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Finite-temperature instabilities of a two-dimensional dipolar Bose gas at arbitrary tilt angle
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Advances in creating stable dipolar Bose systems and ingenious box traps have generated great interest
in the field of cold bosons. Theory study of dipolar bosons at finite temperature T has been limited. We
study two-dimensional dipolar bosons at arbitrary tilt angle θ using finite-T random phase approximation.
We show that a comprehensive understanding of phases and instabilities at nonzero T can be obtained by
concurrently considering dipole strength, density, temperature, and θ . We find the system to be in a homogeneous
noncondensed phase that undergoes a collapse transition at large θ , and a finite momentum instability, signaling
a striped phase, at large dipolar strength; there are important differences from the T = 0 case. As T → 0, a
Bose-condensed phase appears at critical dipolar strength, and at critical density. Our predictions for a polar
molecule system, 41K 87Rb, and 166Er may provide tests of our results.
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The nature of excitations, phases, and instabilities of in-
teracting Bose systems has been a subject of long-standing
interest. The extraordinary development of the field of ultra-
cold atoms, tremendously advanced by novel experimental
techniques over the past several years, has led to intense
research. In recent years, there has been considerable interest
in systems with long-range and anisotropic interactions; ex-
amples are bosonic and fermionic atoms, and polar molecules
experiencing dipolar interactions.

Recent experimental advances in creating stable dipolar
bosonic systems, including polar molecules with large elec-
tric dipole moments, have led to vigorous research activities.
Dipolar Bose-Einstein condensates (BECs) have been real-
ized in chromium [1] (52Cr), and in lanthanide atoms (such
as dysprosium and erbium [2]), which have larger magnetic
moments. Recent observation [3] of a roton mode, for the first
time, in dipolar 166Er (magnetic moment 7 μB) in a cigar-
shaped trap geometry constitutes a significant development.
The realization of high phase-space density systems of polar
molecules, such as 87Rb 133Cs [4,5] and 41K 87Rb [6,7], holds
promise for realization of quantum degeneracy and dipolar
BECs. In general, the electric dipole moments of the polar
molecules are substantially larger than the magnetic dipole
moments of atoms; for example, the RbCs system has a siz-
able electric dipole moment, ∼1.28 D. Ingenious box traps
constitute another significant development. There have been
box-trap experiments on bosons subjected to contact interac-
tion [8–10], while those on dipolar systems are ongoing.

The long-range and anisotropic nature of dipolar interac-
tion, with a region of attraction, can give rise to novel quantum
phases, even in dilute systems. A sizable body of theory work,
based on Monte Carlo and Bogoliubov–de Gennes (BdG)
methods, exists at zero temperature (T = 0). The existence of
a roton mode and density wave phase has been found in BdG
calculations studying the properties of the BEC ground state
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[11–15]. Solid and stripelike crystal phases have been pre-
dicted in Monte Carlo simulations [16,17]. Such a stripe phase
of the dipolar Bose system provides a promising candidate
[18–22] for an intrinsic supersolid, but the issue of supersolid-
ity in two-dimensional (2D) dipolar bosons has been a subject
of debate [23,24].

A purely dipolar 3D system is usually unstable towards
collapse due to the attractive component of the interaction.
A trap helps to stabilize the system; this depends strongly on
trapping geometry [1,25]. In 2D, the stability issue of dipolar
bosons may be richer [26,27]. There have been studies [28,29]
of density response in 3D and 2D Bose gas with attractive
constant interaction, based on random phase approximation
(RPA). A similar study of dipolar bosons in a cylindrical
trap at finite temperature shows that a pancake geometry trap
stabilizes the system [30]. This brings up the question as to
whether purely 2D dipolar bosons are stable at finite tem-
perature. Theoretical study of 2D dipolar boson gas at finite
temperature has been limited.

