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We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates
in d spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an
anomalous square-root dispersion relation in the presence of intercomponent tunneling (Rabi coupling) and a
gapped dispersion relation in its absence. These spectral features are associated with the emergence of long-range
interactions in terms of the superfluid velocity and the particle density in the entanglement Hamiltonian. Our
results demonstrate that unusual long-range interactions can be emulated in a subsystem of multicomponent
BECs that have only short-range interactions. We also find that for a finite Rabi coupling the entanglement
entropy exhibits a volume-law scaling with subleading logarithmic corrections originating from the Nambu-
Goldstone mode and the symmetry restoration for a finite volume.
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I. INTRODUCTION

Over the last two decades, the concept of quantum entan-
glement has been extensively applied to quantum many-body
problems [1–3]. A useful measure of entanglement for a
many-body state |�〉 is the entanglement entropy (EE). By
partitioning a many-body system into a subregion A and its
complement Ā, the EE is defined as the von Neumann en-
tropy SA = −Tr ρA ln ρA of the reduced density matrix ρA =
TrĀ|�〉〈�|. The dependence of SA on the size of A can exhibit
a universal scaling that reflects the long-distance properties
of the system. When the ground state |�〉 contains only short-
range correlations, the EE scales with the size of the boundary
of A (boundary law) [4,5]. The deviation from a boundary law
signals the presence of certain nontrivial correlations. In one-
dimensional (1D) quantum critical systems, for example, the
EE exhibits a universal logarithmic scaling with the coefficient
determined by the central charge of the underlying conformal
field theory [6–9]. In two-dimensional (2D) topologically or-
dered systems, the EE obeys a boundary law, but there appears
a universal subleading constant that reflects the underlying
topological order [10–13].

More detailed information about bipartite entanglement
can be investigated by using the entanglement spectrum (ES)
[14]. By rewriting the reduced density matrix in the form
of ρA = e−He , where He is referred to as the entanglement
Hamiltonian, the ES is defined as the full eigenvalue spectrum
of He. The EE then corresponds to the thermal entropy in
the canonical ensemble given by He at the fictitious temper-
ature T = 1. The ES finds particularly useful applications in
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gapped topological phases: the ES has been found to exhibit
the same low-energy features as the edge-mode spectrum in
such diverse examples as quantum Hall states [14–20], frac-
tional Chern insulators [21], topological insulators [22–25],
and symmetry-protected topological phases [26–29]. Sev-
eral physical arguments have been put forth in support of
this remarkable edge-entanglement correspondence [30–33].
Among them, the argument by Qi, Katsura, and Ludwig [30]
is based on the following illuminating idea, which is referred
to as the “cut and glue” picture (see also Refs. [34–38]).
Suppose we cut a 2D topological state into two pieces A and Ā
by switching off the interaction between A and Ā. This leads
to the appearance of gapless edge states at the 1D boundary of
each piece. We can then study the ES of the original system by
analyzing how the 1D edge states are entangled as we recover
the interaction between A and Ā.

In parallel with this development, there have been active
studies on the entanglement between two systems coupled
in parallel such as ladders [34,39–48], bilayers [49–51],
an electron-phonon system [52], and d-dimensional two-
component field theories [53–55]. In a pioneering work,
Poilblanc [39] has numerically calculated the ES in gapped
phases of a spin- 1

2 Heisenberg ladder, where the entanglement
cut is placed between the chains, and found that the ES re-
markably resembles the gapless energy spectrum of a single
Heisenberg chain (see also [40–42] for related results). This
chain-entanglement correspondence is an interesting ana-
log of the edge-entanglement correspondence in topological
phases, and these are intimately related through the “cut-and-
glue” picture of Qi et al. [30]. Field-theoretical analyses of the
ladder problem have been conducted by describing the system
as two coupled Tomonaga-Luttinger liquids (TLL) [34,43,44].
It has been shown that the ES exhibits a variety of dispersion
relations depending on the type of the interchain coupling.
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Specifically, when the two TLLs (each described by a scalar
field) are coupled only by marginal interactions, both the sym-
metric and antisymmetric channels of the scalar fields remain
gapless; in this fully gapless case, the ES shows a gapped
spectrum [34,44]. When one of the two channels becomes
gapped owing to a relevant interaction (i.e., the partially gap-
less case), the ES shows an anomalous square-root dispersion
relation [34]. Finally, when both channels are gapped, the ES
shows a linear dispersion relation [30,34], which is consistent
with the numerical result obtained by Poilblanc [39]. In the
fully and partially gapless cases, the ES is thus qualitatively
different from the energy spectrum of a single TLL with a
linear dispersion relation. It has been argued that the unique
features of the ES in the gapless cases are associated with the
emergence of certain long-range interactions in the entangle-
ment Hamiltonian [34].

In this paper, we consider a system of binary (pseudospin-
1
2 ) Bose-Einstein condensates (BEC) in d spatial dimensions,
and study the entanglement between the two components.
This setup allows us to naturally extend the results of the lad-
der models in Refs. [34,43,44] to more general d-dimensional
systems. By means of effective field theory, we show that
the intercomponent ES exhibits an anomalous square-root dis-
persion relation in the presence of intercomponent tunneling
(Rabi coupling h̄�) and a gapped dispersion relation in its
absence. We relate these features of the ES to the emergence
of long-range interactions in terms of the superfluid velocity
and the particle density in the entanglement Hamiltonian.
We thus demonstrate that unusual long-range interactions
can be emulated in a subsystem of multicomponent BECs
that have only short-range interactions. We discuss how the
emergent long-range interactions are related to the proper-
ties of intracomponent correlation functions. We also find
additive logarithmic contributions to the intercomponent EE
that originate from both the Nambu-Goldstone mode and the
restoration of the global U(1) symmetry for a finite volume
in the presence of the Rabi coupling h̄�. As we discuss
later, our findings have close similarities with the behavior of
the subregion EE [56–60], the subregion ES [58,61–63], and
the participation (Shannon-Rényi) entropy [64–66] in systems
with spontaneously broken continuous symmetry.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model that we study in this paper, and formulate
the low-energy effective field theory in terms of the density
and phase variables. The ground state is then obtained as
the vacuum of the Bogoliubov excitations. In Sec. III, we
derive the expression of the reduced density matrix ρ↑ for
the spin-↑ component by introducing a Gaussian ansatz. In
Sec. IV, we calculate the intercomponent ES and the entan-
glement Hamiltonian in the long-wavelength limit. We also
analyze the scaling behavior of the intercomponent EE. Re-
sults are qualitatively different between the cases of � > 0
and � = 0. In Sec. V, we calculate some intracomponent
correlation functions and discuss their connections with the
emergent long-range interactions in the entanglement Hamil-
tonian. In Sec. VI, we present a summary and an outlook for
future studies. In Appendices A and B, we describe some
technical details of Sec. IV. In Appendix C, we discuss the
effect of a weak symmetry-breaking field on entanglement
properties.

II. MODEL AND EFFECTIVE FIELD THEORY

We consider a system of binary BECs in d spatial dimen-
sions, which has extensively been studied in the context of
ultracold atomic gases [67–69]. The Lagrangian density of the
system is given by

L =
∑

α=↑,↓

[
imh̄

2
(ψ†

αψ̇α − ψ̇†
αψα ) − | − ih̄∇ψα|2

2M

]

−
∑

α,β=↑,↓

gαβ

2
|ψα|2|ψβ |2 + h̄�

2
(ψ†

↑ψ↓ + ψ↑ψ
†
↓), (1)

where ψα (r, t ) is the bosonic field for the spin-α component,
M is the atomic mass, and � � 0 is the Rabi frequency. We
assume that the system is confined in a box of volume V = Ld

with a periodic boundary condition in every direction.
We assume contact interactions between atoms. For three

spatial dimensions, the interaction parameters are given by
gαα = 4π h̄2aα/M and g↑↓ = g↓↑ = 4π h̄2a↑↓/M, where aα

and a↑↓ are s-wave scattering lengths between like and unlike
bosons, respectively. For simplicity, we set g↑↑ = g↓↓ ≡ g >

0 and |g↑↓| < g in the following; these conditions ensure the
stability of the binary BECs [67,68,70–73]. While the total
number of atoms N is conserved in this system, the numbers
of ↑ and ↓ atoms, N↑ and N↓, fluctuate in the presence of
the Rabi coupling � > 0. We introduce n = N/(2V ) = (N↑ +
N↓)/(2V ), which is the average density of ↑ and ↓ atoms. We
further assume that N is even. For � = 0, where both N↑ and
N↓ are conserved, we assume N↑ = N↓.

