
PHYSICAL REVIEW A 103, 043316 (2021)

Thermal instability, evaporation, and thermodynamics of one-dimensional liquids
in weakly interacting Bose-Bose mixtures
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We study the low-temperature thermodynamics of weakly interacting uniform liquids in one-dimensional
attractive Bose-Bose mixtures. The Bogoliubov approach is used to simultaneously describe quantum and
thermal fluctuations. First, we investigate in detail two different thermal mechanisms driving the liquid-to-gas
transition, the dynamical instability, and the evaporation, and we draw the phase diagram. Then, we compute
the main thermodynamic quantities of the liquid, such as the chemical potential, the Tan’s contact, the adiabatic
sound velocity, and the specific heat at constant volume. The strong dependence of the thermodynamic quantities
on the temperature may be used as a precise temperature probe for experiments on quantum liquids.
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I. INTRODUCTION

Fluids are traditionally classified as gases or liquids de-
pending on the possibility of being self-bound. Gases have
a positive pressure, so that in absence of a confining container
these expand until they occupy the whole available space.
Liquids are normally much denser than gases and have an
equilibrium density fixed by the zero-pressure condition, or,
equivalently, by minimizing the free energy per particle [1].
The equilibrium density is obtained balancing a long-distance
attraction (typically of van der Waals type) and a short-range
repulsion. Liquids are therefore self-bound, and the uniform
state can easily break down to form small droplets. As the
temperature is raised, the thermal contribution to the kinetic
energy plays against the attractive interactions and makes a
liquid less self-bound. Once a critical temperature is reached,
the liquid evaporates into a gas.

Quantum effects play a key role at very low temperatures,
where the quantum contribution to the kinetic energy is signif-
icant. While most liquids solidify upon cooling at atmospheric
pressure, helium remains liquid even at absolute zero temper-
ature due to the large zero-point motion caused by its small
atomic mass. Understanding the quantum properties of liquid
helium is challenging, because it is a dense system with strong
interactions, so that perturbative theories cannot be directly
applied and a careful modeling of the short-range details of
the potential is needed [2–8].

A novel and very different class of quantum liquids
emerged in recent studies with ultracold atomic gases [9,10].
Ultracold dilute liquids have been experimentally created
and investigated in three-dimensional (3D) samples with
anisotropic dipolar interactions [11–18] and in Bose-Bose
mixtures with isotropic contact interactions [19–21]. These
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liquids exhibit exceptionally low densities (eight orders of
magnitude lower than helium’s) and temperatures (nine orders
of magnitude lower than the freezing point of most classical
liquids). Ultracold droplets can be accurately described by
microscopic models which are much simpler than the ones
needed for liquid helium. In fact, droplets are formed in the
weakly interacting regime, so that perturbative theories can
be used. An ultradilute liquid forms when the interaction
strengths are tuned in such a way that the dominant contribu-
tion to the energy (the mean-field part) is close to vanishing.
Under these conditions, the importance of beyond-mean-field
quantum fluctuations (which are usually subleading) is greatly
enhanced, and these can provide the balancing mechanism
needed to obtain a liquid. Quantum droplets are therefore
stable due to genuine many-body effects. Such liquids have
a number of advantages as there is an exquisite experimen-
tal control over interactions, temperature, spatial dimension,
trapping, and relative populations in mixtures. As such, they
can model other complex and very different many-body sys-
tems, including liquid helium. The evaporation leads to the
reduction of the number of particles in the liquid as discussed
for the zero temperature case in Refs. [19,22,23], although
it cannot be clearly distinguished from three-body losses in
current experiments [20,21].

These quantum liquids have been predicted to exist also
in one-dimensional (1D) Bose-Bose mixtures [24–26], where
beyond-mean-field effects are greatly enhanced, and three-
body collisions strongly reduced [27,28]. A 1D configuration
should therefore allow for a more precise characterization
of the evaporation process. First experiments with quan-
tum droplets in confined geometries have been recently
reported [29]. Different from the three-dimensional case,
the stability of 1D liquids requires a net mean-field repul-
sion which competes with an effective attraction provided
by quantum fluctuations [24]. One-dimensional liquids gen-
erated a significant interest, and recent works explored
their zero temperature phase diagram [25] and dynamics
[30–32].
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However, the experiments are inherently performed at fi-
nite temperature [20,29], and an important open problem is
the understanding of thermal effects in quantum liquids. These
systems in particular require novel temperature probes [9],
because the standard technique for thermometry in ultracold
gases (time-of-flight expansion) cannot obviously be applied
to self-bound systems. One should therefore resort to in situ
techniques, such as the ones exploited in recent ultracold-gas
experiments to measure with high-precision several thermo-
dynamic quantities. These include the sound velocity, the free
energy, the specific heat at constant volume, the Tan’s contact
parameter and the chemical potential [33–39].

