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Universal nomogram for the atomtronic quantum rotation sensor
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Bose-Einstein condensates in annular geometries have received significant attention due to their potential use
as interferometers for inertial sensing and other applications. We systematically study the critical velocity of a
barrier for vortex formation in such a geometry. More significantly, we are able to show that the details of the
critical velocity can be captured by a simple analytic solution which can be considered the atomtronic analog of
the usual nomographic equations for electronic circuit components. Experimentally useful nomograms can be
plotted from the main result of this paper, from the analytic expression abbreviated as �, whose accuracy has
been validated via full simulations. It is a function of the potential parameters only and it can be used to directly
determine parameter regimes for a given application.
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I. INTRODUCTION

Ultracold atomic circuits have been realized in toroidal
condensates with a tunable weak link [1–4]. Annular super-
fluids with a weak barrier inside can be used as nonlinear
interferometers, and thus allow the construction of high-
precision quantum devices (cf. Superconducting QUantum
Interference Devices (SQUIDs)) or highly sensitive rotation
sensors [5–7].

Initially, experiments with superfluids were conducted with
liquid helium [8–11], including some utilizing an annular
geometry [12–20]. More recently, ring-shaped Bose-Einstein
condensates in toroidal traps have been the subject of many
experimental and theoretical investigations [21–29] which
study persistent currents [1,30,31], solitary waves [24,32],
weak links [2,3,33], and the decay of the persistent current via
phase slips [34–36]. A persistent flow and controlled creation
of phase slips can be created by transferring angular momen-
tum from an optical field or by stirring the superfluid with a
barrier. As the rotation rate, �, increases from zero up to a few
hertz, so does the winding number. Wright et al. [3] provided
a 1D model for the analysis of such experimental observations
and gave an insight into the origin of the critical current within
the barrier. However, a detailed analysis of the excitation of
vortices and their dynamics in the critical regime is beyond
the scope of that 1D model and requires a 2D or 3D model
[37,38].

The earliest experiments used simply connected conden-
sates; the perturbing potential moved through the condensate
[39–44], used a phase imprinting technique [45,46], or the
entire trap was rotated [47–49] to create topologically new
excitations, such as vortices or dark solitons. Condensates in
annular setups, however, by design, break topological con-
nectedness and the interplay of geometry and physics can be
investigated more directly [50–52].
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Ramanathan et al. [2] have already reported measurements
of a critical velocity in a superfluid ring by observing the
decay of a persistent current flowing past a stationary opti-
cal barrier of varying strengths. Wright et al. [3] identified
discrete phase slips in a ring geometry perturbed by a moving
barrier, although the barrier angular speed was much lower
than the local speed of sound.

We focus on the determination of the critical angular speed,
�crit, above which vortices are created in annular condensates
perturbed by a sweeping barrier (see Fig. 1). We investigate
the effects of barrier height and azimuthal width. An effec-
tive one-dimensional model is also introduced which captures
essential features of the annular two-dimensional system. We
further reduce this 1D model to an algebraic equation whose
discriminant determines the critical angular speed for vor-
tex nucleation. We consider this algebraic equation as the
atomtronic analog of the characteristic curves of a nonlinear
electronic component, whose working point lies along this
curve.

II. MODEL

In an inertial reference frame, the dimensionless Gross-
Pitaevskii equation

i
∂ψ

∂t
=

[
−1

2
∇2 + V (t ) + g|ψ |2 − �Lz

]
ψ (1)

describes a system of N interacting bosons at zero tempera-
ture. The �Lz term allows us to work in a reference frame
rotating with a frequency � relative to the inertial laboratory
frame. For the 2D simulation [53,54], we used g = 1000 and
a potential, V (t ), which is the sum of a stationary, ring-shaped
trap, Vt,
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FIG. 1. Left: Overview of the ring-shaped confining trap (gray)
with a barrier (dark gray) covering the entire channel width. Top
right: The Bogoliubov energy-spectrum of a weakly interacting Bose
gas with the speed of sound coinciding with the critical speed as
defined by Landau. Bottom right: In the strong interaction regime,
the critical speed can be lower than the speed of sound, provided
ε(p) develops a local minimum.

and a time-dependent stirring barrier, Vb(t ),

Vb(ϑ, t ) = V max
b

4

[
1 + tanh

(
1

b

[
ϑ − ϑc(t ) + 1

2
θ

])]
×

[
1 − tanh

(
1

b

[
ϑ − ϑc(t ) − 1

2
θ

])]
.

