
PHYSICAL REVIEW A 103, 043320 (2021)

Quantum adiabatic doping for atomic Fermi-Hubbard quantum simulations
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It is important to dope the antiferromagnetic state while preserving low entropy, in the quantum simulation
of the Fermi-Hubbard model. In a recent work [Phys. Rev. Lett. 123, 233603 (2019)], we proposed a quantum
adiabatic doping protocol using an incommensurate lattice potential, where its feasibility is demonstrated with
a certain particle-doping fraction. Here, we carry out a systematic study of quantum adiabatic doping for a
wide range of doping fractions including both particle doping and hole doping, with both commensurate and
incommensurate cases considered. We find that there is still a localizationlike slowing-down problem even at
commensurate fillings, and that it becomes less harmful in the hole-doped regime. With interactions, the adiabatic
preparation is found to be more efficient because the interaction effect destabilizes localization. For both free
and interacting cases, we find adiabatic doping has a better performance in the hole-doped regime than the
particle-doped regime. We also investigate adiabatic doping starting from a half-filling Mott insulator, which is
found to be more efficient for certain filling fractions.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a fascinating
platform for quantum simulations of correlated many-body
physics [1–4]. Since the atomic tunneling and interactions are
both controllable in these systems, they have widely been used
to study quantum many-body phases and quantum phase tran-
sitions. One main theme of quantum simulation with optical
lattices is to investigate the low-temperature phase diagram of
the Fermi-Hubbard model [5–7], and help uncover the funda-
mental mechanism of high-temperature superconductivity [8].

Whether and how d-wave superconductivity arises in the
doped region including both hole- and particle-doped cases,
in the repulsive Fermi-Hubbard model, has been attracting
continuous research efforts [8–11], but this remains an open
question with no consensus reached [10,11]. One reason
is that numerical simulations on classical computers meet
the fundamental challenges of exponentially growing Hilbert
space of the quantum many-body system. This makes quan-
tum simulations of the doped Fermi-Hubbard model very
much in demand. With the development of ultracold-atom
experiments, the low-temperature antiferromagnetic phase has
now been reached at half filling [12–14]. The doping of an
antiferromagnet with a hole has been realized by reducing the
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density of the trapped gases [14]. However, cooling down the
system to a sufficiently low temperature in the doped regime,
in order to simulate strongly correlated physics, is experimen-
tally challenging. How to optimally perform doping for an
atomic Fermi-Hubbard optical lattice system while maintain-
ing low entropy of the system demands more theoretical study.

A plausible method to maintain a quantum simulator at low
entropy is to perform quantum adiabatic doping. Adiabatic
quantum state preparation has been widely applied in quan-
tum state engineering and quantum simulations [15–21]. For
the fermions confined in the optical lattice, a different filling
factor is achieved by adiabatically converting a lattice with
one spatial period to a lattice with a different period. Going
through an adiabatic evolution from insulating states to the
doped regime, the system remains at the ground state of the
instantaneous Hamiltonian. This protocol has been studied
to prepare a Fermi-Hubbard antiferromagnet insulating state
[18,20], and also a doped ground state [15] with incommen-
surate fillings. For the incommensurate case, it has been found
that the major difficulty in carrying out quantum adiabatic
doping is from fermion localization [15]. The physics of
fermion localization occurring in the intermediate dynamics
prevents efficient state preparation, causing the problem of
localization slowing down. Previous studies have established
that repulsive interactions drive a generic tendency towards
delocalization in interacting Aubry-André (AA) lattice mod-
els, as shown for both one- [22] and two-component fermions
[15,23], as well as for bosons [24,25]. The interaction-driven
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delocalization transition for the AA model has been observed
in experiments with cold atoms [23,26–28]. In the case of ran-
dom disorder, this transition has been observed with trapped
ions [29], and superconducting qubits [30,31]. Therefore, we
introduce an atomic interaction to solve the localization slow-
ing down and it has been found to improve the preparation
efficiency of adiabatic doping.