To describe the low-energy properties of the binary BECs,
it is useful to decompose the field as ψα = e−iθα

√
nα , where

nα (r, t ) and θα (r, t ) are the density and phase variables, re-
spectively. This type of decomposition has successfully been
used to describe scalar BECs [74–77]. The validity of our
formulation for binary BECs in d dimensions presented in the
following is confirmed later by the agreement of the excitation
spectrum (16) with previous results based on other approaches
[78–80]. Furthermore, our formulation has some similarities
with those for 1D binary Bose gases in Refs. [81,82]. The
Lagrangian density (1) is rewritten in terms of the density and
phase variables as

L =
∑

α

{
h̄nαθ̇α − h̄2

2M

[
nα (∇θα )2 + (∇nα )2

4nα

]}

−
∑
α,β

gαβ

2
nαnβ + h̄�

√
n↑n↓ cos(θ↑ − θ↓). (2)

In the presence of the Rabi coupling � > 0, we can as-
sume that the relative phase θ↑ − θ↓ is locked on average
[83,84] (i.e., 〈θ↑ − θ↓〉 = 0) and its fluctuations acquire a
finite mass gap [78–82]. To describe this situation, it is
useful to make the approximation cos(θ↑ − θ↓) ≈ 1 − (θ↑ −
θ↓)2/2 for the last term in Eq. (2) [34,81,82,85,86]. Since
|nα (r, t ) − n| 	 n in weakly interacting BECs, we may
approximate the Lagrangian density (2) by taking terms
up to the quadratic order in nα − n, ∇θα , and θ↑ − θ↓,
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obtaining

L =
∑

α

{
h̄nαθ̇α − h̄2

2M

[
n(∇θα )2 + (∇nα )2

4n

]}

−
∑
α,β

gαβ

2
nαnβ + h̄�

[
n↑ + n↓

2
− n

2
(θ↑ − θ↓)2

− (n↑ − n↓)2

8n

]
. (3)

Henceforth, we ignore the term h̄�(n↑ + n↓)/2, which gives
only a constant after the spatial integration. We note that
the resulting expression can also be used for the case of
� = 0 since the approximated part then vanishes. Using the
Lagrangian (3), the canonical momentum conjugate to θα is
found to be h̄nα . We therefore obtain the Hamiltonian density
H = ∑

α h̄nαθ̇α − L as

H =
∑

α

h̄2

2M

[
n(∇θα )2 + (∇nα )2

4n

]
+

∑
α,β

gαβ

2
nαnβ

+ nh̄�

2
(θ↑ − θ↓)2 + h̄�

8n
(n↑ − n↓)2. (4)

We now quantize the Hamiltonian by requiring the
equal-time canonical commutation relation [θα (r), nβ (r′)] =
iδαβδ(r − r′). Substituting the Fourier expansions1

θα (r) = 1√
V

∑
k

θk,αeik·r, nα (r) = 1√
V

∑
k

nk,αeik·r (5)

in Eq. (4) and integrating the result over space, we obtain the
Hamiltonian H = ∫

drH as

H =
∑

k

[ ∑
α

εk

(
nθ−k,αθk,α + n−k,αnk,α

4n

)

+
∑
α,β

gαβ

2
n−k,αnk,β

+ nh̄�

2
(θ−k,↑ − θ−k,↓)(θk,↑ − θk,↓)

+ h̄�

8n
(n−k,↑ − n−k,↓)(nk,↑ − nk,↓)

]
, (6)

where εk := h̄2k2/(2M ) is the dispersion relation of a single
atom. Here, the Fourier components θk,α and nk,α satisfy

[θk,α, n−k′,β] = iδαβδkk′ , θ
†
k,α = θ−k,α,

n†
k,α = n−k,α (α, β =↑,↓). (7)

The Hamiltonian (6) can naturally be decomposed in terms
of the symmetric and antisymmetric components of the fields.
Specifically, by introducing

θk,± := θk,↑ ± θk,↓, nk,± := 1
2 (nk,↑ ± nk,↓), (8)

1Owing to the compactness θα ≡ θα + 2π , a winding term 2πM ·
r/L with M ∈ Zd is also allowed to appear in the phase θα (r), as is
often discussed in the TLL description [89]. Here, we do not include
such a term as it vanishes in the ground state.

which satisfy the commutation relation [θk,ν , n−k′,ν ′ ] =
iδν,ν ′δk,k′ (ν, ν ′ = ±), the Hamiltonian is rewritten as

H =
∑

k

∑
ν=±

[
n

2
(εk + h̄�δν,−)θ−k,νθk,ν

+ 1

2n
(εk + 2gνn)n−k,νnk,ν

]
, (9)

where

gν := g + νg↑↓ + h̄�

2n
δν,− (ν = ±). (10)

We note that for d = 1, the Hamiltonian (9) is equivalent,
at low energies, to the coupled TLL Hamiltonian studied by
Lundgren et al. [34] [see Eqs. (47) and (49) therein]

H =
∫

dx

{ ∑
ν=±

h̄vν

2

[
Kν (∂xϑν )2 + 1

Kν

(∂xφν )2

]

+ h̄v+m2
+

2K+
φ2

+ + h̄v−K−m2
−

2
ϑ2

−

}
(11)

through the correspondence

ϑν = − θν√
2π

, ∂xφν =
√

2π (nν − nδν,+),

vν =
√

gνn

M
, Kν = π h̄

√
n

gνM
(ν = ±),

m2
+ = 0, m2

− = 2M�

h̄
. (12)

Here, v± are the sound velocities, K± are the TLL parameters,
and m−1

± are the correlation lengths in the symmetric (+) and
antisymmetric (−) channels.

In analyzing the Hamiltonian (9), it is convenient to
separately treat the part H zero corresponding to the zero
mode (k = 0) and the part Hosc corresponding to the oscil-
lator mode (k �= 0) (see Refs. [34,35,58,66] for analogous
treatments in related contexts). Let us first consider the oscil-
lator part Hosc. By introducing the annihilation and creation
operators as

γk,ν = 1√
2

(√
nζk,νθk,ν + ink,ν√

nζk,ν

)
,

γ
†
k,ν = 1√

2

(√
nζk,νθ−k,ν − in−k,ν√

nζk,ν

)
(k �= 0; ν = ±) (13)

with

ζk,ν :=
(

εk + h̄�δν,−
εk + 2gνn

)1/4

, (14)

Hosc is diagonalized as

Hosc =
∑
k �=0

∑
ν=±

Eν (k)

(
γ

†
k,νγk,ν + 1

2

)
, (15)

where

Eν (k) := √
(εk + h̄�δν,−)(εk + 2gνn). (16)
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The excitation spectrum Eν (k) obtained here reproduces the
results of Refs. [78–82]. For � = 0, both the symmetric and
antisymmetric channels exhibit gapless linear dispersion re-
lations E±(k) ≈ (g±n/M )1/2 h̄k at low energies; for � > 0,
a finite energy gap

√
2g−nh̄� opens in the antisymmetric

channel. The ground state |0osc〉 of Hosc is specified by the
condition that γk,±|0osc〉 = 0 for all k �= 0.

