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Collisionless sound of bosonic superfluids in lower dimensions
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The superfluidity of low-temperature bosons is well established in the collisional regime. In the collisionless
regime, however, the presence of superfluidity is not yet fully clarified, in particular in lower spatial dimensions.
Here, we compare the Vlasov-Landau equation, which does not take into account the superfluid nature of
the bosonic system, with the Andreev-Khalatnikov equations, which instead explicitly contain a superfluid
velocity. We show that recent experimental data of the sound mode in a two-dimensional collisionless Bose
gas of 8’Rb atoms are in good agreement with both theories, but the sound damping is better reproduced by
the Andreev-Khalatnikov equations below the Berezinskii-Kosterlitz-Thouless critical temperature 7, while
above T, the Vlasov-Landau results are closer to the experimental ones. For one-dimensional bosonic fluids,
where experimental data are not yet available, we find larger differences between the sound velocities predicted
by the two transport theories and, also in this case, the existence of a superfluid velocity reduces the sound

damping.
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I. INTRODUCTION

According to Landau [1], the liquid helium below the crit-
ical temperature is characterized by a superfluid component
and a normal component. This idea was inspired by similar
models used for superconductors [2] and superfluids [3]. In
the standard hydrodynamic treatment of a neutral superfluid
[4-6] the normal component is supposed to be in the col-
lisional regime. The very special case of the collisionless
superfluid helium-4, where the normal component is in the
collisionless regime was analyzed by Andreev and Khalat-
nikov [7]. In the collisionless regime [5,8] the dimensionless
parameter wt, is such that wz, > 1, where 7, is the collision
time of quasiparticles [8] and w is the frequency of a generic
macroscopic oscillation traveling along the fluid. Usually z,
grows by decreasing the temperature 7', and at extremely
low temperatures one expects that collisionless phenomena
dominate the dynamics of superfluids and, more generally,
the dynamics of quantum liquids. Indeed, the Andreev and
Khalatnikov [7] collisionless approach is in full agreement
with experimental measurements [9] of the sound velocity of
helium-4 for the temperature below 0.4 K. In general, depend-
ing on size and density, the system can be in the collisionless
regime also far from zero temperature [4—8]. Actually, natural
systems as ionized plasmas do exist which, due to the velocity
dependence of the collision frequency, become collisionless
in the opposite regime of very high temperature [10].

The interest in collisionless superfluids has been renewed
by a recent experiment [11], where the sound mode was
measured in a uniform quasi-two-dimensional (2D) Bose gas
made of 8’Rb atoms. The experimental data of the speed of
sound are in good agreement with theoretical results [12,13]
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based on the Vlasov-Landau equation [14,15] (which is sub-
stantially equivalent to the random-phase approximation [16])
for neutral collisionless bosons. There are, however, some
discrepancies between the experimental data of sound damp-
ing and the prediction of the Vlasov-Landau equation [12].
Very recently it has been shown [17] that the second sound of
modified two-fluid hydrodynamic equations, which incorpo-
rate the dynamics of the quantized vortices, reproduce quite
well the experimental sound velocity of Ref. [11]. However,
in this dynamical Kosterlitz-Thouless theory [17] there is a
fitting parameter in the dielectric function which makes this
theory not really predictive. In Refs. [12,13] the superfluid
nature of the system is not taken into account: The superfluid
velocity v,(r, ¢) does not appear and the phase-space distribu-
tion f(r, p,t) of particles is used instead of the phase-space
distribution fu,(r, p, t) of quasiparticles.