Since the focus of Ref. [15] is to show the feasibility of
quantum adiabatic doping for incommensurate filling, only
one filling factor at the particle-doped regime was studied.
How the quantum adiabatic doping behaves for different fill-
ings requires a more systematic study. In particular it is worth
addressing whether the doping protocol remains efficient in
the hole-doped regime. In this work we carry out a system-
atic study on quantum adiabatic doping in a one-dimensional
optical lattice for a broad range of filling factors, with numer-
ical simulations based on the time-dependent density-matrix
renormalization group (DMRG) method.

We find that the localization slowing down is a generic
problem for both commensurate and incommensurate fill-
ings. For an incommensurate case, the localization problem
is more fundamental because localization persists in the ther-
modynamic limit. This problem also causes slowing down
for a commensurate case considering a finite-size system
with a localization length significantly smaller than the sys-
tem size, although it scales linearly with the system size
in the thermodynamic limit. For particle doping, we show
that adiabatic preparation efficiency can be enhanced by in-
troducing an atomic interaction for both commensurate and
incommensurate fillings. For hole doping, we find that the
localization is much weaker, which we attribute to the large
particle tunneling of the final lattice. Quantum adiabatic hole
doping is consequently more efficient than particle doping,
and efficiency can be further improved by including a strong
atomic interaction. Besides starting from a band insulator,
we also consider adiabatic particle doping starting from a
Mott insulator at half filling. Our numerical simulation shows
that quantum adiabatic doping starting from a Mott insula-
tor has a better performance for certain fillings. We expect
these numerical results on quantum adiabatic doping for a
one-dimensional optical lattice would also shed light on a
two-dimensional lattice.

II. THEORETICAL SETUP

The atomic quantum simulator of the Fermi-Hubbard
model consists of two-component fermionic atoms confined
in a periodical optical lattice. The system is described by the
Hamiltonian

H =
∫

dd x

[∑
σ

ψ†
σ

(
− h̄2∇2

2M
+ V (x) − μ

)
ψσ

+ gψ†
↑ψ

†
↓ψ↓ψ↑

]
, (1)

where ψσ=↑,↓(x) is the quantum field operator for the corre-
sponding pseudospin (hyperfine state) ↑ and ↓ components,
M the atomic mass, μ the chemical potential, g the interaction
strength between the two components, and V (x) the optical

lattice potential. We neglect the harmonic potential in our
calculation for simplicity. In this work we first consider a
one-dimensional (d = 1) band insulator as the initial state
of adiabatic evolution. In optical lattice experiments, band
insulators with low entropy have been achieved [20]. The
initial lattice potential reads as

VI (x) = V cos(2πx/λ), (2)

with λ the lattice constant and V the strength. Then we adi-
abatically convert the lattice to another one with a different
period,

VF (x) = V ′ cos(2πx/λ′). (3)

During the time evolution, the potential has a time-dependent
form

V (x, t ) = [1 − s(t/T )]VI (x) + s(t/T )VF (x), (4)

which is standard in the context of an adiabatic algorithm [32].
Here, we adopt a linear path for adiabatic evolution

s(t/T ) = t/T, (5)

with T the total evolution time. In the calculation, we focus
on the parameter choice of V = V ′, and examine the conse-
quence of varying the overall lattice strength. Assuming that
the atomic loss during the evolution is negligible, which holds
when the evolution time T is smaller than the lifetime of the
cold-atom system, the filling factor of the final state is f =
λ′/λ. By controlling the ratio between the lattice constants,
a generic filling factor is accessible with quantum adiabatic
doping. To illustrate the adiabatic doping process, we show
the time dependence of the lattice potential and time evolution
of a density profile

n(t ) = |�(t )|2 (6)

of free fermions in the doping process in Fig. 1, with T =
400h̄/ER, V = 4ER, and f = 1/3.

With the incommensurate potential in Eq. (4), the quantum
dynamics during adiabatic evolution cannot be described by
a valid tight-binding model. We thus have to take into ac-
count the continuous degrees of freedom of the lattice. In the
numerical simulation, we discretize the space as x → j × a,
with a the length of a grid, and j the discrete index. The
discretization of space leads to a lattice Hamiltonian

H =
∑

j

{−J[c†
jσ c j+1,σ + H.c.] + Vjc

†
jσ c jσ + Unj↑n j↓},

(7)

with parameters J = h̄2/(2Ma2), Vj = V (x = ja), and
U = g/a.