We next consider the zero-mode part of the
Hamiltonian

H zero = nh̄�

2
θ2

0,− +
∑
ν=±

gνn2
0,ν , (17)

where n0,± is related to the atom numbers as n0,± = (N↑ ±
N↓)/(2

√
V ). For � > 0, the ν = − part of this Hamiltonian

can be diagonalized by introducing annihilation and creation
operators γ0,− and γ

†
0,− in the same way as Eq. (13). There-

fore, H zero is rewritten as

H zero = g+
4V

N2 + E0,−

(
γ

†
0,−γ0,− + 1

2

)
. (18)

We consider the ground state of this Hamiltonian for fixed N .
By analogy with a harmonic oscillator, the ground state in the
n0,− basis is given by a Gaussian

〈n0,−|0zero〉 ∝ exp

(
− n2

0,−
2nζ 2

0,−

)
= exp

(
− δN2

Nζ 2
0,−

)
, (19)

where δN = (N↑ − N↓)/2 = √
V n0,−. In terms of the

(N↑, N↓) basis, this ground state is expressed as

|0zero〉 =
∑
δN

1√
z

exp

(
− δN2

Nζ 2
0,−

)

×
∣∣∣∣N↑ = N

2
+ δN

〉∣∣∣∣N↓ = N

2
− δN

〉
, (20)

where z := ∑
δN exp (− 2δN2

Nζ 2
0,−

) is the normalization factor. For

� = 0, in contrast, H zero is given by

H zero = g+
4V

N2 + g−
4V

(N↑ − N↓)2. (21)

In this case, both N↑ and N↓ are conserved and thus the ground
state of the Hamiltonian (21) for the zero mode is given by

|0zero〉 = |N↑ = N/2〉|N↓ = N/2〉. (22)

We note that the effective field-theory approach pre-
sented here is useful for describing finite-volume BECs in
which the global symmetry due to particle-number conser-
vation is restored. In the mean-field approach, in contrast,
the U(1) or U(1) × U(1) symmetry of the original system
is completely broken in the ground state for � > 0 and
� = 0, respectively. In the latter approach, there is no in-
tercomponent entanglement in the zero-mode ground state.
Therefore, the entangled ground state as obtained in Eq. (20)
for � > 0 is a consequence of the global U(1) symmetry
restoration.

For later use, we calculate some correlators in the
oscillator-mode part of the spin-↑ component. From Eqs. (8)

and (13), we find

θk,↑ = 1

2
√

2n

∑
ν=±

ζ−1
k,ν (γk,ν + γ

†
−k,ν ),

nk,↑ = 1

i

√
n

2

∑
ν=±

ζk,ν (γk,ν − γ
†
−k,ν ). (23)

The correlators of these operators in the ground state |0osc〉 of
Hosc are then calculated as

〈0osc|θ−k,↑θk,↑|0osc〉 = 1

8n

∑
ν=±

ζ−2
k,ν ,

〈0osc|n−k,↑nk,↑|0osc〉 = n

2

∑
ν=±

ζ 2
k,ν (k �= 0). (24)

III. REDUCED DENSITY MATRIX

We now consider the reduced density matrix ρ↑ for the
spin-↑ component, which is obtained by starting from the
ground state |0zero〉 ⊗ |0osc〉 of the total system and tracing out
the degrees of freedom in the spin-↓ component. Because the
zero and oscillator modes are decoupled, the reduced density
matrix takes the form ρ↑ = ρzero

↑ ⊗ ρosc
↑ . The calculation of

the zero-mode part ρzero
↑ is rather straightforward as we ex-

plain later in Sec. IV. Here we calculate the oscillator-mode
part ρosc

↑ and the associated ES.
For ρosc

↑ , we introduce the following Gaussian ansatz
[34,44,58,87,88]:

ρosc
↑ = 1

Zosc
e

e−Hosc
e , Zosc

e = Tr e−Hosc
e ,

Hosc
e = 1

2

∑
k �=0

(
nFkθ−k,↑θk,↑ + Gk

n
n−k,↑nk,↑

)
, (25)

where Fk and Gk are positive dimensionless coefficients to be
determined later. Here, we assume Fk = F−k and Gk = G−k
without loss of generality. By introducing annihilation and
creation operators as

ηk = 1√
2

[√
n

(
Fk

Gk

)1/4

θk,↑ + i√
n

(
Gk

Fk

)1/4

nk,↑

]
,

η
†
k = 1√

2

[√
n

(
Fk

Gk

)1/4

θ−k,↑ − i√
n

(
Gk

Fk

)1/4

n−k,↑

]
(k �= 0),

(26)

we can diagonalize the entanglement Hamiltonian Hosc
e in

Eq. (25) as

Hosc
e =

∑
k �=0

ξk

(
η

†
kηk + 1

2

)
, (27)

where ξk := √
FkGk is the single-particle ES.

Using the relations in Eq. (26) and the Bose distribution
function

Tr(η†
kηkρ

osc
↑ ) = 1

eξk − 1
=: fB(ξk ), (28)
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we obtain phase and density correlators as

Tr(θ−k,↑θk,↑ρosc
↑ ) = 1

2n

(
Gk

Fk

)1/2

Tr[(η†
k + η−k )

× (ηk + η
†
−k )ρosc

↑ ]

= 1

n

(
Gk

Fk

)1/2[
fB(ξk ) + 1

2

]
, (29a)

Tr(n−k,↑nk,↑ρosc
↑ ) = n

2

(
Fk

Gk

)1/2

Tr[(η†
k−η−k )(ηk−η

†
−k )ρosc

↑ ]

= n

(
Fk

Gk

)1/2[
fB(ξk ) + 1

2

]
. (29b)

By requiring these to be equal to the correlators (24) calcu-
lated for the oscillator-mode ground state |0osc〉, we obtain

fB(ξk ) = √〈0osc|θ−k,↑θk,↑|0osc〉〈0osc|n−k,↑nk,↑|0osc〉 − 1

2

= ζ 2
k,+ + ζ 2

k,−
4ζk,+ζk,−

− 1

2
, (30)√

Fk

Gk
= 1

n

√
〈0osc|n−k,↑nk,↑|0osc〉
〈0osc|θ−k,↑θk,↑|0osc〉 = 2ζk,+ζk,−, (31)

from which we obtain the single-particle ES ξk and the coef-
ficients Fk and Gk as

ξk = ln

[
1 + 1

fB(ξk )

]
= 2 ln

ζk,+ + ζk,−
|ζk,+ − ζk,−| , (32a)

Fk = 2ξkζk,+ζk,−, Gk = ξk

2ζk,+ζk,−
. (32b)

IV. ENTANGLEMENT PROPERTIES

In this section, we perform the long-wavelength (i.e.,
small-k) expansion of Eq. (32), and discuss properties of the
ES and the entanglement Hamiltonian. Using the obtained ES,
we also analyze the scaling behavior of the intercomponent
EE. Results are qualitatively different between the cases of
� > 0 and � = 0, which we discuss separately in Secs. IV A
and IV B. We introduce scaled coupling constants

g̃ν := 2M

h̄2 × 2gνn = 4gνnM

h̄2 (ν = ±),

�̃ := 2M

h̄2 × h̄� = 2M�

h̄
(33)

so that ζk,± defined in Eq. (14) can be expressed simply as

ζk,ν =
(

�̃δν,− + k2

g̃ν + k2

)1/4

. (34)

A. Case of � > 0

1. Entanglement spectrum and Hamiltonian

Let us first consider the case of a finite Rabi coupling
�> 0. Since |0zero〉 in Eq. (20) is already written in the form
of the Schmidt decomposition, the reduced density matrix for

the zero mode is obtained as

ρzero
↑ =

∑
δN

1

z
exp

(
− 2δN2

Nζ 2
0,−

)∣∣∣∣N↑ = N

2
+ δN

〉

×
〈
N↑ = N

2
+ δN

∣∣∣∣. (35)

The associated entanglement Hamiltonian is thus given by

H zero
e = 2δN2

Nζ 2
0,−

= 2

(
g̃−
�̃

)1/2 (N↑ − N/2)2

N

= G0

2nV
(N↑ − N/2)2, (36)

where G0 = 2(g̃−/�̃)
1/2

as defined in Eq. (41) below.
For the oscillator-mode part, we perform the long-

wavelength expansion of ξk, Fk, and Gk in Eq. (32) by
assuming εk 	 2g±n, h̄�. From Eq. (34), we find