In this paper, we present results of our study of a 2D
dipolar Bose system at nonzero temperatures, using finite-
temperature RPA [28,30]. A key point of the paper is that a
broad perspective on the phases and instabilities of the system
at finite temperature can be attained by considering several
tunable knobs: density, temperature, interaction strength, and
the orientation of dipole moments to an external field, i.e.,
tilt angle. We construct several informative phase diagrams
based on our study of dipolar length (strength) versus dipole
tilt angle at a given temperature; RPA critical temperature and
critical density versus dipolar length for a given tilt angle,
and critical temperature versus critical density for a given tilt
angle. In particular, at finite temperature, we find the system
to be in a homogeneous noncondensed phase that undergoes
a collapse transition at large tilt angles, and a finite momen-
tum instability, signaling a striped phase, at sufficiently large
values of dipolar coupling strength. The linear q dependence
of the 2D dipolar interaction is manifested in a new density
wave instability in a broad regime similar to that in 2D dipolar
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FIG. 1. 2D dipoles in the x-y plane with tilt angle θ that defines
the direction of the electric or magnetic field E relative to the z
direction. φ is the angle in the x-y plane, relative to the x direction.

fermions [26,27]. As T → 0, for sufficiently small tilt angles,
a BEC appears at a critical dipolar strength, and at a critical
density.

While our results should apply generally to 2D dipolar
bosons at arbitrary temperature, specific predictions, based on
the parameters of the polar molecule system, 87Rb 133Cs, can
serve as tests of our results. We briefly discuss the effects of an
additional contact interaction. The aforementioned box traps
make the study of homogeneous systems directly relevant and
testable.

We consider a gas of dipolar bosons of mass m and electric
or magnetic dipole moment d . The dipoles are confined to be
in the x-y plane, and the dipole moments are aligned by an
external electric field E or magnetic field B, subtending an
angle θ with respect to the z axis, as shown in Fig. 1.

To explore the stability of the system, we consider the
static density-density correlation function χ (q) ≡ χ (q,w =
0), which determines the stability of a system against density
fluctuations. When χ (q) becomes positive at wave vector q,
the system has density wave instability and may undergo a
transition to the striped phase [26,27]; if it becomes positive
as q → 0, the system will develop negative compressibility
and collapse.

In standard RPA, the density-density correlation function
can be diagrammatically expanded in terms of the bare re-
sponse function χ0 (see Appendix A, Fig. 6). For the stability
condition against density fluctuations of finite momentum, the
direct scattering of particle-hole excitations dominates over
the exchange scattering because of the linear momentum de-
pendence of V2D(q) [27,30,31]. So, we neglect the exchange
scattering of particle-hole excitations. Also, since in 2D, there
is no BEC at finite temperature, there is no contribution from
the condensate in the RPA response. Then,

χ (q, ω) = χ0(q, ω)

1 − V (q)χ0(q, ω)
, (1)

with

χ0(q, ω) =
∫

dk
(2π )d

f (k − q/2) − f (k + q/2)

h̄ω − (
εk+q/2 − εk−q/2

) , (2)

where εk = h̄2k2/2m is the free particle kinetic energy and
f (q) is the Bose distribution function with chemical potential
μ. For noninteracting bosons, χ = χ0 and is always negative,
so the system is stable. For interaction with an attractive

channel, the system can become unstable depending on the
interaction.

To proceed, we first need to evaluate the finite-temperature
bare response function, Eq. (2). The asymptotic behavior is
given by the following (for details, see Appendix B).

In the qλT � 1 region,

χ0(q, T ) = − m

2π h̄2

1

e−βμ − 1
[1 + O(qλT )2], (3)

where λT =
√

2π h̄2β/m is the thermal de Broglie wavelength
and β = 1/kBT .

In the qλT � 1 region, the behavior is temperature inde-
pendent, and

χ0(q) = − 4nm

h̄2q2
. (4)

In calculating RPA responses, we take the bare response
function to be that of a noninteracting system and use the
noninteracting gas to calculate the chemical potential μ(T, n).
For an ideal two-dimensional boson gas, the density is

n =
∫

dk
(2π )2

1

eβ(εk−μ) − 1

= λ−2
T g1(eβμ), (5)

where gv (z) = ∑
j z j/ jv is the polylogarithm function. The

chemical potential μ is

μ = 1

β
ln

[
1 − exp

(−nλ2
T

)]
. (6)

As the temperature decreases, χ0(q) increases. In the classical
limit, βμ � −1, Eq. (3) becomes χ0(0) = −n/T , indepen-
dent of Bose statistics. In the quantum limit, βμ � −1,
Eq. (3) becomes χ0(0) = − m

2π h̄2 enλ2
T . Since there is no upper

limit for g1(z) at zero chemical potential, there is no BEC
in 2D at finite temperature. In the limit of zero temperature,
limT →0 μ = 0, and limT →0 n(k) = n δ(k). The limiting be-
havior at zero temperature is the BEC state; Eq. (3) becomes
χ0(0, 0) = −∞, and Eq. (4) becomes the response function
of ideal bosons for all momenta at T = 0. Thus at T = 0, the
finite-T RPA can be shown to be equivalent to BdG theory
[32].