In this paper we investigate the collisionless sound mode
of bosonic quantum gases both in two and one spatial di-
mensions. We compare the Vlasov-Landau equation, which
does not take into account the superfluid nature of the neutral
bosonic system, with the Andreev-Khalatnikov equations [7],
which instead explicitly contain a superfluid velocity. We
find that the behavior of the speed of sound obtained with
the two approaches is similar but the experimental data of
sound damping [11] in a 2D collisionless Bose gas are closer
to the theoretical predictions based on Andreev-Khalatnikov
equations, below the Berezinskii-Kosterlitz-Thouless critical
temperature 7, [18,19]. In 1D the superfluidity is much more
elusive [20], but it could be experimentally found at low tem-
perature for finite-size systems where phase slips are inhibited
[21]. For the collisionless 1D Bose gas we show that the
speed of sound predicted by the two transport theories is quite
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different. The damping rates of the sound velocities are in-
stead very close to each other, but also in this 1D case
the presence of a superfluid velocity suppresses the sound
damping.

II. VLASOV-LANDAU THEORY OF NEUTRAL
COLLISIONLESS BOSONS

The equilibrium distribution of a weakly interacting gas of
D-dimensional neutral bosons, each of them with mass m, is
given by

1

2
gﬁ(%ﬂnoﬂt) 1

Jo(p) = ; D

where u is the chemical potential, fixed by the condition ny =
f dVy fo(p) with ny the total number density at equilibrium,
dV, = dPp/(2nh)P, and p = |p|. Here, we assume a weakly
interacting bosonic gas with zero-range interaction of strength
g. Notice that, because n is constant, introducing the effective
chemical potential i = p — gno, fo(p) can also be interpreted
as the distribution of noninteracting bosons.

The interaction strength g appears also in the out-
of-equilibrium mean-field external potential Upe(r,?) =
g [ dVy f(xr,p,t), where f(r,p,1) is the out-of-equilibrium
distribution function, which is driven by the following mean-
field collisionless Vlasov-Landau equation,

(3 + Ry VUni(r, 1) - Vp)f(r, p.1)=0, (2
at m

where V = (0, 9y, 0;) and V= (3,,, dp,, dp, ). As previ-
ously stressed, the equilibrium interaction term gng is not
essential in Eq. (1) because it can be absorbed in the definition
of w. Instead, the nonequilibrium interaction term gn(r,t)
withn(r, t) = f dVy f(r, p, t)is crucial in the Vlasov-Landau
equation (2). We observe that in the three-dimensional case
one must use 2gn(r, t) above T, because the exchange term
in the thermal component is responsible for doubling the
value of the density fluctuations [12]. For two-dimensional
bosonic systems the absence of the factor 2 is justified not
only close to zero temperature but also above the Berezinskii-
Kosterlitz-Thouless transition due to the persistence of a
quasicondensate regime [22,23].

Linearized Vlasov-Landau equation

Starting from the Vlasov-Landau equation (2) and setting
f@ep.1) = fo(p) + f(pre T, 3)

where fy(p) is the equilibrium distribution and the plane-wave
fluctuations with amplitude f(p) are supposed to be small
with respect to the equilibrium distribution, we get the fol-
lowing linearized equation,

(@—p-K)f(p)+ g/ dVy f(pk - Vpfo(p) =0. (4

From this expression one gets an implicity formula for the
collisionless (zero-sound) velocity uy = w/k, namely

l_g/dvazo, 5)

P-n—1u

where n = k/k with k = |k|. Thus, linearizing Eq. (2) around
the equilibrium configuration one obtains a plane-wave solu-
tion with frequency w and wave vector k such that w = uyk,
where uj is the speed of sound and k = |k|. The determination
of this complex quantity u, requires nontrivial integrations in
the complex domain of Eq. (5) [24]. For analytical and numer-
ical details, see Appendix A. In general, the frequency » and,
correspondingly, the velocity uy are complex numbers: The
real parts represent the actual propagation frequency/speed,
whereas the imaginary part is the damping rate.