ζk,+ = k1/2

g̃1/4
+

[1 + O(k2)],

ζk,− =
(

�̃

g̃−

)1/4

[1 + O(k2)]. (37)

The expansion of ξk in terms of k is then obtained as

ξk = 2 ln
1 + ζk,+/ζk,−
1 − ζk,+/ζk,−

= 4

(
ζk,+
ζk,−

)
+ 4

3

(
ζk,+
ζk,−

)3

+ · · ·

= c1/2k1/2 + c3/2k3/2 + O(k5/2) (38)

with the coefficients

c1/2 = 4

(
g̃−

g̃+�̃

)1/4

, c3/2 = 4

3

(
g̃−

g̃+�̃

)3/4

. (39)

We further obtain

Fk = 2ξkζk,+ζk,− = F1k + F2k2 + O(k3),

Gk = ξk

2ζk,+ζk,−
= G0 + G1k + O(k2) (40)

with the coefficients

F1 = 2c1/2

(
�̃

g̃+g̃−

)1/4

= 8

g̃1/2
+

,

F2 = 2c3/2

(
�̃

g̃+g̃−

)1/4

= 8g̃1/2
−

3g̃+�̃1/2
,

G0 = c1/2

2

(
g̃+g̃−

�̃

)1/4

= 2g̃1/2
−

�̃1/2
,

G1 = c3/2

2

(
g̃+g̃−

�̃

)1/4

= 2g̃−
3g̃1/2

+ �̃
. (41)

Interestingly, the single-particle ES ξk is proportional to
√

k in
the long-wavelength limit. This anomalous dispersion relation
is associated with emergent long-range interactions in the
entanglement Hamiltonian as we explain in the following.

The total entanglement Hamiltonian He in the long-
wavelength limit is given by the sum of the zero-mode part
H zero

e [Eq. (36)] and the oscillator-mode part Hosc
e [Eq. (25)
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with Eq. (40)]. Using the real-space representation of the
fields θ↑(r) and n↑(r), it can be expressed as

He =
∫

dd r
∫

dd r′ nF1

2
Ud (r − r′)∇θ↑(r) · ∇θ↑(r′)

+
∫

dd r
G0

2n
[n↑(r) − n]2 +

∫
dd r

nF2

2
[∇θ↑(r)]2

+
∫

dd r
∫

dd r′ G1

2n
Ud (r − r′)∇n↑(r) · ∇′n↑(r′)

+ · · · . (42)

Here, we introduce the long-range interaction potential

Ud (r − r′) := lim
α→0+

Ud (r − r′; α),

Ud (r − r′; α) :=
∑
k �=0

1

V k
e−αk+ik·(r−r′ ), (43)

where we use the convergence factor e−αk to regularize the
infinite sum. As described in Appendix A, this potential is
calculated for d = 1, 2, 3 as

U1(x − x′) = − 1

π
ln

2πD(x − x′|L)

L
,

U2(r − r′) = 1

2π |r − r′| ,

U3(r − r′) = 1

2π2|r − r′|2 . (44)

Here, we introduce the chord distance [89]

D(x − x′|L) = L

π

∣∣∣∣sin
π (x − x′)

L

∣∣∣∣= L

2π

∣∣ei 2π
L x − ei 2π

L x′ ∣∣, (45)

which is the length of the chord between two points separated
by an arc length |x − x′| on a ring of circumference L; for
|x − x′| 	 L, D(x − x′|L) ≈ |x − x′|. It is interesting to com-
pare Eq. (42) with the spin-↑ part of the original Hamiltonian
(4). In addition to local terms, the entanglement Hamiltonian
(42) has long-range interactions in terms of the superfluid ve-
locity vs,↑(r) = − h̄

M ∇θ↑(r) and the density gradient ∇n↑(r).
In particular, the long-range interaction in terms of vs,↑(r)
is crucial for the emergence of the anomalous dispersion
relation ξk ∝ √

k in the ES. For d = 1, the same long-range
interaction U1(x − x′) has also been found in the entanglement
Hamiltonian for coupled TLLs [34] and the ground-state wave
functional of the TLL [43,90,91].

2. Entanglement entropy

Using the ES obtained above, we proceed to calculate
the intercomponent EE Se. As shown in Appendix B 2 [see
Eqs. (B6) and (B13) therein], the oscillator-mode part gives
the contribution

Sosc
e = σLd

c2d
1/2

− 1

2
ln

L

(2π )c2
1/2

+ O(1). (46)

Here, the leading contribution is given by the first term,
which is proportional to the volume Ld of the system with
a nonuniversal coefficient σ . Such a volume-law contribution
is standard for an extensive cut as discussed here, and has also

been found in other systems [34,43,44,53,54]. Besides, there
is a subleading logarithmic contribution with the universal co-
efficient − 1

2 , which is identified through a careful examination
of small-k contributions as described in Appendix B 2 and
therefore originates from the Nambu-Goldstone mode.

We next calculate the zero-mode contribution Szero
e to the

EE. To this end, we consider the canonical ensemble given by
the zero-mode entanglement Hamiltonian (36) at a fictitious
temperature T , and calculate the partition function as

Zzero
e =

∞∑
δN=−∞

exp

[
− G0

2nV T
(δN )2

]
≈

√
2πnV T

G0
, (47)

where we approximate the sum by a Gaussian integral. The
contribution to the EE is then calculated as

Szero
e = ∂

∂T

(
T ln Zzero

e

)∣∣∣∣
T =1

= 1

2
ln

2πenV

G0
. (48)

The total EE is given by the sum of Eqs. (46) and (48), i.e.,

Se = Szero
e + Sosc

e

= σLd

c2d
1/2

+ d

2
ln

[(
2πen

G0

)1/d

L

]
− 1

2
ln

L

(2π )c2
1/2

+ O(1).

(49)

This expression includes the leading volume-law term arising
from the oscillator mode as well as the subleading logarithmic
terms contributed from both the zero and oscillator modes.
The coefficient of the logarithmic contribution is (d − 1)/2
in total. The intercomponent EE per volume in the thermody-
namics limit (i.e., the EE density) is given by

lim
L→∞

Se

Ld
= σ

c2d
1/2

= σ

42d

(
g̃+�̃

g̃−

)d/2

, (50)

where we use Eq. (39). Aside from the nonuniversal coef-
ficient σ , which is expected to depend only weakly on the
system’s parameters, Eq. (50) is a monotonically increasing
function of g↑↓/g and �. Interestingly, an intercomponent
attraction g↑↓ < 0 leads to a reduction in the EE density.

It is interesting to compare the present results with the
behavior of the subregion ES and EE in systems with spon-
taneously broken continuous symmetry. We have seen a clear
decoupling of the zero- and oscillator-mode contributions to
the entanglement Hamiltonian and thus an analogous decou-
pling in the ES. This behavior is similar to that found in the
subregion ES [58,61–63]. In particular, a quadratic depen-
dence of the zero-mode entanglement Hamiltonian (36) on the
subsystem particle number, which is reminiscent of a “tower
of states” spectrum, has also been found in the subregion ES
of the Bose-Hubbard model [61]. In the intercomponent EE,
we have found a subleading logarithmic contribution with a
coefficient (d − 1)/2. Similar logarithmic contributions have
also been found in the subregion EE in Refs. [56–60] (see
also Refs. [64–66] for similar behavior in the participation
entropy). In particular, Metlitski and Grover [58] have shown
that such a contribution has the universal coefficient NNG(d −
1)/2 with NNG being the number of Nambu-Goldstone modes
when the subregion boundary is smooth (i.e., has no corner).
Here, the coefficient NNG(d − 1)/2 arises solely from the
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restoration of symmetry for a finite volume, and is related to
the fact that the subregion has the boundary size proportional
to Rd−1, where R is the length scale of the subregion; the
oscillator mode does not give a logarithmic contribution as
there is no other length scale as far as the subsystem boundary
is smooth. In contrast, the coefficient (d − 1)/2 obtained for
the intercomponent EE in this section is contributed from the
zero mode and the oscillator mode. From Eq. (46), we find that
the emergence of the logarithmic oscillator-mode contribution
is related to an additional length scale c2

1/2 = 16(g̃−/g̃+�̃)1/2

caused by the intercomponent couplings.
We have discussed the importance of the symmetry restora-

tion in obtaining the logarithmic behavior in Eq. (48). In
Appendix C, we discuss the effect of a weak symmetry-
breaking field h̃ on the behavior of the EE. As explained
there, the behavior of Szero

e is easily influenced by weak h̃ with
h̃ � g̃+/(64n2V 2), resulting in a logarithmic dependence on
h̃ [see Eq. (C4)]. If we tune h̃ to the cutoff g̃+/(64n2V 2)
in the final expression, we can reproduce the logarithmic
behavior in Eq. (48). This is consistent with the argument
in Refs. [56,59,60] that calculations with a properly cho-
sen symmetry-breaking field can mimic the behavior of the
symmetry-restored ground state.