It is convenient to look at the inverse of static density-
density correlation function χ (q), given by

1

χ (q)
= 1

χ0(q)
− V (q), (7)

where V (q) is the dipole-dipole interaction (DDI), given by
V (q) = Vs + Vl (q), with

Vs = 2πd2 P2(cos θ )

rc
,

Vl (q) = −2πd2q(cos2θ − sin2θcos2φ), (8)

where rc is a short-range cutoff [33]. In quasi-2D geome-
try, it depends on the trapping size in the z direction [11].
The first term, Vs, is momentum independent and acts like a
short-range interaction. The second term depends linearly on
the magnitude of momentum. In the y direction (φ = π/2),
the interaction is the most attractive; therefore the instability
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FIG. 2. Schematic illustration of the three cases of response
function discussed in the text. The curve is 1/χ0(q), and the line is
V (q).

occurs at momenta in the y direction. Three distinct cases may
be noted:

(1) 1/χ0(q) − V (q) < 0 everywhere: The system is in uni-
form normal stable phase.

(2) 1/χ0(q) − V (q) > 0 at finite q: The system undergoes
density wave instability and has striped phase.

(3) 1/χ0(q) − V (q) > 0 at q = 0: The system has negative
compressibility and collapses.

Figure 2 shows schematically the behavior of 1/χ0(q) and
V (q) for the three cases. 1/χ0(q) is approximately quadratic in
q with intercept 1/χ0(0) � 0; V (q) is linear in q with negative
slope and positive or negative intercept depending on the tilt
angle. Note that an instability at finite q is possible for a
dipolar system in 2D, but not in 3D [30]. This is because V (q)
is independent of the magnitude of momentum in 3D [26].

The behavior of the response function for the 2D dipolar
Bose gas at nonzero T can be generally categorized into two
regimes with respect to tilt angle θ :

(a) θ < cos−1 1√
3
: The short-range interaction V (q = 0)

is positive, and 1/χ0(0) � 0. Then, 1/χ0(0) − V (0) � 0 is
always satisfied, and thus it is impossible for the system to col-
lapse. However, the instability condition could be satisfied at
finite qy with a sufficiently strong dipole interaction strength,
describable by dipolar length, add = md2/h̄2. Thus the system
is unstable against a density fluctuation with wave vector qy.
This indicates a transition from the normal phase to a striped
phase.

(b) θ > cos−1 1√
3
: In this region, the short-range interaction

becomes negative. At zero temperature, the bare response
function diverges at q = 0 and 1/χ0(0) = 0, so the system
cannot support any attractive short-range interaction. Thus it
always collapses at T = 0, as in the BdG approach. However,
at finite temperature, the bare response function has a nonzero
negative value at q = 0. As a result, it can support attractive
short-range interaction that is sufficiently small. The system
first undergoes a transition from normal phase to a striped
phase and then collapses as add increases further. At large
tilt angles close to π/2, the long-range interaction becomes
zero, and the total interaction is dominated by the negative
short-range part of the dipolar interaction. Then the system
goes from the normal to the collapse phase without going
through an intermediate striped phase.