Above V max
b is height/strength of the stirrer barrier and θ is

its azimuthal width. The center of the barrier is specified by
ϑc(t ), which depends on time. The other parameter values are
V0 = 100, R1 = 2, R2 = 3, b = 10−2, while the barrier height
falls in the range of [0,V0]. The strength of the confining
ring-potential, V0, equates to approximately 21 nK, while the
other parameter values correspond to a condensate of sodium
atoms with atomic mass of m = 3.82 × 10−26 kg, s-wave scat-
tering length of as = 2.75 nm. The length- and timescale are
determined by a0 = 1 μm, and ωm ≈ 2762 Hz, respectively.
The total particle number is kept at N = 2.9 × 104.

III. APPEARANCE OF VORTICES

The condensate is prepared in the ground state inside a
potential trap with the stationary barrier present. The barrier
then starts rotating anticlockwise (positive direction) with a
constant angular acceleration of d�/dt = 0.04. This small
value is chosen to avoid shock-waves and immediate turbu-
lence at the edges, although at sufficiently high speeds the
initial ground state becomes unstable against excitations, such
as vortices [55].

Superfluid flow in a simply connected domain must be
irrotational due to the single-valuedness of the wave function.
To increase vorticity within the condensate, a vortex should
penetrate into it from outside or an antivortex should do so
from the central area of the annulus. Initially, no vortex or
antivortex is present, thus such transfer is impossible without
the nucleation of vortex pairs in the first place. As an example,
Fig. 2 depicts the density and phase in two moments for a
barrier (θ = π/6), for which vortices enter the depleted re-
gion at the trailing edge. The stirring creates an anticlockwise

FIG. 2. The phase of ψ is shown at (a) t = 30 000 and (b) t =
31 040. Vortices (yellow circles) and antivortices (red crosses) are
shown with circles. Insets show the corresponding density profiles.
In (b), a vortex is about to enter the bulk of condensate from outside.

current in the channel and a clockwise current through the
barrier whose height is smaller than the depth of the trapping
potential. The phase increases azimuthally outside the stirrer
region and decreases inside of it. The barrier reduces the local
density and since the velocity of the superfluid is larger across
the barrier, one expects that the condensate reaches its local
critical velocity within the barrier region. Indeed, an excitation
penetrates into the bulk of the condensate from outside at
the trailing edge of the rotating barrier. The critical angular
velocity, �crit, is estimated by capturing the moment when the
vortex/antivortex starts to penetrate the condensate and use
the fact that the angular acceleration is constant.

The arguments above explain where vortices may appear
relative to the barrier in the azimuthal direction. Here we
discuss their appearance in the radial direction and how this
depends on the barrier height. At first sight, one may think
as follows: The velocity field can be divided into radial and
tangential components as

v = h̄

m
∇φ = ∂φ

∂r
er + 1

r

∂φ

∂ϑ
eϑ = vr + vϑ .

Assuming that the phase, φ, is more or less uniform in the
radial direction, as Fig. 2 suggests, the radial velocity ‖vr‖ is
more or less constant, while ‖vϑ‖ is proportional to r−1. One
may expect that a vortex enters from the inner edge, since that
has the smaller radius and, consequently, higher ‖vϑ‖ which
may approach or even becomes higher than the local speed
of sound. However, a detailed numerical simulation indicates
that there is a threshold height below which a vortex enters
from outside, while for barriers stronger than the threshold
an antivortex leaves the center and traverses through the
condensate.