In passing, we note that our result (46) on the oscillator-
mode contribution to the EE is based on the the leading term
in the single-particle ES (38), which is valid for small k
with εk 	 2g±n, h̄�. As we decrease �, the validity range of
Eq. (38) is restricted to smaller k. One then needs a larger size
L to clearly see the scaling in Eq. (46). In the limit � → 0,
Eq. (46) completely loses its validity. Therefore, we need a
separate discussion for � = 0, which is given next.

B. Case of � = 0

1. Entanglement spectrum and Hamiltonian

Let us next consider the case in which the Rabi coupling
� is not present. In this case, the ground state (22) of the
Hamiltonian (21) for the zero mode is a product state, and thus
gives no contribution to the entanglement Hamiltonian. For
the oscillator-mode part, we perform the long-wavelength ex-
pansion of ξk, Fk, and Gk in Eq. (32) by assuming εk 	 2g±n.
From Eq. (34), we find

ζk,ν = k1/2

g̃1/4
ν

(
1 + k2

g̃ν

)−1/4

= k1/2

g̃1/4
ν

[
1 − k2

4g̃ν

+ O(k4)

]
.

(51)

The expansion of ξk in terms of k is then obtained as

ξk = 2 ln
ζ−1

k,+ + ζ−1
k,−∣∣ζ−1

k,+ − ζ−1
k,−

∣∣
= 2 ln

g̃1/4
+ + g̃1/4

− + 1
4

(
g̃−3/4

+ + g̃−3/4
−

)
k2 + O(k4)∣∣g̃1/4

+ − g̃1/4
− + 1

4

(
g̃−3/4

+ − g̃−3/4
−

)
k2 + O(k4)

∣∣
= ξ0 + c2k2 + O(k4) (52)

with the coefficients

ξ0 = 2 ln
g̃1/4

+ + g̃1/4
−∣∣g̃1/4

+ − g̃1/4
−

∣∣ ,

c2 = 1

2

(
g̃−3/4

+ + g̃−3/4
−

g̃1/4
+ + g̃1/4

−
− g̃−3/4

+ − g̃−3/4
−

g̃1/4
+ − g̃1/4

−

)

= g̃1/2
+ + g̃1/2

−
(g̃+g̃−)3/4

. (53)

We further obtain

Fk = 2ξkζk,+ζk,− = F1k + F3k3 + O(k5),

Gk = ξk

2ζk,+ζk,−
= G−1k−1 + G1k + O(k3) (54)

with the coefficients

F1 = 2ξ0

(g̃+g̃−)1/4
,

F3 = 2

(g̃+g̃−)1/4

[
c2 − 1

4

(
1

g̃+
+ 1

g̃−

)
ξ0

]
,

G−1 = 1

2
(g̃+g̃−)1/4ξ0,

G1 = 1

2
(g̃+g̃−)1/4

[
c2 + 1

4

(
1

g̃+
+ 1

g̃−

)
ξ0

]
. (55)

Interestingly, the single-particle ES (52) is gapped for � = 0
in contrast to the gapless ES (38) for � > 0.

Using Eqs. (25) and (54) and focusing on the leading
contributions, we obtain the real-space representation of the
entanglement Hamiltonian as

He =
∫

dd r
∫

dd r′ Ud (r − r′)
[

nF1

2
∇θ↑(r) · ∇θ↑(r′)

+G−1

2n
[n↑(r) − n][n↑(r′) − n]

]
+ · · · . (56)

We thus find that long-range interactions in terms of the su-
perfluid velocity vs,↑(r) = − h̄

M ∇θ↑(r) and the density n↑(r)
emerge in the entanglement Hamiltonian, which are crucial
for the emergence of the gapped ES. In contrast to the case
of � > 0 shown in Eq. (42), the entanglement Hamilto-
nian (56) contains neither F2 nor G0 present in the original
Hamiltonian (4).

2. Entanglement entropy

As there is no intercomponent entanglement in the zero
mode, we focus on the oscillator-mode contribution Sosc

e to
the EE. As described in Appendix B 1 [see Eqs. (B3) and (B4)
therein], the gapped dispersion relation (52) in the ES leads to
a volume-law scaling accompanied by the negative universal
constant as follows:

Sosc
e = s1V − s0. (57)

Here, s1 depends on the ultraviolet cutoff of the theory and
is thus nonuniversal. The negative constant contribution −s0

is due to the lack of entanglement in the zero-mode ground
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state. The constant s0 is a universal function of the coupling
ratio g−/g+, and is given by

s0 = ξ0

eξ0 − 1
− ln(1 − e−ξ0 ). (58)

For d = 1, this expression is consistent with the universal
constant obtained for coupled TLLs [34,43,44] through the
correspondence g−/g+ = (K+/K−)2, where K± are the TLL
parameters [see Eq. (12)].

V. INTRACOMPONENT CORRELATION FUNCTIONS

In this section, we calculate some intracomponent cor-
relation functions, and discuss their connections with the
long-wavelength entanglement Hamiltonian He obtained in
Sec. IV. Let 〈O〉 denote the expectation value of an operator
O with respect to the ground state |0zero〉 ⊗ |0osc〉 of the total
system. If O acts only on the spin-↑ component, 〈O〉 should
be equal to Tr(Oe−He )/Tr e−He as far as long-distance proper-
ties are concerned. Our purpose here is to investigate how the
unusual long-range interactions in He manifest themselves in
the correlation properties of the system.

A. Case of � > 0

Owing to the gapless ES ξk, we can approximate the Bose
distribution function (28) as fB(ξk ) ≈ ξ−1

k = (FkGk )−1/2 for
sufficiently small k. Then, in the long-wavelength limit,
Eq. (29) gives

〈θ−k,↑θk,↑〉 ≈ 1

nFk
≈ 1

nF1k
, (59a)

〈n−k,↑nk,↑〉 ≈ n

Gk
≈ n

G0
(k �= 0), (59b)

where we use Eq. (40). Therefore, the phase and density
fluctuations are directly related to the coefficients Fk and Gk,
respectively, in the entanglement Hamiltonian. Equation (59)
also indicates that an increase in Fk (Gk) leads to a suppression
of the phase (density) fluctuation, which can be understood
naturally from the expression of Hosc

e in Eq. (25).
We also discuss the k = 0 component of the correlations.

Using Eq. (36), we can calculate the variance of the spin-↑
atom number N↑ around its mean value N/2 as

〈(N↑ − N/2)2〉 = 1

z

∑
δN

(δN )2 exp

(
−G0(δN )2

2nV

)
≈ nV

G0
,

(60)
where we approximate the sum by a Gaussian integral. Using
N↑ = √

V n0,↑ and N/2 = nV , we equivalently have

〈(n0,↑ − n
√

V )2〉 = 1

V
〈(N↑ − N/2)2〉 ≈ n

G0
, (61)

where the connection with the k �= 0 case in Eq. (59b) can be
seen more clearly. Equation (60) indicates that an increase in
G0 also leads to a suppression of the fluctuation of N↑. We
note that the correlation related to θ0,↑ cannot be determined
as θ0,+ fluctuates completely for fixed N .