III. ANDREEV-KHALATNIKOV THEORY OF NEUTRAL
COLLISIONLESS SUPERFLUIDS

Let us now consider a D-dimensional collisionless su-
perfluid made of identical bosonic particles of mass m. At
thermal equilibrium the system is characterized by the total
mass density po = ps0 + 0.0 Where oy is the superfluid mass
density and p, is the normal mass density. At fixed oo both
pso and p,o depend on the absolute temperature 7. In par-
ticular, the normal mass density p,o can be obtained from
the equilibrium distribution fyp o(p) of quasiparticles [1] as

puo = —3 [ dVp p* i with p = |p| and

fqp,O(p) = (6)

ePEIP.p0]l — 1
where 8 = 1/(kgT ) with kg the Boltzmann constant and E (p)
is the spectrum of quasiparticles. Here, we assume the Bogoli-
ubov spectrum [25] of a weakly interacting bosonic gas with
zero-range interaction of strength g, given by

2 /2
Elp, po] = \/ o <”— + 2_gp0)_ @
m\2m m
Notice that, in the most general case, the Bogoliubov spectrum
(7) has a temperature dependence [26], which is not included
in our approach.

Within the Andreev and Khalatnikov theory [5,7,8], the
collisionless superfluid is characterized by three dynami-
cal variables: the phase-space distribution of quasiparticles
Jap(r, p, 1), the local mass density p(r, t), and the superfluid
velocity v,(r, t). There are three coupled partial differential
equations. One is the collisionless Vlasov-Landau equation
for the distribution of quasiparticles,

0
(5 +Vo(Elp, pr, 0]+ V6, 1) - p) - ¥

_V(E[pv ,O(I', t)] + Vs(rv t) : p) ° Vp)fqp(r’ pv t) = 0,

®)

where the term v,(r, ¢) - p in Eq. (8) is due to the fact that the
energy of quasiparticles is obtained in a frame of reference at
rest, in which the superfluid velocity is vy(r, ) [8]. There is
also the equation of continuity,

dp(r,t
o(r )JrV

a9 : (,0(1', 1)vi(r, l)+/dePfqp(l'» p; t)) =0,

)
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and it is important to observe that in front of v,(r, ¢) it appears
p(r, t). Finally, there is an equation for the superfluid velocity
v,(r, t), which reads

av,(r, 1)
ot *

+ / av, %’:f“mﬁlp(r, p,z)} =0, (10)

2 /2 9
Elp. p(r.1)] = \/é’—m (5_,” + fp(r, t)), (1)

and o the chemical potential of the system at zero tem-
perature (i.e., T = 0). The Landau-Vlasov equation (2) can
be formally recovered from Eq. (8) setting v,(r,¢) = 0 and
expanding Eq. (11) for p?/(2m) > (2g/m)p(r,t). In this
regime the mean-field force of Eq. (8) is —VE([p, p(r, t)] =~
—gVn(r,t) withn(r, t) = p(r, t)/m.

V[lvs(l’,t)z | Holp(r, D
2 m

where

Linearized Andreev-Khalatnikov equations

Similarly to the linearized Vlasov-Landau equation, also
the linearized Andreev-Khalatnikov equations around the
equilibrium configuration admit plane-wave solutions with
frequency w and wave vector k such that w = upk with ug
the corresponding speed of sound. We linearize the Andreev-
Khalatnikov equations setting

fo(@®. P, 1) = fopo(p) + fp(@)e® =", (12)
p(r,t) = po + pe®r—n, (13)
vi(r, 1) = 0 + v, /KT, (14)

where the plane-wave fluctuations are supposed to be small
with respect to the equilibrium quantities. It follows that the
linearized equations of motion are given by

7 d
[ = VpE(p) - klfgp(P) + VoE(p) - k%
dE
(ﬁp Ry ) =90, (15)
a),b_pOkﬁs—k‘/depf;p(p)zo’ (16)
v ar LE)
_wvy+k<%ﬁ+/dvpfqpo(p) ),0
dE