To understand this effect, the tangential speed vϑ (r, ϑ ) is
plotted in Fig. 3 as a function of ϑ at three different radii cor-
responding to R1, to R3 ≡ 1

2 (R1 + R2), and to R2. It is apparent
that vϑ (r, ϑ ) within the barrier region has a positive slope,
i.e., the velocity at the trailing edge of the barrier is higher
than at the leading edge due to the acceleration of the barrier
in the azimuthal direction. In fact, this slope vanishes in the
absence of barrier acceleration. This seems reasonable, as the
leading edge of the barrier compresses the gas a bit, therefore
it does not pick up the barrier’s speed immediately, while at
its trailing edge the barrier leaves a relatively rare volume into
which the gas can expand without experiencing resistance,
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FIG. 3. Azimuthal and radial components of velocity, vϑ and
vr , at t = 25 for barrier with height and width of 20 and π/3,
respectively. The angular acceleration is 0.04, thus vϑ ≈ 1. The three
curves correspond to concentric circles with radii of R1 (blue solid
line developing two small peaks in vϑ on both sides of the shaded
area in top figure), of R3 = 1

2 (R1 + R2) (dashed green line in the
middle for vϑ ), and of R2 (red solid line).

thus having higher velocity. This velocity difference explains
why the vortex appears behind the barrier.

The interpretation above can be validated by calculating
the canonical stress tensor. As the initial condensate does not
have spin or intrinsic angular momentum [56], it is sufficient
to consider the canonical stress tensor:

T αβ =
∑

r

(∂βψr )
∂L

∂ (∂αψr )
− gαβL .

Here ψr = (ψ,ψ∗), the coordinates are xβ = (t, r, ϑ ) with
gαβ = diag(+1,−1,−r2), and Lagrangian density:

L = i

2

[
ψ∗ ∂ψ

∂t
−ψ

∂ψ∗

∂t

]
− 1

2
(∇ψ )(∇ψ∗)− g

2
|ψ |4−V |ψ |2.

Figure 4 depicts all nine components of T αβ . The energy
density, T 00, especially its opposite peaks around the barrier
edges, indicates that the gas at the frontal and back sides of the
barrier behave differently, partially because of the increased
density at the leading edge. It is also noticeable that the energy
density (and also the mass density) at r = R1 is somewhat
bigger than at r = R3. This difference also points toward
vortices entering the bulk of the condensate from the outer
perimeter. Similarly, the shear-stress components, T 12 = T 21,
also show that the highest shear appears at r = R3, both in
front and behind the barrier, while in the bulk condensate the
shear is much reduced compared to that at R1 and R3. The
pressure components, T 11 and T 22, seem to be symmetric on
the two sides of the barrier, however, the scale hides minor
quantitative differences. At the leading edge, both T 11 and T 22

are slightly higher than at the trailing edge, for all three radii.
The fact that the critical velocity of the quantum fluid

depends on the local density inside the barrier provides a good
method to create controlled numbers of vortices. A vortex
depletes a definite region of the condensate and consequently
pushes the density elsewhere, increasing the critical velocity
for vortex formation. Hence, if the superfluid velocity is just
above the previous critical value, it may not be sufficient for

FIG. 4. All elements of the canonical stress tensor, T αβ , are plot-
ted as a function of azimuthal angle for fixed radii, R1 (black solid
middle line in T00), R2 (blue solid line in T00), and R3 (dashed green
bottom line in T00). The scale of vertical axes in different subplots
are different, thus graphs are only comparable within a subplot. The
gray dashed line indicates the relevant zero level in each graph.

the increased threshold and the creation of a second vortex is
suppressed.