For a fixed density and temperature, the dipole interaction
strength add can be changed via the strength of the external
field, and the dipolar tilt angle θ can be changed by varying the
direction of external field. In Fig. 3, we show the calculated
stability diagram for critical dipole interaction strength add

versus the tilt angle θ for the polar molecule, 87Rb 133Cs, at
T = 0 and T = 20 nK. We have chosen the density to be

FIG. 3. Critical dipole interaction strength add vs tilt angle θ for
a system of polar molecule 87Rb 133Cs at T = 0 and T = 20 nK. add

is in units of the Bohr radius a0. Red and blue curves are lines of
density wave and collapse instabilities, respectively.

n = 1012 m−2, the cutoff to be rc = 104 a0, and the mass
of 87Rb 133Cs to be m = 220 u (unified atomic mass unit).
At T = 0 K, for θ < 0.955, the system goes from a stable
BEC phase to a density wave instability, as dipole strength
add increases. The system collapses for any dipole strength
when θ > 0.955. On the other hand, at T = 20 nK, a density
wave instability appears as add increases, even for tilt angle
θ > 0.955. The system eventually collapses as θ is increased
further. That the collapse occurs at a larger value of θc com-
pared with that in the T = 0 case may be understood on noting
the interplay between the DDI and the bare T -dependent re-
sponse, 1/χ0(T ), in the RPA response function.

A study of critical temperature Tc and critical density nc,
albeit within the RPA, provides another perspective on phases
and density wave instability in the system. We first calculate
Tc and critical density nc, each as a function of add , for a
fixed tilt angle θ . Figure 4 shows our results for the physical
system 87Rb 133Cs for θ = 0 and 0.4. Tc and nc are calculated
using the condition 1/χ (q, T, n) = 0. For calculation of Tc,
we choose the system density to be 1012 m−2, and for nc, we
choose the system temperature to be 10 nK. In the context of
density wave instability, a key point here is that the critical
temperature and critical density behave opposite to each other
with increasing dipole strength; that is, Tc increases and nc

decreases when dipole strength is increased (see Fig. 4). The
terminating point (T = 0) of the Tc curves signifies the onset
add for BEC; this is dependent on the tilt angle.

Next, we construct temperature-density (T -n) stability di-
agrams for fixed dipole strengths add and tilt angles θ . For
θ < cos−1 1√

3
, as temperature decreases and density increases,

the system goes through a transition from stable Bose fluid
phase to a density wave (DW) phase. At T = 0, there is a

FIG. 4. Critical temperature and critical density for density wave
instability of 87Rb 133Cs at tilt angles θ = 0 and 0.4. Left: Tc vs add ,
for n = 1012 m−2. Right: nc vs add at T = 10 nK.
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FIG. 5. Calculated T -n stability diagrams for dipolar Bose gas
at θ = 0 (left column) and θ = 1 (right column). The top row is for
41Rb 87Cs with dipole moment d = 0.355 D; the middle row is for
41Rb 87Cs with d = 1.22 D; and the bottom row is for 166Er with
d = 7 μB. The red curves denote lines of density wave instability
which occur at low temperature and high density for θ = 0. For θ =
1, the system goes from a stable Bose fluid phase to density wave
instability, and then to a collapse phase (blue line) as temperature
decreases and density increases.

critical density below which there is no density wave in-
stability, and the system is a BEC. For θ > cos−1 1√

3
, as

temperature decreases and density increases, the system goes
through a transition from stable Bose fluid to a density wave
phase to a collapse phase. In Fig. 5, we show the calculated
T -n stability diagrams, for θ = 0 and θ = 1, using param-
eters relevant to several physically realized dipolar boson
systems, namely, the polar molecule 87Rb 133Cs with electric
dipole moment of 0.355 D and add = 4586 a0 (accessible in
experiment) [4]; 87Rb 133Cs with electric dipole moment of
1.22 D and add = 93 084 a0 (the maximum value possible
in experiments); and 166Er with magnetic dipole moment of
7 μB and add = 196 a0 [3]. The sets of plots show that for
larger dipolar interaction strengths add , the instability occurs
at a larger density and lower temperature; compare, for ex-
ample, the plots for 87Rb 133Cs with electric dipole moment
of 1.22 D (add = 93 084 a0) with the plots for 166Er with
magnetic dipole moment of 7 μB (add = 196 a0). Density
wave instability occurs at low temperature and high density
for small tilt angle. For large tilt angle, the system goes from
stable Bose fluid phase to density wave instability and then
to collapse as temperature decreases and density increases;
no discernible region of BEC appears at T = 0 (as seen for
θ = 1).