The enhanced stability of one-dimensional mixtures opens
the intriguing perspective of investigating the influence of
temperature on liquids, whose understanding is very limited at
the moment. A thermal instability of quantum liquids, induc-
ing the transition to the gas phase, has been analyzed from the
perspective of the pairing theory [40] and of the noninteract-
ing phononic excitations description [41]. As the temperature
is increased, however, higher quasiparticle momentum states
get populated and the deviation of the excitation spectrum
from the simple linear phononic behavior are expected to
become important [42–44]. To our knowledge, no previous
studies of the evaporation in 1D liquids, both at zero and finite
temperature, were reported.

In this work, we study weakly interacting uniform liquids
formed in one-dimensional Bose-Bose mixtures at finite tem-
perature. We provide a comprehensive description of their
thermodynamic quantities at finite temperature, and we study
in detail the two mechanisms which rule the thermal liquid-to-
gas transition: the dynamical instability and the evaporation,
which occur respectively in the bulk and at the surface. To
perform our study we employ the Bogoliubov (BG) theory,
which describes the low-temperature thermodynamic behav-
ior of the system in terms of noninteracting BG quasiparticles.
This method has been previously successfully applied to a
single-component 1D Bose gas at finite temperature, showing
an excellent agreement with exact Bethe ansatz techniques
of all the thermodynamic quantities [44]. In this paper, we
generalize that approach to bosonic mixtures. The BG theory
takes into account the nonlinearity of the excitation spectrum,
thus going beyond simpler noninteracting phonon models
[41,44,45]. By doing so it is possible to include the beyond-
mean-field quantum fluctuations even in the thermal effects.
The strong dependence of the dynamical instability and the
evaporation on the coupling constants, combined with the
fine tunability of the interactions ensured by Fano-Feshbach
resonances [46–48], can be employed to measure the tempera-
ture in quantum liquids with unprecedented precision. Finally,
our theoretical predictions constitute a fundamental bench-
mark for future in-situ measurements of key thermodynamic
quantities.

The paper is organized as follows. In Sec. II we present
the system under investigation, introduce the thermodynamic
quantities of interest, and derive a series of exact relations
linking them. In Sec. III we calculate the ground-state proper-
ties of the liquid at zero temperature. In Sec. IV we discuss
the phase diagram of the system at finite temperature, in-
vestigate the thermal liquid-gas transition and compute the
critical temperatures of both the dynamical instability and the

evaporation. In Sec. V we calculate several thermodynamic
quantities of the liquid at finite temperature. In Sec. VI we dis-
cuss the experimental relevance of our predictions. In Sec. VII
we draw our conclusions and we present future perspectives of
our results. In Appendices A and B we provide details about
the derivation of the exact thermodynamic relations and the
adiabatic sound velocity, respectively.

II. MODEL

Throughout this paper we consider a one-dimensional
uniform mixture of two bosonic components with pairwise
contact interactions, whose Hamiltonian reads:

H =
2∑

σ=1

[
− h̄2

2m

Nσ∑
i=1

∂2

∂x2
i

+ g
Nσ∑
i> j

δ(xi − x j )

]

+ g12

N1,N2∑
i> j

δ(xi − x j ). (1)

Here Nσ is the number of atoms in component σ = 1, 2,
and to simplify the treatment we restrict ourselves to study
balanced mixtures with N1 = N2 = N/2. The total linear den-
sity is therefore n = n1 + n2 = N/L, where L is the length
of the system. All atoms have the same mass m and expe-
rience the same intraspecies repulsive interactions controlled
by the coupling constant g = −2h̄2/(ma) > 0, where a < 0
is the 1D intraspecies s-wave scattering length. We con-
sider attractive interspecies interaction with coupling constant
g12 = −2h̄2/(ma12) < 0 depending on the 1D interspecies
s-wave scattering length a12 > 0. In the following, we will
focus on the regime close to the mean-field instability point
|g12| � g, where a weakly interacting quantum liquid emerges
at zero temperature [24,25]. In this regime the perturbative
Bogoliubov theory can be safely applied. While in three
dimensions this approach describes the low-density limit,
a peculiar feature of one-dimensional geometry is that the
weakly interacting regime corresponds to the high-density
limit n|a| � 1 and na12 � 1.