IV. MODEL REDUCTION

In simulating the time evolution of a two-dimensional con-
densate, we only allowed for small and slow changes, hence
the density far from boundaries reaches a constant value.
This uniformity allows the reduction of dimensionality and
hence we create an effective one-dimensional problem, along
a circle of radius r. Furthermore, the barrier acceleration is
negligible, thus we consider the time evolution of the system
to be sufficiently slow throughout the entire simulation so we
can assume it to be in a stationary state in the corotating frame.

A. Effective one-dimensional model

Let us factorize the wave function as ψ (r, ϑ, t ) =
�(ϑ, t )P(r), where the purely real radial function is
defined as

P(r) =
[∫ 2π

0
|ψgs(r, ϑ )|2 rdϑ

]1/2

,

where ψgs(r, ϑ ) is the two-dimensional ground state wave
function normalized to unity. Its time evolution is then gov-
erned by

i
∂�

∂t
=

[
− 1

2r2

∂2

∂ϑ2
+ V + g|�|2

]
�,

in which r and g are the weighted average of radius and
interaction strength

r =
∫ ∞

0
r|P(r)|2dr and g = g

∫ ∞

0
|P(r)|4 dr.
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where, in both integrals, the limits of 0 and ∞ can be effec-
tively replaced by R1 and R2, respectively. Here we note that
calculating the r−2 factor in the kinetic energy term may seem
unwarranted, as one should rather calculate r−2. The differ-
ence between these approaches is negligible in our geometry
and can also be shown to be at most 5% in the worst case
scenario [57].

Unlike the two-dimensional case, here phase slips occur
when a dark soliton is created above a critical velocity of
the barrier. The critical speed appears to be very close to that
found in the two-dimensional analysis, e.g., the parameter set
which determines �crit = 1.23 in 2D, leads to �crit = 1.21 in
the effective model. This similarity suggests that we may be
able to find a simpler model predicting �crit than solving the
2D Gross-Pitaevskii equation. First, examine the dynamics in
the corotating frame where the governing Eq. (1) becomes[

− 1

2r2

∂2

∂ϑ2
+ V + g|�(ϑ )|2 + i�

∂

∂ϑ

]
�(ϑ ) = ε�. (2)

B. Effective algebraic model

Using Euler’s relation, we write � = √
ρ eiφ . Substituting

this into Eq. (2), we obtain a pair of differential equations,

φ(ϑ ) = r2�ϑ +
∫

J

ρ(ϑ )
rdϑ,

0 = 2ρρ ′′ − (ρ ′)2 − 4J2 − 8gρ3 − 8(V (ϑ ) − μ)ρ2,

where μ = ε + 1
2 r2�2 and the quantum current in the rotating

frame is J = ρv = ρ(∇φ + r × �). Due to its uniformity, we
approximate the density with constant value inside, ρb, and
outside, ρo, of the barrier. This assumption leads to a set of
algebraic equations,

2πr � + J

[
θb

ρb
+ θo

ρo

]
= 0,

J2 + 2ρ2
b (gρb + Vb − μ) = 0,

J2 + 2ρ2
o (gρo − μ) = 0,

r(ρbθb + ρoθo) = 1,

where θo = 2π − θb, the azimuthal width of the channel out-
side of the barrier. The last equation guarantees closure and
expresses the normalization of the wave function. Eliminating
all variables other than the density within the barrier, we
obtain

Aρ3
b + Bρ2

b + Cρb + D = 0, (3)

where the coefficients are

A = 64π3gr2

θ3
o

(π − θb)2,

B = 8π2r(θb − θo)

θ3
o

×[(rVbθo − 2g)(θb − θo) − 2πg + πr3�2θo],

C = 4πθb

θ3
o

[4rVbθo(θo − π ) + 2πr3�2θo + 5gθb − 4πg],

D = 2

rθ3
o

[
2π2r3�2 + Vbθ

2
b θo − gθ2

b

]
.