To evaluate the performance of adiabatic doping, we calcu-
late the wave-function overlap

Overlap = |〈�g|�(T )〉|, (8)

and the residual energy

�E = 〈�(T )|HF |�(T )〉 − 〈�g|HF |�g〉, (9)

where |�g〉 is the ground state of the final Hamiltonian HF ,
and |�(T )〉 is the final state of quantum adiabatic evolution.
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FIG. 1. The time evolution of a density profile [see Eq. (6)]
of free fermions and a lattice potential [see Eq. (4)] in quantum
adiabatic doping in one dimension with the potential strength V =
4ER (ER is the single-photon recoil energy) and total evolution time
T = 400h̄/ER. The filling fraction is f = 1/3, corresponding to the
hole-doped case. Here, λ′ is the spatial period of the final lattice
[see Eq. (3)].

To confirm our finding is generic for a finite-size system, we
consider more than one system size in the following.

To simulate interacting fermions, we apply the stan-
dard DMRG to the discretized lattice model in Eq. (7). A
second-order Trotterization is implemented in the time evo-
lution [33]. This approach of simulating interacting systems
in continuous space has also been previously used in the
study of Fulde-Ferrell-Larkin-Ovchinnikov pairing of attrac-
tive fermions [34–36] and a Bose-Fermi mixture confined
in a one-dimensional harmonic trap [37]. In the following
calculation, we divide each spatial period of the initial lattice
into 20 grids, if not specified. In our DMRG simulation, we
have checked convergence with increasing the discretization
grids (M) and the Trotterization steps (see the Appendix). The
largest bond dimension of the time-dependent matrix product
state used here is D = 120, for which numerical convergence
is reached (see Ref. [15]).

III. PARTICLE DOPING

A. Free fermion

We first study the adiabatic particle doping of free
fermions. This corresponds to setting the filling factor f larger
than 1/2. We simulate adiabatic evolution with rational filling
factors f = 2/3, 3/4 and calculate the overlap of the final
state with the ground state [Eq. (8)]. The dependence of the
wave-function overlap on the total evolution time T is shown
in Fig. 2. The initial state is a one-dimensional band insulator
without an interaction in an optical lattice with L periods. We
consider two different choices of system sizes, L = 36, and
L = 60. For current and following calculations, we use a peri-
odical boundary condition for noninteracting fermions, while
the open boundary condition is adopted for the DMRG sim-
ulation of interacting fermions for numerical implementation
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FIG. 2. The dependence of final-state wave-function overlap on
total evolution time T for quantum adiabatic particle doping of free
fermions in a one-dimensional lattice. We start from band-insulator
states with the number of spatial periods L = 36 in (a), (c) and
L = 60 in (b), (d). The resultant rational filling factors are f = 3/4
in (a), (b) and f = 2/3 in (c), (d). The wave-function overlap sys-
tematically increases with the adiabatic time T and approaches 1 as
we increase the evolution time T for a weak lattice potential. For a
stronger potential, the overlap remains nearly zero and the adiabatic
doping protocol fails for free fermions.

convenience. For a weak lattice potential, say V = 1ER, 2ER,
the overlap increases with T and quickly approaches 1 as we
increase the total evolution time. This implies the adiabatic
preparation of the final state is efficient for weak lattice con-
finement. However, with a strong lattice potential (V = 8ER,
for example), the final-state overlap essentially remains at
zero for all evolution times we have simulated, which means
the adiabatic doping is inefficient.

For adiabatic doping with an incommensurate lattice, the
localization in the intermediate dynamics leads to a slowing
down of adiabatic state evolution. This has been shown by the
increase of the inverse participation ratio (IPR) [22,38–45]
with the lattice potential strength [15]. In the commensurate
case, similarly, the breakdown of adiabatic state preparation
under strong lattice confinement indicates a localizationlike
problem also occurs during evolution. To investigate the
slowing-down problem in the commensurate lattice, we calcu-
late the normalized participation ratio (NPR) [46]. The NPR
of a single-particle eigenstate φm(x) is defined as