We have considered the effect of an additional short-range
interaction g, originating from van der Waals interaction be-

tween atoms or molecules; this results in total interaction
V (q) = g + Vdipole(q). Within the RPA, the main modifica-
tions are as follows: a repulsive g increases the critical tilt
angle θc to a value larger than 0.955, while an attractive g
decreases it. This is because θc is now determined by the
net short-range interaction, which has contribution from the
contact interaction, in addition to that contained in the dipole
interaction. Adding a repulsive g increases the critical add for
instability, while an attractive g decreases this (see Appendix
C, Fig. 8).

We have shown that a broad understanding of the nature of
phases and instabilities in a 2D dipolar Bose gas at finite tem-
perature may be obtained by concurrently exploring tunable
system parameters, namely, density, temperature, interaction
strength, and tilt angle. The presented stability diagrams pro-
vide different perspectives on the nature of the instabilities.
We have used a finite-temperature version of the RPA, the
RPA being a well-established many-body method that has
proved to be useful in describing collective modes and in-
stabilities in quantum fluids. At T = 0, our finite-temperature
RPA reproduces the BdG results, as expected [32]; for exam-
ple, a density wave instability occurs at the critical dipolar
strength and critical density that is consistent with that found
in zero-T BdG calculation. Our approach and results should
not only be of interest within the field of cold bosons but
also appeal to a broader audience interested in phase and
instabilities of Bose systems generally, and also systems with
long-range and anisotropic interactions. Our results may be
compared with previous work in 3D with attractive con-
tact interaction [28], or dipolar interaction [30], wherein
possible long-wavelength (q → 0) instabilities were studied.
We note that a density wave instability usually triggers a
long-range order of the stripe phase. At finite temperature,
enhanced fluctuation in 2D will destroy the long-range order,
but a quasi-long-range order may survive. A phase transition
belonging to the usual Berezinskii-Kosterlitz-Thouless uni-
versality class is expected; this has been studied in Monte
Carlo simulations [34,35]. Thus the Tc curves discussed here
are, in a strict sense, RPA instability lines. Accordingly, our
T -n phase diagram may need to be modified at low tempera-
ture; this is beyond the scope of the RPA.

FIG. 6. Feynman diagram expansion of density-density corre-
lation function. χ0 is the bare response; χ (q) is the full response
function. The wiggly curves denote interaction, and the solid curves
with forward and backward pointing arrows represent particles and
holes.
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FIG. 7. Bare response function calculated using mass of polar
molecule 87Rb 133Cs at density n = 1012 m−2 at varying tempera-
tures. The inset is the response function at large momentum, showing
that the curves asymptotically approach each other.
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APPENDIX A: RPA DIAGRAMMATIC EXPANSION

The diagrammatic expansion of the density-density corre-
lation function χ (q) in terms of the bare response function χ0

is shown in Fig. 6.

APPENDIX B: FINITE-TEMPERATURE
2D BOSON BARE BUBBLE

We derive the 2D boson bare bubble at finite temperature
with chemical potential μ.

We first shift f (k ± q/2) to f (k) in Eq. (2) and then inte-
grate over angles to obtain

χ0(q) = − 2m

π h̄2q

∫ q
2

0
dkk

1

eβεk e−βμ − 1

1√
q2 − 4k2

. (B1)

In the qλT � 1 limit, eβεk = e
(kλT )2

4π 	 1 + O(kλT )2. Integrat-

FIG. 8. Effect of adding an additional contact interaction, g.
Calculated add vs θ phase diagrams of polar molecule 87Rb 133Cs
at density n = 1012 m−2 at T = 10 nK. g = 2π h̄2

2m a, with a =
0, 0.5, 1, −0.2 for (a), (b), (c), and (d), respectively.

ing out k, we obtain

χ0(q) 	 − 2m

π h̄2q

∫ q
2

0
dkk

1

e−βμ − 1

1√
q2 − 4k2

= − m

2π h̄2

1

e−βμ − 1
[1 + O(qλT )2]. (B2)

In the qλT � 1 limit, we obtain

χ0(q) 	 − 2m

π h̄2q2

∫ ∞

0
dkk

1

eβεk e−βμ − 1

= − 4nm

h̄2q2
. (B3)

Figure 7 shows the bare response function for various
temperatures.

APPENDIX C: ADDITIONAL CONTACT INTERACTION

The plots of the results for the cases of dipolar plus addi-
tional repulsive and attractive contact interactions are shown
in Fig. 8.
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