FIG. 5. Critical angular velocity is depicted as a function of
barrier height using three different methods: �2D

GPE is obtained from
solving the two-dimensional Gross-Pitaevskii equation (black solid
line), while �1D

p and �1D
a are derived from the one-dimensional ef-

fective Gross-Pitaevskii equation with periodic boundary conditions
(dashed green line flattening at a finite value around V max

b /μ ≈ 1)
and from the analytic approximation (blue dashed line), respectively.
Although μ varies slowly from 61 (Vb ≈ 0) to 65 (Vb ≈ 70), one may
consider it to be constant around 65 while interpreting the figure.
Inset shows the first few lowest excitation frequencies, ωk , of the
Bogoliubov–de Gennes spectrum for a barrier height of 20.

The subscripts, b and o, indicate whether the given quantity is
measured inside or outside of the barrier.

C. Predicting �crit

Once ρb is determined, one can calculate the other un-
known quantities, μ, ρo, and J , straightforwardly. According
to the fundamental theorem of linear algebra, the third-order
polynomial (3) has three roots over the complex numbers.
Moreover, since the coefficients of the polynomial are all real,
the complex roots appear in conjugate pairs. If the determinant

� = 18ABCD + B2C2 − 4AC3 − 4B3D − 27A2D2 (4)

is positive, there are three purely real solutions, while for � <

0 we have one real solution and a complex conjugate pair.
Indeed, this sign change of � determines �crit and thereby
signals the regime of the unknown quantities, μ, ρo, ρb, and
J fall in their physically allowed ranges, e.g., all densities are
positive.

The polynomial � is of degree eight in � without a con-
stant term and with only even powers present. Consequently,
the equation � = 0 has two trivial solutions �1,2 = 0 and
three pairs where the members of each pair have opposite
signs. This symmetry simply means that the stirring can either
be clockwise or anticlockwise, thus carrying no physically rel-
evant extraneous information. The lowest positive root yields
�crit, which is in very good agreement with that obtained from
the Gross-Pitaevskii equation in two dimensions, and with the
one given by the effective 1D equation, Eq. (2). Figure 5 de-
picts �crit determined from all three approaches and the axes
are rescaled by the local speed of sound, cs = (βρb)1/2, and
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by the chemical potential μ. Although the chemical potential
changes slowly as Vb increases, in this figure one may consider
μ to be approximately 65. The algebraic and the two GPE
approaches become qualitatively different for barrier height
around unity (in rescaled units), where (Vb − μ) changes
signs, indicating the increasing importance of quantum tun-
neling. Hence, in practice, the algebraic Eqs. (3) and (4) can
be used to determine either the density, if the system is not
unstable, or the critical experimental parameters, such as �crit,
leading to an unstable annular, two-dimensional condensate.

D. Comparison with earlier predictions

Watanabe et al. [58] investigated, using the hydrody-
namic description within the local density approximation,
the corresponding problem for an infinite, homogeneous
three-dimensional superfluid flowing in the presence of a
potential barrier. There superfluid is under the influence of
a one-dimensional confining potential whose maximal value
determines the critical current and thus the critical velocity.
Facilitating the direct comparison, we have plotted our results
measuring �crit in the local speed of sound corresponding to
the density at the radius R3, and using the chemical potential,
μ, as a unit for the barrier height. Here we note that μ remains
approximately constant for barrier heights below ≈66. While
Watanabe et al.’s result is comparable to ours, there are impor-
tant differences as well—mainly, that the system considered
here is trapped in an experimentally realizable annular trap,
which naturally introduces curvature to the geometry. We also
provide the analytic expression explicitly in terms of the po-
tential parameters. By solving the discriminant equation and
choosing the physical solution, we obtain