NPR(m) =
[

L
∑

j

|φm( j)|4
]−1

, (10)

where L is the system size, and j labels the discrete spatial
coordinate [see Eq. (7)]. This quantity remains finite for spa-
tial extended states but vanishes for localized states. For a
one-dimensional localized system with length L, it goes as
L−1. We calculate the single-particle NPR of the lowest L
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FIG. 3. The dependence of the quantity log10M(L) [Eq. (12)] on
L for the adiabatic particle doping of one-dimensional free fermions.
Here, s ∈ [0, 1] is the evolution path [Eq. (4)]. The system size L
takes values from 15 to 597 with a rational filling factor f = 2/3.
The potential strength is V = V ′ = 8ER, for which the intermedi-
ate regime of evolution is strongly localized. At each instant s,
log10M(L) increases with L, which implies that the localization be-
comes unstable as the system becomes larger and tends to disappear
in the thermodynamic limit. Nonetheless, the significant deviation
of M(L) from L for a finite-size lattice already implies the coupling
between wave functions is rather weak, which affects the quantum
adiabatic doping.

eigenstates and average them to get

〈NPR〉 = 1

L

L∑
m=1

NPR(m). (11)

The averaged NPR is multiplied by L to compensate the L−1

scaling:

M(L) = L〈NPR〉. (12)

Therefore, for a localized one-dimensional system, M(L) is
expected to be nearly independent of L. In Fig. 3 we show
the dependence of the quantity log10M(L) on L following the
evolution path. The filling factor is set to be f = 3/4 and the
overall potential strength is V = 8ER. It is evident that M(L)
increases quickly with L at each instant of the path. While
this is consistent with the well-known fact that commensurate
lattice models do not have localization in the thermodynamic
limit, having a 〈NPR〉 significantly smaller than 1 in a finite-
size system implies the coupling between different modes is
severely suppressed owing to the locality of the Hamiltonian,
which then causes the slowing down of the quantum adiabatic
evolution.

B. Interacting fermion

Localization makes the minimal energy gap between the
ground state and the first excited state exponentially small,
and therefore causes a slowing down of the adiabatic state
preparation. It has been established that the interaction effect
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FIG. 4. Quantum adiabatic particle doping of one-dimensional
interacting fermions. The interaction is adiabatically switched on
for a one-dimensional noninteracting band insulator, held constant to
implement the lattice conversion, and then adiabatically turned off,
as shown by the inset. We perform a DMRG simulation of the lat-
tice conversion process in the regime t ∈ [0, T ] with T = 200h̄/ER,
taking the Hamiltonian in Eq. (7). The filling factor is chosen as
f = 2/3 with L = 14 and L′ = 21. The strength of the potential
is V = 8ER. As we increase the interaction strength from g = 0 to
g = 0.2λER, the final-state wave-function overlap increases and the
residual energy per particle �E/N (N is particle number) becomes
smaller. The localization problem is reduced and the performance
of the adiabatic doping is improved by introducing an interaction of
proper strength.

tends to destabilize localization, which would then improve
the efficiency of the quantum adiabatic doping. This has been
shown to be efficient for an incommensurate lattice with a
strong interaction in Ref. [15]. In this work, we consider
introducing a time-dependent interaction

HU = g(t )
∫

dxψ†
↑ψ

†
↓ψ↓ψ↑, (13)

with the time sequence shown in the inset of Fig. 4. The
system is initially prepared in a one-dimensional noninteract-
ing band insulator with 14 periods. The interaction is turned
on slowly and ramped to a constant. Then the initial optical
lattice is adiabatically converted to another spatial period,
after which the interaction is turned off slowly. The size of the
final lattice is L′ = 21, which corresponds to a rational filling
factor f = 2/3. We simulate the lattice conversion process
using DMRG. The total evolution time is T = 200 h̄/ER with
26 000 evolution steps. The wave-function overlap and the
residual energy per particle at t = T are shown as functions of
the interaction strength g in Fig. 4. Here, the overall potential
strength is V = 8ER, for which the noninteracting quantum
adiabatic doping is inefficient. As we increase the interaction
strength g from 0 to 0.2 (in units of λER with λ the initial
lattice constant), the wave-function overlap is improved from
0.128 to 0.484, and the residual energy per particle �E/N
(N is the number of particles) becomes very suppressed. We
thus find that in the commensurate case, the slowing-down
problem can still be solved by introducing an atomic interac-
tion. A dramatic enhancement of the preparation efficiency is

043320-4



QUANTUM ADIABATIC DOPING FOR ATOMIC … PHYSICAL REVIEW A 103, 043320 (2021)

achieved with a proper interaction strength. However, when
we further increase the interaction strength, we find that the
overlap decreases and �E/N increases slightly.