We proceed to analyze the one-particle density matrix

〈ψ↑(r)†ψ↑(0)〉 = 〈√n↑(r)ei[θ↑(r)−θ↑(0)]
√

n↑(0)〉, (62)

which plays a key role in the characterization of the Bose-
Einstein condensation [67,92,93]. Its long-distance behavior
is determined dominantly by the phase fluctuation as seen in
the small-k behavior of Eq. (59). Using Eq. (59a), the phase
correlation function in real space is obtained as

〈[θ↑(r) − θ↑(0)]2〉 = 2

V

∑
k �=0

e−αk[1 − cos (k · r)]〈θ−k,↑θk,↑〉

≈ 2

nF1
[Ud (0; α) − Ud (r; α)], (63)

where we introduce the convergence factor e−αk to regularize
the infinite sum and the function Ud (r; α) is defined in Eq. (43)
and calculated in Appendix A. The one-particle density matrix
is then obtained as

〈ψ↑(r)†ψ↑(0)〉 ≈ n exp

{
−1

2
〈[θ↑(r) − θ↑(0)]2〉

}

= n exp

{
1

nF1
[Ud (r; α) − Ud (0; α)]

}
. (64)

For d = 1, 2, 3, we specifically have

d = 1: 〈ψ↑(x)†ψ↑(0)〉 ≈ n

(
D(x|L)

α

)− 1
πnF1

(|x| � α);

(65a)

d = 2: 〈ψ↑(r)†ψ↑(0)〉≈ n exp

[
1

2πnF1

(
1√

r2 + α2
− 1

α

)]
;

(65b)

d = 3: 〈ψ↑(r)†ψ↑(0)〉≈ n exp

[
1

2π2nF1

(
1

r2 + α2
− 1

α2

)]
.

(65c)

Here, D(x|L) is the chord distance defined in Eq. (45).2 We
note that use of the convergence factor in the present approach
leaves the ambiguity of α in the final results, and that a
more precise calculation of this correlation function requires a
careful analysis of the phase correlation 〈θ−k,↑θk,↑〉 up to large
k [76,77]. Yet, the present simple approach can still provide a
qualitative picture.

The results in Eq. (65) show a quasi-long-range order for
d = 1 and a long-range order (LRO) for d � 2. The long-
range interaction in terms of the superfluid velocity (i.e., the
F1 term) in the entanglement Hamiltonian (42) plays a key role
in the emergence of this (quasi-)LRO in a canonical ensemble
〈·〉 = Tr(· e−He )/Tr e−He , especially, for d = 1 and 2. If He

did not have such a term but had a form similar to a scalar
Bose gas (i.e., the spin-↑ part of the original Hamiltonian), the
one-particle density matrix would show an exponential decay
for d = 1 [89] and a quasi-LRO for d = 2 [76] at nonzero
fictitious temperatures. Equation (65) also indicates that an
increase in the coefficient F1 leads to a slower spatial decay
of the one-particle density matrix, which can be understood

2The power-law decay with respect to the chord distance as in
Eq. (65a) is well known in the behavior of correlation functions of
primary fields in conformal field theory. See, e.g., Appendix C of
Ref. [89].
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as a consequence of the suppression of the phase fluctuation
discussed above. For d = 1, in particular, F1 appears in the
decay exponent 1/(πnF1).

B. Case of � = 0

Using the gapped ES ξk in Eq. (52) and the coefficients Fk
and Gk in Eq. (54), we can calculate the phase and density
fluctuations (29) in the long-wavelength limit as

〈θ−k,↑θk,↑〉 ≈ 1

nk

(
G−1

F1

)1/2[
fB(

√
F1G−1) + 1

2

]

= g̃1/2
+ + g̃1/2

−
8nk

, (66a)

〈n−k,↑nk,↑〉 ≈ nk

(
F1

G−1

)1/2[
fB(

√
F1G−1) + 1

2

]

= n

2

(
g̃−1/2

+ + g̃−1/2
−

)
k (k �= 0). (66b)

We notice that these correlations are related to the coefficients
F1 and G−1 in the entanglement Hamiltonian in a manner
more complicated than in Eq. (59); yet, we again find that
an increase in F1 (G−1) leads to a suppression of the phase
(density) fluctuation. Furthermore, different dependencies of
〈n−k,↑nk,↑〉 on k in Eqs. (59b) and (66b) indicate that in the
long-wavelength limit, the density fluctuation is qualitatively
more suppressed for � = 0 than for � > 0; for d = 1, this
suppression leads to a quasi-LRO in the string correlation as
we explain later.

Equation (66a) indicates

〈0osc|(−ikθ−k,↑) · (ikθk,↑)|0osc〉 ≈ g̃1/2
+ + g̃1/2

−
8n

k. (67)

The fact that both Eqs. (66b) and (67) show linear behav-
ior for small k explains why the same type of long-range
interactions appear in the superfluid velocity vs,↑ = − h̄

M ∇θ↑
and the density n↑ in the entanglement Hamiltonian (56). For
d = 1, a similar behavior in terms of ∂xθ↑ and n↑ − n can be
understood as a consequence of the duality between the two
fields φ±/

√
K± and

√
K±ϑ± in the TLL Hamiltonian (11) with

m2
± = 0.
Using Eq. (66a), the one-particle density matrix can be

calculated in the same manner as in Sec. V A. The result-
ing expressions are given by Eqs. (64) and (65) with the
replacement of 1/F1 by (g̃1/2

+ + g̃1/2
− )/8. We thus again have

a quasi-LRO for d = 1 and a LRO for d � 2, for which the
long-range interaction in terms of ∇θ↑ in He plays a crucial
role. We note that for d = 1, the decay exponent is given by
(g̃1/2

+ + g̃1/2
− )/(8πn) = (K−1

+ + K−1
− )/4, where K± are intro-

duced in Eq. (12).
It is then natural to ask what role the long-range interaction

in terms of n↑ − n in He plays in the correlation properties. To
answer this question, we focus on the 1D case, and introduce
the field φ↑(x) such that ∂xφ↑ = √

π (nα − n). In analogy with
the phase part of Eq. (62), we consider

〈ei2
√

πλ[φ↑(x)−φ↑(0)]〉 =
〈
exp

[
i2πλ

∫ x

0
dx′[nα (x′) − n]

]〉
,

(68)

where λ is a real constant. This can be viewed as a string order
parameter as it involves the integration of the density over
the interval [0, x]. It can also be viewed as a characteristic
function of the atom-number statistics in the interval [0, x]
[94]. For λ = 1

2 , this quantity has been used to characterize the
Mott insulator phase in optical lattices [95] and measured ex-
perimentally [96]. To calculate Eq. (68), we first use Eq. (66b)
to obtain the fluctuation of the Fourier component φk,↑ of
φ↑(x) as

〈φ−k,↑φk,↑〉 ≈ πn

2k
(g̃−1/2

+ + g̃−1/2
− ) = K+ + K−

4k
(k �= 0).

(69)
Following a similar line of calculations as in Sec. V A, we
obtain

〈ei2
√

πλ[φ↑(x)−φ↑(0)]〉 = exp{−2πλ2〈[φ↑(x) − φ↑(0)]2〉}

≈
(

D(x|L)

α

)−λ2(K++K− )

(|x| � α). (70)

We thus obtain a quasi-LRO in the string correlation. From
the viewpoint of the entanglement Hamiltonian (56), this is a
consequence of the suppression of the density fluctuation due
to the long-range interaction in terms of the density.

VI. SUMMARY AND OUTLOOK

We have studied the intercomponent ES in binary BECs
in d spatial dimensions. By means of effective field theory,
we have shown that the ES exhibits an anomalous square-
root dispersion relation (38) for a finite Rabi coupling � > 0
and a gapped dispersion relation (52) in its absence (� = 0).
We have related these intriguing spectra to the emergence
of long-range interactions in terms of the superfluid velocity
and the particle density in the entanglement Hamiltonian [see
Eqs. (42) and (56)]. We have discussed how these unusual
interactions manifest themselves in the properties of intra-
component correlation functions. Using the obtained ES, we
have also calculated the intercomponent EE. The result for
� > 0 in Eq. (49) shows a volume-law scaling followed by
subleading logarithmic terms. The coefficient of the logarith-
mic contribution is (d − 1)/2 in total, where d/2 originates
from the restoration of the global U(1) symmetry for a finite
volume and − 1

2 arises from the Nambu-Goldstone mode. The
result for � = 0 in Eq. (57) shows a volume-law scaling
accompanied by a negative universal constant −s0. Here, the
constant s0 is given by a universal function (58) of the ratio
of the effective coupling constants g± in the symmetric and
antisymmetric channels.