+k/dV (p)fqp(p) a7

where Py is the pressure at zero temperature. Equations
(16) and (17) contain respectively the terms [ dV, p fqp and

f dVy fqp 00— & E(p ) Both terms may be computed from Eq. (15);

thus any dependence from fqp,o disappears from Eqs. (16) and
(17), which become a set of two linear homogeneous equa-
tions for the two variables ¥y, p. The condition of vanishing
determinant of the above set of linear equations yields the
dispersion curve

(A—up)* = (C+c7)(1+B)=0, (18)

where, as before, uy = w/k,

dP, dzE( )
C% = ﬂ +PO/defqp o(p)——— P s (19)
and
afy 0E 1

A= /dv (20)

"o 900 E —uy’

afo 1

B= | dv,p*— , 21
/ pP 8p @ ~ o 21

9 1
C= /dV,, f“(—) - (22)

900 oy — Uo

Analytical and numerical details on the derivation and solu-
tion of Eq. (18) are discussed in Appendix B.

IV. COLLISIONLESS SOUND AND ITS DAMPING

We now discuss the numerical results of the collisionless
sound we obtain by solving the linearized Landau-Vlasov
equation and the linearized Andreev-Khalatnikov equations.
It is important to stress that, to investigate the low-temperature
properties of 2D helium-4, in Refs. [5,7,8] a phononlike
spectrum was used. Here, we employ the full Bogoliubov
expression.

In Fig. 1 we report our numerical solutions of the speed
of sound uy = cg — ic; in the 2D case, with i = /—1 the
imaginary unit. Dashed curves are obtained by using the
Vlasov-Landau equation while solid curves are produced by
adopting the Andreev-Khalatnikov equations. In the figure
there are also, as solid red circles, the experimental data
of Ref. [11] obtained with a collisionless Bose gas of 8Rb
atoms. In the figure, the quantities are plotted versus the
scaled temperature T /T, with T. the Berezinskii-Kosterlitz-
Thouless critical temperature [18,19] predicted at thermal
equilibrium for 2D interacting superfluid bosons [22,23]. The
superfluid-to-normal Kosterlitz-Thouless phase transition oc-
curs due to the unbinding of vortex-antivortex pairs, whose
number strongly increases close to the critical temperature
T.. The presence of vortices with quantized circulation is
strictly related to the existence of a superfluid velocity v,(r, t),
which must satisfy the equation vy(r,t) = (h/m)Ve(r,t)
with ¢(r,7) the angle of the phase of a complex order
parameter [27]. As previously stressed, the Vlasov-Landau
equation does not include a superfluid velocity. Instead, the
Andreev-Khalatnikov equations take into account the super-
fluid velocity but not the formation of quantized vortices nor
the presence of a complex order parameter associated with
the quasicondensate [21-23]. Thus, one can expect that below
T. the 2D Bose gas follows the Andreev-Khalatnikov while
above T, the 2D bosonic system is better described by the
Vlasov-Landau equation.

In the upper panel of Fig. 1 we plot the real part of the
scaled speed of sound cg/cp, with cg = /gno/m the Bogoli-
ubov sound velocity. Remarkably, the experimental data (solid
circles) are very well reproduced, both below and above T,
by the Vlasov-Landau equation (dashed curve) but also by
the Andreev-Khalatnikov equations (solid curve). At very low
temperature T the two curves of the two theories practically
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FIG. 1. Results from the numerical solution of the dispersion
equation uy = cg — ic; vs temperature in the 2D case. Upper panel:
The normalized speed of sound cg/cp as a function of the normalized
temperature T /T,, where cz = /gno/m is the Bogoliubov velocity,
T. = 27rh2n0 /{mkg In [380)’12 /(mg)]} is the Berezinskii-Kosterlitz-
Thouless critical temperature, and n, is the 2D number density at
equilibrium. Lower panel: Q = cg/c; quality factor of the sound
damping. To compare the two transport theories with the experiment
of Ref. [11] we choose g = 0.16/*/m. The blue dashed curve is the
result of the Vlasov-Landau theory; the black solid curve the result
of the Andreev-Khalatnikov theory. Red dots are measured data of
Ref. [11].