We also consider performing quantum adiabatic dop-
ing starting from a Mott insulating state. In experiments,
such an initial state is accessible since low-temperature an-
tiferromagnetic order has been observed at half filling in
two-dimensional optical lattices [14]. To compare the per-
formances of starting from the two different initial states of
Mott and band insulators, we simulate the adiabatic lattice
conversion starting from an interacting band insulator with
L periods and a Mott insulator with 2L periods. We choose five
different fillings in the particle-doped regime, both rational
and irrational. Without loss of generality, the irrational filling
factor is set to be the golden ratio, which is approximated
by the Fibonacci sequence as 8/13 and 13/21 in our finite-
size calculation. Here, we consider several different system
sizes, L = 8, 9, 12, 13. For a Mott insulator, each period of
the initial lattice is divided into ten grids, while that for a band
insulator is divided into 20 grids. This parameter choice is
chosen such that the final states of two protocols have the same
spatial periods and discrete grids. The total evolution time is
T = 200h̄/ER for the smaller system of L = 8, 9 and T =
200h̄/ER, 300h̄/ER, 400h̄/ER for the larger one of L = 12, 13.
During the evolution, the interaction strength is held constant
at g = 0.4λER and the overall potential strength takes the
value V = V ′ = 8ER. The final-state wave-function overlap is
shown in Fig. 5 with the solid and dashed lines representing
the results for the band insulator and Mott insulator, respec-
tively. The overlap is larger for a band insulator at f = 3/5
and f = (

√
5 − 1)/2. For f = 2/3 and 3/4, the adiabatic dop-

ing starting from a Mott insulator has a better performance.
The advantage is especially evident for f = 3/4. As shown in
Fig. 5(c), the overlap reaches 0.93 at T = 300h̄/ER for a Mott
insulator while that for a band insulator is 0.17. At f = 4/5,
the overlaps of the two protocols are both smaller than 1/2 for
all adiabatic times we have simulated. As shown in Fig. 5(d),
the overlap starting from a Mott insulator exceeds that of a
band insulator and reaches 0.31 at T = 400h̄/ER. We expect
the overall performance can be further improved by increasing
the total evolution time.

IV. HOLE DOPING

A. Free fermion

In this section we study adiabatic hole doping, which cor-
responds to a filling factor smaller than 1/2. We first simulate
the adiabatic evolution of free fermions starting from a one-
dimensional noninteracting band insulator in an optical lattice
with L periods. Both rational and irrational fillings are consid-
ered. The rational filling factors are chosen as f = 1/3, 1/4,
while for the irrational case we take f = [3 − √

5]/2, which
is approximated by a Fibonacci sequence as f = Fn−2/Fn. We
choose four different system sizes, L = 36, 60 for the rational
fillings and L = 34, 55 for the irrational case. The dependence
of the final-state wave-function overlap on the total evolution
time is shown in Fig. 6. The overlap systemically increases
with evolution time for all potential strengths we consider. It
should be noticed that a wave-function overlap larger than 1/2
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FIG. 5. Performance of quantum adiabatic doping of one-
dimensional interacting fermions starting from a band insulator and
Mott insulator. The doping process takes the time sequence as shown
in Fig. 4 with g = 0.4λER and the DMRG simulation is performed in
the regime t ∈ [0, T ]. The number of spatial periods is L for a band
insulator and 2L for a Mott insulator, corresponding to the lattice
constant λ/2. The final-state wave-function overlaps of these two
different protocols are compared in (a) for L = 8, 9 with the evolu-
tion time T = 200h̄/ER and (b) for L = 12, 13 with T = 200h̄/ER,
300h̄/ER, 400h̄/ER. We choose five different final-state fillings, both
rational and irrational. In (c) and (d), we show the dependence of
the wave-function overlap on the adiabatic time T with f = 3/4 and
4/5, respectively. For f = 2/3 and 3/4, adiabatic doping starting
from a Mott insulator has a better performance. The comparison is
most dramatic for f = 3/4, as shown in (c). For f = 4/5, the wave-
function overlaps of both procedures are smaller than 1/2 in the time
regime we consider. As we increase T , the protocol starting from a
Mott insulator is more efficient than that from a band insulator.