It is of interest to extend this work to other types of
multicomponent systems such as spinor BECs [97] and spin-
orbit-coupled gases [98–101]. In particular, Po et al. [100]
have shown the emergence of a non-TLL quantum liquid
with a quadratic energy dispersion relation in 1D spin-
orbit-coupled Bose gases. It is worth examining how the
intercomponent ES behaves in this unusual case. We can fur-
ther expect rich behavior in two coupled systems with higher
continuous symmetry beyond U(1), where the intercompo-
nent coupling can be expressed as a generalized Josephson
coupling [102].
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APPENDIX A: LONG-RANGE INTERACTION
POTENTIAL Ud (r − r′ )

For d spatial dimensions, we have introduced the long-
range interaction potential Ud (r − r′) in Eq. (43), which
emerges in the entanglement Hamiltonian. Here we derive
its expressions (44) for d = 1, 2, 3. In the following, we set
r′ = 0 and calculate

Ud (r; α) =
∑
k �=0

1

V |k|e−α|k|+ik·r. (A1)

For d > 1, we can take the infinite-volume limit V → ∞ to
rewrite this in the integral form as

Ud (r; α) =
∫

dd k
(2π )d

1

|k|e−α|k|+ik·r. (A2)

After calculating Eq. (A1) or (A2), we take the limit α → 0+
to obtain Ud (r).

For d = 1, the sum in Eq. (A1) is taken as

U1(x; α) =
∑
k �=0

1

L|k|e−α|k|+ikx

= 1

2π

∞∑
n=1

1

n

[
e

2π
L (−α+ix)n + c.c.

]

= − 1

2π
ln

∣∣1 − e
2π
L (−α+ix)

∣∣2
, (A3)

where we use
∑∞

n=1 zn/n = Li1(z) = − ln(1 − z) (|z| < 1).
Taking α → 0+, we obtain

U1(x) = − 1

π
ln

∣∣ei 2π
L x − 1

∣∣ = − 1

π
ln

2πD(x − x′|L)

L
, (A4)

where D(x − x′|L) is the chord distance (45).
For d = 2, we can introduce the polar coordinate (k, θ ) to

rewrite the integral (A2) as

U2(r; α) = 1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
dk e−αk+ikr cos θ

= 1

(2π )2

∫ 2π

0
dθ

1

α − ir cos θ
. (A5)

Defining z = eiθ , the last integral can be rewritten as a contour
integral along the unit circle:

U2(r; α) = 1

2π2

∮
dz

1

r(z2 + 1) + 2iαz

= 1

2π2r

∮
dz

1

(z − z+)(z − z−)
, (A6)

where z± = i(−α ± √
r2 + α2)/r are the locations of poles.

Since |z+| < 1 < |z−|, the integral picks up only the residue
at z = z+, leading to

U2(r; α) = i

πr(z+ − z−)
= 1

2π
√

r2+α2
→ 1

2πr
(α → 0+).

(A7)

For d = 3, we can introduce the polar coordinate (k, θ, φ)
to perform the integral (A2) as

U3(r; α) = 1

(2π )3

∫ 2π

0
dφ

∫ 1

−1
d cos θ

∫ ∞

0
dk k e−αk+ikr cos θ

= 1

(2π )2ir

∫ ∞

0
dk(e−αk+ikr − e−αk−ikr )

= 1

2π2(r2 + α2)
→ 1

2π2r2
(α → 0+). (A8)

APPENDIX B: OSCILLATOR-MODE CONTRIBUTION
TO THE ENTANGLEMENT ENTROPY

Here we calculate the oscillator-mode contribution Sosc
e to

the EE for the cases in which the ES shows gapless and
gapped dispersion relations ξk as in Eqs. (38) and (52). To
this end, it is useful to consider the canonical ensemble given
by Hosc

e at the fictitious temperature T . In this ensemble, the
number operator η

†
kηk appearing in Eq. (27) obeys the Bose

distribution 〈η†
kηk〉 = (eξk/T − 1)

−1 = fB(ξk/T ), from which
the internal energy can be calculated. We can then apply the
thermodynamic relation to calculate the thermal entropy, and
obtain the EE Sosc

e by setting T = 1.

1. Case of the gapped ES

We first consider the case in which the ES shows the
gapped dispersion relation ξk = ξ0 + ckγ with ξ0, c, γ > 0.
The internal energy Eosc

e (T ) (measured relative to the zero-
point energy) at the fictitious temperature T is calculated as

Eosc
e (T ) =

∑
k �=0

ξk fB(ξk/T )

=
∑

k

ξk fB(ξk/T ) − ξ0 fB(ξ0/T )

= e(T )V − ξ0 fB(ξ0/T ), (B1)

where

e(T ) =
∫

dd k
(2π )d

ξk

eξk/T − 1

= Sd

(2π )d

∫ ∞

0
kd−1dk

ξ0 + ckγ

e(ξ0+ckγ )/T − 1

= Sd

(2π )dγ cd/γ

[
�

(
d

γ

)
Lid/γ

(
e− ξ0

T
)
ξ0T d/γ

+�

(
d

γ
+ 1

)
Lid/γ+1

(
e− ξ0

T
)
T d/γ+1

]
. (B2)
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Here, Sd := 2πd/2/�(d/2) is the surface area of the unit d
sphere. The EE is then calculated as

Sosc
e =

∫ 1

0

dT

T

(
∂Eosc

e

∂T

)
V

= s1V − s0, (B3)

where

s1 =
∫ 1

0

dT

T

de

dT
, s0 = ξ0

eξ0 − 1
− ln(1 − e−ξ0 ). (B4)

2. Case of the gapless ES

We next consider the case in which the ES shows the gap-
less dispersion relation ξk = ckγ with c, γ > 0. A calculation
similar to Eq. (B1) yields

Eosc
e (T ) = Sd�(d/γ + 1)ζ (d/γ + 1)

(2π )dγ

V T d/γ+1

cd/γ
− T . (B5)

The second term −T gives a divergent contribution to Sosc
e

when performing an integration over T ∈ [0, 1] as in Eq. (B3).
Since Eq. (B5) is based on the approximation of the k sum by
integration, it may be invalidated at low T where the discrete
nature of k becomes important; the above divergence can be
interpreted as a consequence of using such an invalid expres-
sion at low T . Yet, we can still use Eq. (B5) in an integral over
T above a certain temperature, and find a contribution − ln T
to the thermal entropy Sosc

e (T ). This contribution should ap-
pear in the form − ln(Lγ T/c) as the entire energy spectrum is
proportional to c/Lγ . By including the extensive contribution
from the first term of Eq. (B5) and setting T = 1, we obtain

Sosc
e = σd Ld

cd/γ
− ln

Lγ

c
+ O(1), (B6)

where

σd := Sd�(d/γ + 2)ζ (d/γ + 1)

(2π )dd
. (B7)

The logarithmic term in Eq. (B6) can also be obtained in
the following way. We first express Sosc

e as a discrete sum

Sosc
e =

∑
k �=0

[
ξk

eξk − 1
− ln(1 − e−ξk )

]
, (B8)

where the summand is the entropy of a harmonic oscillator
with the energy-level spacing ξk at T = 1. We introduce an
ultraviolet cutoff for the wave vector k = (k1, . . . , kd ) in such
a manner that each element ki runs over ki = 2πni/L with
ni ∈ {−�,−� + 1, . . . , � − 1}, where � is proportional to
L. Then, Eq. (B8) becomes a finite sum. We can rewrite it as