�2
crit = 1

4πr2

[
9β2(

√
3i − 1)

rϒ
− (

√
3i + 1)ϒ

r
+ 8Vb̂θb− 4β

r

]
,

where

ϒ3 = 27β2

⎛⎝2r

√
V 2

b θ̂2
b − Vbβθ̂b

r
+ 2Vbrθ̂b − β

⎞⎠,

with the shorthand notation θ̂b = π − θb for the supplemen-
tary angle of θb. Figure 6 illustrates the regimes that this
model is valid. In terms of the barrier height, it is valid for
heights lower than the chemical potential, and in terms of
the barrier width, it is valid for barrier widths almost eight
times larger than the healing length and also for the region that
the function is almost linear. We also compare our numerical
results with the predictions for the two limiting cases: thin
barriers [59] and wide barriers [60]. In both cases, one may see
that the fit is restricted to a narrow region of θ , and for wide
barriers the asymptotic prediction in Ref. [60] deteriorates
for stronger barriers, i.e., when V max

b becomes comparable
with the chemical potential. This is expected as the prediction
by Leszczyszyn et al. [60] is derived assuming the barriers
to be penetrable, while as V max

b ≈ μ the condensate density
decreases exponentially within the barrier. A similar trend is
true for the linear fit of our algebraic model; the solid blue
lines deviate for wider barriers (see V max

b = 40 and 50 in
Fig. 6), although even these give a reasonable fit up to θ ≈ π

2 .

FIG. 6. Critical angular velocity is depicted as a function of
barrier width, θb, for barrier heights, V max

b = 5, 20, 40, and 50. In
comparison, the chemical potential μ ≈ 66.5 in dimensionless units.
The black curves together with the black square markers are the
predictions of the 1D Gross-Pitaevskii equation. The red curves
correspond to the analytic �crit, while the blue straight lines are
the linear asymptotes calculated from the algebraic expression as
θb → 0+. The red curves are always higher than the blue curves.
The green dashed lines are the predictions given in Ref. [59] for thin
barriers in one dimension.

To verify the prediction of Eq. (4) for �crit, we solved for
the Bogoliubov–de Gennes excitation spectrum ωk (k = 1,
2, ...) [61–65] by linearizing Eq. (2) around the stationary
solution, �o, assuming that the perturbed wave function has
the form � = �o + λ�1. Here λ � 1 and measures the mag-
nitude of perturbation, while �1 = uk (x)e−iωkt + v∗

k (x)eiω∗
k t .

Since the Bogoliubov–de Gennes operator is not Hermitean,
its spectrum is not guaranteed to be real. The lowest excitation
frequency, ω1, drops to zero rapidly as � ↗ �crit, (see inset
of Fig. 5), indicating that �o becomes unstable, and a new
type of ground state is about to form. This new ground state
contains a topological defect: a dark soliton in one-dimension
and a vortex in two dimensions.

Overview of atomtronics as an emerging field of quantum
technology and, in particular, of the annular setup can be
found in review by Amico et al. [52].

V. CONCLUSION

We have investigated the mechanisms for a vortex gener-
ation in an annular Bose-Einstein condensate slowly stirred
by a potential barrier at zero temperature. If the barrier ro-
tates faster than a critical angular velocity, �crit, vortices start
forming and penetrating into the bulk of the condensate. We
have determined �crit from the 2D Gross-Pitaevskii equation,
from an effective 1D Gross-Pitaevskii equation, and from an
algebraic equation. These approaches agree notably well, up
to barrier heights comparable to the main annular trap. The
algebraic expression provides an easy path to generate nomo-
grams for this atomtronic circuitry similarly to those used
in electronics, where one provides nomograms for nonlinear
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components in their corresponding specification sheets, such
as for diodes or thermistors.

The determinant, �, depends solely on the geometry and
physical parameters, hence it is easily adapted to different ex-
perimental setups. Here we have demonstrated how to exploit
this algebraic equation and the sudden drop of the excitation
frequencies, ωk , in a narrow region around �crit. To create a
sensitive rotational sensor, the barrier height may be adjusted
to tune �crit to the rotation speed which one wants to detect.
The barrier height seems to be an excellent candidate for such
tuning, as its height can finely be modulated by the intensity

of a laser field. However, the algebraic equation allows one to
systematically explore the effect of other system parameters
on the critical angular velocity and generate a multitude of
nomograms similar to Fig. 5.
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