can be reached for a larger system of L = 55, 60 with V =
8ER and a smaller system of L = 34, 36 with V = 16ER as we
increase the evolution time to T = 800h̄/ER. The adiabatic
doping remains efficient in the hole-doped regime even for
moderate lattice potentials, for example, with V = 8ER, 16ER,
in contrast to the particle doping, which is severely subjected
to the localization slowing-down problem. For a sufficiently
strong lattice potential, the slowing-down problem still occurs
in the quantum adiabatic evolution of the hole-doped case.

To investigate localization in the hole-doped regime, we
calculate the inverse participation ratio (IPR), which tends
to vanish in the extended system and remains finite in the
localized system. The IPR is averaged over the lowest L
single-particle eigenstates following the evolution path. The
results are shown in Fig. 7. The irrational filling is set to
be f = [3 − √

5]/2, which is approximated by 55/144 with
L = 55. The averaged IPR systematically increases with the
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FIG. 6. The dependence of final-state wave-function overlap on
evolution time T of adiabatic hole doping (solid lines) of free
fermions in one dimension. For commensurate hole doping, the
filling factors are set to be f = 1/3 in (a), (b) and f = 1/4 in (c),
(d) with L = 36 (left) and L = 60 (right). It also takes an irrational
value [3 − √

5]/2, which is approximated by the Fibonacci sequence
as f = 34/89 with L = 34 in (e) and f = 55/144 with L = 55 in
(f). The results are compared to that of a particle-doped case with
corresponding filling factors 1 − f (shown by the dashed lines).
With the same strength, adiabatic doping is more efficient in the
hole-doped regime compared to the particle-doped regime.

potential strength, which means the breakdown of adiabatic
preparation corresponds to the atom localization. The results
are compared to that in a particle-doped regime with f =
[
√

5 − 1]/2 (approximated by 55/89) and V = 8ER. For most
of the Hamiltonian evolution path, the IPR of hole doping is
smaller than that of particle doping, especially for s > 0.5
where the strength of the final potential becomes dominant.
This is because in comparison with the particle-doping case,
the final lattice constant is smaller for hole doping, for which
quantum tunneling is stronger, suppressing the atom localiza-
tion. The quantum adiabatic doping protocol is evidently more
efficient in the case of hole doping than particle doping.

B. Interacting fermion

We further consider adiabatic hole doping of interacting
fermions, and simulate the evolution process starting from
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FIG. 7. Averaged inverse participation ratio (IPR) along the evo-
lution path with V = 8ER, 16ER, 32ER in the hole-doped regime
and V = 8ER in the particle-doped regime. In the calculation, the
IPR is averaged over the lowest L single-particle eigenstates of one
spin component. The filling factor is set to be f = [3 − √

5]/2 and
f = [

√
5 − 1]/2 that are approximated by a Fibonacci sequence as

Fn−2/Fn and Fn−2/Fn−1, respectively, with an initial lattice size L =
55. Compared to particle doping, the IPR for hole doping is smaller
for most of the evolution path, which explains the high preparation
efficiency in this regime.

a one-dimensional interacting band insulator using DMRG.
We choose f = 2/5 with L = 12 for the rational filling and
f = [3 − √

5]/2 for the irrational one, which is approximated
by f = 13/34 with L = 13 in the calculation. The dependence
of the final-state wave-function overlap and residual energy
per particle on the interaction strength is shown in Fig. 8 (solid
lines) with an overall potential strength V = 8ER. The DMRG
calculation shares the same time sequence and parameter
choice with that in the particle-doped regime. Two choices of
the total evolution time, T = 50h̄/ER and T = 200h̄/ER, are
considered. The preparation efficiency is improved by intro-
ducing a strong atomic interaction. In our numerical results,
we find a systematic increase of the wave-function overlap
[Eq. (8)] and a reduction of residual energy with increasing
interaction strength. By increasing the interaction strength g
from 0 to 0.6 (in units of λER), the wave-function overlap ulti-
mately reaches 0.96 for f = 13/34 and 0.965 for f = 2/5. We
compare the results with that of particle doping (dashed line)
for the same interaction and confinement potential strengths.
As shown in Fig. 8(c), the wave-function overlap with T =
50h̄/ER in the hole-doped regime is even larger than that of
particle doping with T = 200h̄/ER. The hole doping is evi-
dently more efficient than the particle doping in the interacting
regime, as is true for the noninteracting case as well.

