � 1. (A29)

Furthermore, by combining Eqs. (A18), (A24), and (A26) one
can see that∫

p
s̃m(p)t̃n(p) = 2

L

∫ L

0
dx sm

(xπ

L

)
tn

(xπ

L

)
= δmn, (A30)

while with Eqs. (A17), (A24), and (A26) one arrives at

PL(p, q) =
∞∑

n=−1

t̃n(p)s̃n(q)

= 2

L

∞∑
n=−1

∫ L

0
dx eipxtn

(xπ

L

) ∫ L

0
dy e−iqysn

(yπ

L

)

=
∫ L

0
dx ei(p−q)x = ei(p−q)(L+ε) − e−i(p−q)ε

i(p − q)
.

(A31)

This last expression can be understood as a projection operator
that is unity in the region (0, L) and zero outside, when written
in momentum space.
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