superimpose. In the lower panel of Fig. 1 there is instead the
quality factor Q = cg/c; of the sound damping, namely the
ratio between the real and the imaginary part of the sound
velocity uy = cg — icy. For this quality factor Q, the Andreev-
Khalatnikov theory (solid curve) is in much better agreement
with the experimental results (solid circles) with respect to
the Vlasov-Landau theory (dashed curve) up to the critical
temperature 7. Above the critical temperature 7; it seems
that the quality factor Q can be better reproduced by the
Vlasov-Landau equation. Notice that in 2D the damping of the
collisionless mode was investigated also in Ref. [28] by using
a time-dependent Hartree-Fock-Bogoliubov approach, which
practically gives the same results of the linearized Vlasov-
Landau equation [12,16].

We investigate also the 1D weakly interacting Bose gas in
the collisionless regime. Unfortunately, experimental data in
this configuration are not yet available. Thus, our 1D pre-
dictions can be a strong benchmark for future experiments
and also for forthcoming theoretical investigations. Strictly
speaking, in the thermodynamic limit and with T > 0, for a
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FIG. 2. Results from numerical solution of the dispersion equa-
tion uy = cg — ic; vs temperature in the 1D case. Upper panel: The
normalized speed of sound cg/cp as a function of the normalized
temperature T /T, where cz = +/gny/m is the Bogobliubov velocity,
Ts = 2nn§h2 /(mkg) is the degeneration temperature, and ng the 1D
number density at equilibrium. We choose g = 0.16/°ny/m. Lower
panel: Q quality factor of the sound damping: Q = cg/c;. The blue
dashed curve is the result of the Vlasov-Landau theory; the black
solid curve is obtained using the Andreev-Khalatnikov theory.

1D weakly interacting Bose gas there is neither Bose-Einstein
condensation nor superfluidity [20,21,27]. However, a finite
1D system of spatial size L is effectively superfluid if kp7T <
Es/In(L/§), where Eg >~ ?no/(mé&) is the energy needed to
create a phase slip (topological defect, also known as a black
soliton) and & = 7i/./2mgny is the healing length [21].

In Fig. 2 we show our numerical results for the complex
speed of sound uy = cg — ic; of the 1D bosonic system ob-
tained by solving the Vlasov-Landau equation (dashed curves)
and the Andreev-Khalatnikov equations (solid curves). The
quantities are plotted as a function of the scaled temperature
T /Tg where Tg = 2nn3h2 /(mkg) is the temperature of Bose
degeneracy, where the 1D thermal de Broglie wavelength
A = hiy/27 J(mkgT) becomes equal to the average distance
ny ! between bosons, with 7 the equilibrium 1D number den-
sity. As clearly reported in the upper panel of Fig. 2, contrary
to the 2D case, in 1D the real part cg of the sound velocity
ug increases by increasing the temperature 7. However, the
Andreev-Khalatnikov theory predicts a much larger slope.
Indeed, this suggests that in 1D the determination of this slope
can be experimentally used to the determine the superfluid
nature of the Bose gas. We have also found that, while in 2D
the isothermal velocity cr of Eq. (19) at low temperature is
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close to the real part of u, obtained by solving Eq. (18), in the
1D system this is not the case.

In the lower panel we plot the quality factor Q = ¢,/c; of
the sound damping: The two theoretical curves are very close
each other. This result implies that in 1D the damping is not
very useful to discriminate between the two transport theories.