Within the canonical ensemble, the complete thermody-
namics of the system can be obtained from the Helmholtz
free-energy density A = E − TS , where E is the internal en-
ergy density and S is the entropy density. The energy cost of
adding a single particle to the system, or chemical potential,
is given by

μ =
(

∂A
∂n

)
T,a,a12

. (2)

Another key thermodynamic quantity is the pressure,

P = nμ − A. (3)

The pressure is always positive in a gas state. Liquids can even
sustain a negative pressure, when its value is not too large.

A special property of a many-body self-bound state at zero
pressure and temperature is that the total energy is related to
the chemical potential as E = μN , which might be confronted
with the relation E = μN/2 holding for a single-component
mean-field weakly repulsive Bose gas [49]. Thus, the condi-
tion of formation of a liquid at T = 0 and P = 0 is negative
energy or chemical potential. The chemical potential at zero
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temperature sets the particle emission threshold −μ and deter-
mines the rate of evaporation of atoms from a liquid, which at
zero temperature is ruled by quantum fluctuations only [19].
At finite temperature, thermal fluctuations start to play an
important role when the thermal energy becomes larger than
the particle emission threshold.

A central role is also played by the entropy density

S = −
(

∂A
∂T

)
a,a12,n

. (4)

Indeed, expressing the pressure P in terms of the density n
and the entropy per particle s̄ = S/n yields the equation of
state P(n, s̄).

The low-lying collective motion of the system propagate
at the adiabatic sound velocity v, which is obtained from the
equation of state through the relation [50,51]

mv2 =
(

∂P

∂n

)
s̄

. (5)

The system is dynamically stable provided its inverse
isothermal compressibility

κ−1
T =

(
∂2A
∂n2

)
T,a,a12

(6)

is positive.
The specific heat density at constant volume (or length L,

in one dimension) is

CL =
(

∂E
∂T

)
a,a12,n

. (7)

Another important thermodynamic quantity characterizing
ultracold atoms with zero-range interactions is the Tan’s con-
tact parameter. It provides a number of useful exact relations
linking the equation of state, the pressure, the total and the
interaction energies, and the short-distance (large momentum
and high-frequency) properties of the correlation functions
[52–57]. The intraspecies Tan’s contact parameter density is
[58,59]

C+ = 4m

h̄2

(
∂A
∂a

)
T,a12,n

. (8)

The interspecies Tan’s contact parameter density C− is simi-
larly defined, interchanging the role of a and a12.

Simple considerations based on scale invariance [52,60,61]
lead to a series of exact thermodynamic relations linking the
aforementioned quantities, which hold for arbitrary tempera-
ture and strength of (contact) interactions:

− h̄2

4m
(Ca + C12a12) = 3A + 2TS − nμ = 2E − P. (9)

Their complete derivation is provided in Appendix A.
A relation connecting the Tan’s contact, the pressure and

the energy, which is similar to Eq. (9), holds in two di-
mensional ultracold gases. In that case, it is a consequence
of the quantum anomaly effect, i.e., a quantum-mechanical
symmetry breaking, since the contact parameter modifies
the scale-invariant energy-pressure relation. In Bose gases,
first theoretical investigations revealed a universality of the
breathing mode frequency in trapped gas showing a scaling

symmetry [62]. Such symmetry actually breaks under quanti-
zation resulting in a small shift away from the scale-invariant
value of the breathing mode frequency [63]. Recently, the
quantum anomaly has been observed in experiments with
two-dimensional Fermi gases [64,65].

III. LIQUIDS AT ZERO TEMPERATURE

At the mean-field level, a weakly interacting Bose-Bose
mixture at zero temperature has a ground-state energy density
given by

E0,mf = gn2
1/2 + gn2

2/2 − |g12|n1n2 = nmc2
−/2. (10)

Diagonalizing this quadratic form yields two long-wavelength
phononic excitations with sound velocities c− < c+ given by

c2
± = n

m

g ± |g12|
2

. (11)

Within the mean-field description and for equal populations
(n1 = n2 = n/2), the system is stable provided that |g12| < g,
while it undergoes a collapse to a soliton for stronger inter-
species attraction.

At the beyond mean-field level, a standard analysis [66]
shows that the excitation spectrum of the mixture contains two
Bogoliubov branches with dispersion relations

E±(p) =
√

c2± p2 +
(

p2

2m

)2

. (12)

With attractive interspecies interactions, the soft mode E−
describes “density” oscillations where the two mixture com-
ponents oscillate in phase, while the stiffer mode E+ > E−
corresponds to “spin” oscillations where the two components
oscillate out of phase. The first beyond mean-field correction
to the energy, describing quantum fluctuations, is purely at-
tractive in one dimension, and the total ground-state energy
density is [24,25]

E0 = 1

2
nmc2

− − 2

3

m2

π h̄

∑
±

c3
±, (13)

where
∑

± x± is a shorthand notation for x+ + x−. The lead-
ing mean-field term ∝ (g − |g12|)n2 can be strongly reduced
by tuning appropriately the two coupling constants. In this
way one can boost the importance of the beyond-mean field
corrections, which are usually subleading since they scale as
n3/2. The different power-law dependence of the two contribu-
tions, together with their opposite signs (provided |g12| < g),
immediately shows that there exists a specific density at which
the energy per particle has a minimum, which corresponds to
the equilibrium density of the quantum liquid [24,25].