V. CONCLUSION

To conclude, the doped quantum phase of an atomic Fermi-
Hubbard model with low thermal entropy can be prepared
by adiabatically converting two optical lattices with different
spatial periods. In this adiabatic doping proposal, an arbi-
trary filling fraction can be achieved by choosing the lattice
constant ratio of the initial and final lattices. In this work,
we consider quantum adiabatic doping starting from a band
insulator in a one-dimensional lattice and systemically study
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FIG. 8. Performance of adiabatic hole doping of interacting
fermions in a one-dimensional lattice for both rational and irrational
fillings. The wave-function overlap and residual energy per particle
are shown with solid lines in (a), (b) for f = 2/5 with L = 12 and
(c), (d) for f = [3 − √

5]/2, which is approximated by 13/34 with
L = 13. Here, we consider the total adiabatic time T = 50h̄/ER and
T = 200h̄/ER. The overall potential strength is V = 8ER for both
particle and hole doping. As we increase the interaction strength, the
wave-function overlap increases and approaches 1 for T = 200h̄/ER,
and the residual energy is reduced accordingly. Compared to particle
doping (shown by dashed lines with a filling factor f = 13/21), hole
doping shows a better preparation efficiency for this interacting case.

the proposal for a broad range of filing fractions from particle
doping to hole doping, including both rational and irrational
cases. It is found that atom localization, which is a fun-
damental problem in incommensurate lattices, also prevents
efficient adiabatic doping for a commensurate filling at strong
lattice confinement. Through a DMRG simulation, we show
that localization is suppressed by introducing a strong atomic
interaction and the state preparation efficiency is consequently
improved. Compared to particle doping, adiabatic hole doping
is more efficient in both free and interacting regimes. We
also consider adiabatic doping starting from a Mott insulator
state at half filling. From the results of a DMRG calculation,
we find that this protocol has significantly higher preparation
efficiency than adiabatic doping starting from a band insulator
for a certain range of filling factors.

Although the numerical simulation of the quantum adia-
batic doping process is restricted to one dimension in this
work due to numerical cost, we anticipate a better perfor-
mance in two dimensions because the localization physics
is largely expected to be weaker in higher dimensions. Our
systematic study of different fillings and interaction effects
should also shed light on quantum adiabatic doping in two
dimensions.
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FIG. 9. The convergence of results of a wave-function overlap
[Eq. (8)] and the residual energy [Eq. (9)] in the DMRG calculation.
We simulate the adiabatic doping of one-dimensional interacting
fermions with the same parameter choice as in Fig. 4 and fixed
interaction strength g = 0.2λER. Additional numbers of grids [shown
in (a), (b)] and numbers of Trotter steps [shown in (c), (d)] are
considered.
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APPENDIX: DETAILS OF DMRG SIMULATION

Here, we provide numerical details of our DMRG simu-
lation. In discretizing the continuous degrees of freedom of
interacting fermions, each spatial period of the initial lattice is
divided into M = 20 grids, if not specified. The numbers of to-
tal Trotter steps are NTrot = 7000, 26 000, 38 000, and 50 000
for the total evolution time T = 50h̄/ER, 200h̄/ER, 300h̄/ER,
and 400h̄/ER, respectively. The corresponding Trotter step is
τ � 0.008h̄/ER. In Fig. 9, we calculate the ground states and
simulate the time evolution of interacting fermions with the
same parameter choice as in Fig. 4, and check the convergence
with increasing the number of discretization grids, and Trotter
steps, i.e., M and NTrot. In the calculation, the interaction
strength is set to be g = 0.2λER. As M is increased from 16 to
24, we only see a minor variation for both the wave-function
overlap [Eq. (8)] and the residual energy [Eq. (9)]. Similarly
for Trotter steps increasing from 20 000 to 32 000, we also
find a nice convergence in the overlap and the residual energy.
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