It is important to stress that marked differences shown
in Figs. 1 and 2 are also due to the fact that the scaled
temperature is in units of 7. in 2D and in units of 7z in
1D. A quite complicated analytical expression for the sound
velocity ug of the Vlasov-Landau equation (2) can be derived
if fo(p) ~ kgT/(p*/2m — j), i.e., under the condition |fi| <
kgT < kgTp. In this way, in 2D one finds [12,13] that the real
part of uy decreases by increasing the temperature 7', while
in 1D we obtain the opposite, in very good agreement with
our numerical results. As discussed in Appendix A, the 2D
Vlasov-Landau equation can be reduced to an effective 1D
equation but with an effective 1D Bose-Einstein distribution
which is quite different with respect the one of the strictly 1D
case. Clearly, the behavior of ug vs T crucially depends on the
considered Bose-Einstein distribution.

V. CONCLUSIONS

We have analyzed the collisionless sound mode of a 2D
weakly interacting bosonic fluid, where recent experimental
data are available [11], but also the collisionless sound mode
of the 1D bosonic fluid, where experimental data are not
yet available. We have compared two theories: the Vlasov-
Landau equation versus the Andreev-Khalatnikov equations.
The Andreev-Khalatnikov equations are more sophisticated
because, contrary to the Vlasov-Landau equation, they also
take into account the presence of a superfluid velocity. Our
2D theoretical results, also confronted with the experimental
data, strongly suggest that below the critical temperature of
the superfluid-to-normal transition the bosonic fluid is better
described by the Andreev-Khalatnikov theory, while above the
critical temperature the Vlasov-Landau theory seems more
reliable. For the collisionless 1D Bose gas, our calculations
show that the real part of the sound velocity grows by increas-
ing the temperature and its slope determines the superfluid
nature of the system. This prediction, as well as the reduction
of sound damping due to the superfluid velocity, can be very
useful for forthcoming theoretical and experimental investiga-
tions of collisionless superfluids.
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APPENDIX A: NUMERICAL PROCEDURE FOR THE
VLASOV-LANDAU EQUATION

In the linearized Vlasov-Landau equation (5) there is the
relevant quantity,

V. f -
/ deM. (AD)
p-n—u
By choosing n parallel to the x axis, this expression simplifies
to
0
/ de pr() ) (A2)
Px — Up
In dimension D = 2 it is straightforward to note that
. So 1

/dzpp‘— = /dpxa,,x </ dpyfo> . (A3)

Px — Uo Px — Uo

Thus, both in dimensions one and two, ultimately one has
to deal with one-dimensional integrals. The integral operator
comes from an inverse Laplace transform, hence the path of
integration is defined in the complex p plane. The recipe for
choosing the right path was given by Landau [15], and may
be found in several recent references, e.g., Refs. [10,24]. Here,
we provide just the results. The integral (A3) writes as the sum
of an integral along the real axis plus a contribution coming
from poles in the complex plane:

+o0 1
/ dpxapA (/ dpny) + j
00 Px — Up

If Im(up) > 0, then J = 0. Conversely, if Im(ug) < 0, we
have

(A4)

J =2midy, fx(px = uo), (A5)

with

fi(px) = / dpy py fo(px, Py)- (A6)

APPENDIX B: NUMERICAL PROCEDURE FOR THE
ANDREEV-KHALATNIKOV EQUATIONS

In the Andreev-Khalatnikov theory one has to deal with
several integrals of the kind

F(p)
/ P ED) — w0 B

where we have dropped the x subscript for convenience. F (p)
is one of the functions appearing in Eq. (22). Since E(p), as
defined in (11), is a nonlinear function of p, the recipe of
Egs. (A4) and (A5) needs some modifications. Let p be a root
of the function

D(p) = 0,E(p) —up : D(p) =0, (B2)
namely
D(p) =0. (B3)
Then, we may expand D(p) around p = p:

D >~ (p— P)I,E(p). (B4)

043324-5



L. SALASNICH AND F. SATTIN

PHYSICAL REVIEW A 103, 043324 (2021)

Ultimately, therefore, the integrals (B1) are evaluated as

F(py —_ [*  F(p) ,
/ Py ED) —uw [w Wy p—w T B

This time we get
F(p)

! — 2 . ,
T =)

Im(p) < 0. (B6)
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