Sosc
e =

∑
k �=0

[
ξk

eξk − 1
− ln

1 − e−ξk

ξk

]
−

∑
k �=0

ln ξk, (B9)

and treat the first and second sums separately. In the first
sum, the summand is convergent in the limit k → 0, and we
can apply the Euler-Maclaurin formula (at the order of the
trapezoid formula) d times to rewrite this part as

Ld
∫ λ

−λ

dd k
(2π )d

[
ξk

eξk − 1
− ln

1 − e−ξk

ξk

]
− 1, (B10)

where λ := 2π�/L. The second sum in Eq. (B9) requires a
careful treatment as the summand diverges for k → 0. We can
rewrite this part as

−
∑
k �=0

ln ξk = −
[(

λL

π

)d

− 1

]
ln c − γ

2

∑
k �=0

ln k2, (B11)

and focus on the calculation of
∑

k �=0 ln k2. Introducing k⊥ =
(k2, . . . , kd ) and δ = 2π/L and applying the Euler-Maclaurin
formula, we have (see Ref. [66] for a related calculation)∑

k �=0

ln(k2)

=
∑
k⊥�=0

∑
k1

ln
(
k2

1 + k2
⊥
) +

∑
k1 �=0

ln k2
1

= L

2π

∑
k⊥�=0

∫ λ

−λ

dk1 ln
(
k2

1 + k2
⊥
) + L

π

∫ λ

δ

dk1 ln k2
1 + ln δ2

= L

2π

∑
k⊥�=0

[
2λ ln(λ2 + k2

⊥) + 4|k⊥| arctan
λ

|k⊥| − 4λ

]

+ 2L

π
(λ ln λ − λ − δ ln δ + δ) + ln δ2

= Ld

(2π )d

∫
[−λ,λ]d−1

dd−1k⊥

[
2λ ln(λ2 + k2

⊥)

+ 4|k⊥| arctan
λ

|k⊥| − 4λ

]
− 2 ln δ + 4. (B12)

Combining these results, we obtain

Sosc
e = σLd

cd/γ
− ln

Lγ

(2π )γ c
− 2γ − 1, (B13)

where the coefficient σ of the extensive part depends on λ or,
more generally, on how we introduce the ultraviolet cutoff. In
the limit λ → ∞, σ is expected to converge to σd in Eq. (B7).

Focusing on the case of γ = 1
2 , which is relevant to

the case of Sec. IV A, we have performed a numeri-
cal check of Eq. (B13). We set c = 1, vary L over
L ∈ {100, 200, . . . , 1000}, and calculate the finite sum in
Eq. (B8). We fit the obtained data to the form Sosc

e = σLd −
β ln

√
L/(2π ) − s0. For d = 1, we obtain the following re-

sults for λ/(2π ) = �/L = 10 and 100:

λ

2π
= 10: σ = 2.27516, β = 0.99938, s0 = 1.92018;

λ

2π
= 100: σ = 2.29576, β = 0.99938, s0 = 1.92018.

(B14)

For d = 2, we obtain the following results for λ/(2π ) = 5
and 10:

λ

2π
= 5: σ = 7.32834, β = 0.99935, s0 = 1.68177;

λ

2π
= 10: σ = 9.21249, β = 0.99935, s0 = 1.66113.

(B15)
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In both cases, the coefficient β of the logarithmic term agrees
excellently with the expected value β = 1. As for the leading
extensive contribution, the coefficient σ monotonically in-
creases with an increase in λ. For d = 1 and 2, this coefficient
is expected to converge, in the λ → ∞ limit, to σ1 = 2.295 76
and σ2 = 9.901 93, respectively, which are given by Eq. (B7);
for d = 1, we find a good convergence to this value already
for λ/(2π ) = 100. The constant term s0 obtained numerically
deviates from the expected value s0 = 2 in Eq. (B13); even
if we change the range of L to larger values, we find that
this constant stays almost constant (not shown). We therefore
conclude that Eq. (B13) obtained from the Euler-Maclaurin
formula at the order of the trapezoid formula acquires a con-
stant correction beyond this order.

APPENDIX C: EFFECT OF A
SYMMETRY-BREAKING FIELD

Here we discuss the effect of a small symmetry-
breaking field. Specifically, we add the term√

nh
∑

α (ψα + ψ†
α − 2

√
n) with h > 0 to the Lagrangian

density (2). In this case, the total number of particles,
N , is no longer conserved, and we have to introduce the
chemical potential μ = g+n − h̄�

2 − h to have the desired
density n for each component. The Hamiltonian (9) with
the symmetry-breaking and chemical potential terms is
expressed as

H − μN =
∑

k

∑
ν=±

[
n

2
(εk + h + h̄�δν,−)θ−k,νθk,ν

+ 1

2n
(εk + h + 2gνn)δn−k,νδnk,ν

]
, (C1)

where we define δnk,ν := nk,ν − √
V nδk,0δν,+ and ignore

unimportant constant terms. Because of the h term, the coeffi-
cient of θ−k,νθk,ν in the Hamiltonian is positive for all k, and
we can treat the zero mode in the same way as the oscillator
mode. We introduce annihilation and creation operators γk,ν

and γ
†
k,ν for all k in a manner similar to Eq. (13) but we replace

nk,ν by δnk,ν . Here, the factor ζk,ν in Eqs. (14) and (34) is
changed to

ζk,ν =
(

εk + h + h̄�δν,−
εk + h + 2gνn

)1/4

=
(

�̃δν,− + k2 + h̃

g̃ν + k2 + h̃

)1/4

,

(C2)

where h̃ := 2Mh/h̄2. The Hamiltonian (C1) is then rewritten
as the sum of harmonic oscillators similar to Eq. (15) but the
sum now includes k = 0 as well. The excitation spectrum (16)
is changed to

Eν (k) = √
(εk + h + h̄�δν,−)(εk + h + 2gνn). (C3)

This shows that the symmetric channel is also gapped with
the excitation energy E+(0) = √

2g+nh. In the following, we
assume h̃ 	 (2π/L)2 so that the effect of h is negligible for
k �= 0. We also assume that E+(0) = √

2g+nh is much larger
than the energy spacing g+/(4V ) for h = 0 in Eq. (18) so that
the effect of h is significant in the zero mode.

Let us now discuss the entanglement properties. The en-
tanglement Hamiltonian has the form of Eq. (27) with the
modification of including k = 0. The single-particle ES ξk
is still given by Eq. (32a) but the factors ζk,± are replaced
by Eq. (C2). A simple method for incorporating the effect
of h into the results in Sec. IV is to perform the replacement

k →
√

k2 + h̃ and then to expand the resulting expressions in
terms of h̃ when necessary.

We first consider the case of � > 0. For k �= 0, the single-
particle ES is still given by ξk ≈ c1/2k1/2 as in Eq. (38). Thus,
the contribution of the k �= 0 modes to the EE in Eq. (46)
remains unchanged. For k = 0, we have ξ0 ≈ c1/2h̃1/4. There-
fore, the zero-mode contribution to the EE is no longer given
by Eq. (48) but is replaced by

Szero
e = ξ0

eξ0 − 1
− ln(1 − e−ξ0 ) ≈ ln

e

c1/2h̃1/4
. (C4)

We thus find that the EE depends logarithmically on h. A
similar logarithmic dependence on a symmetry-breaking field
has also been found in the subregion EE [1,56,58–60]. In
the present argument, we have assumed E+(0) = √

2g+nh �
g+/(4V ), i.e., h̃ � g̃+/(64n2V 2). If we tune h̃ to this cutoff in
Eq. (C4), we obtain

Szero
e ≈ 1

2
ln

e2nV

G0
, (C5)

which shows the same logarithmic dependence on V
as Eq. (48). This is consistent with the argument in
Refs. [56,59,60] that calculations with a properly chosen
symmetry-breaking field can mimic the behavior of the
symmetry-restored ground state.

We next consider the case of � = 0. The single-particle ES
in Eq. (52) can now be used for k = 0 as well. Therefore, the
universal constant term −s0 in Eq. (57) disappears. We thus
realize that the restoration of the U(1) × U(1) symmetry for
a finite volume is crucial for the emergence of the universal
constant.
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