At zero temperature, the free energy coincides with the
internal energy, A = E0. The ground-state properties of the
liquid state at zero temperature have been studied in Ref. [25].
The chemical potential, Eq. (2), is

μ0 = mc2
− − m2

π h̄n

∑
±

c3
±, (14)
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and the pressure is P0 = nμ0 − E0. Using Eq. (5) one may now
compute the “beyond mean-field” sound velocity,

v0 =
√

c2− − m

2π h̄n

∑
±

c3±, (15)

which explicitly contains a contribution from quantum fluctu-
ations [67].

The equilibrium density is found by minimizing the
ground-state energy per particle d (E0/n)/dn = 0 or, equiva-
lently, by requiring the pressure to vanish, P0 = 0. In this way
one finds [24]

neq(T = 0) = 2

9

m

π2h̄2

[∑
± (g ± |g12|)3/2

g − |g12|
]2

. (16)

At the equilibrium density, the repulsive mean-field and the
attractive beyond mean-field contributions balance each other
and a stable quantum liquid can be formed.

The inverse isothermal compressibility becomes

κ−1
T (T = 0) = mc2

−
n

− m2

2π h̄n2

∑
±

c3
±. (17)

Its mean-field term depends only on the density sound velocity
c−. However, the mean-field term of the inverse magnetic
susceptibility [68] is proportional to the spin sound veloc-
ity c+ [69,70]. In the vicinity of the mean-field collapse
g∼ |g12| (i.e., c− ∼ 0), the inverse isothermal compressibility
is negative, signaling the instability of the system. In three
dimensions, the isothermal compressibility is instead positive
for c− ∼ 0, so that a stable fluid governed only by quantum
fluctuations can exist [71]. The isothermal compressibility
κT diverges at the spinodal density nsp = 9neq/16 [24]. For
n > nsp, the compressibility is positive and the liquid is dy-
namically stable against local density fluctuations [72]. It has
a positive or negative pressure depending on whether n is
larger or smaller than neq. At densities below the spinodal
point n < nsp, the liquid is dynamically unstable and breaks
into droplets [25], whose density is approximately equal to
the equilibrium value of the uniform phase.

Finally, the zero-temperature intraspecies (C+) and inter-
species (C−) Tan’s contact densities are given by

C±(T = 0) = m4

2h̄4 (c2
+ ± c2

−)2

[
1 − 2m

π h̄n
(c− ± c+)

]
. (18)

Throughout this work, we limit ourselves to values of
the ratio of coupling constants |g12|/g � 0.7, where the
BG theory proved in excellent agreement with recent zero-
temperature quantum Monte Carlo calculations [25,31].

IV. QUANTUM THERMAL LIQUID-GAS TRANSITION

At temperatures T/Td � (n|a|)−1/2 � 1, where kBTd =
h̄2n2/(2m) is the quantum degeneracy energy [73], the ther-
modynamics of the weakly interacting Bose-Bose mixture can
be understood via BG theory in terms of a gas of noninteract-
ing bosonic quasiparticles. The thermal free-energy density
�A = A − E0 is

�A = kBT
∑
±

∫ +∞

−∞

d p

2π h̄
ln

[
1

f (E±) + 1

]
, (19)

where f (E±) = (eβE± − 1)
−1

is the Bose function and β =
(kBT )−1. The thermal free-energy density �A depends on the
inter- and intraspecies interactions through the sound veloci-
ties c± which appear in the BG dispersion relations E±; see
Eq. (12).

At very low temperatures kBT � mc2
−, the Bose-Bose mix-

ture exhibits features of superfluids [74] with linear phononic
excitations (i.e., a Luttinger liquid theory applies). In this
regime, one can generalize the description of a single com-
ponent [45] to mixtures [41], by retaining only the phononic
part of the BG dispersions, E±(p) = c±|p| in Eq. (19), and
obtains the first O(T 2) thermal correction of A:

�Aph = −π

6

(kBT )2

h̄

∑
±

1

c±
. (20)

A higher accuracy can be obtained including the nonlinear
part of the dispersion relation. Expansion of the BG spectrum
according to E±(p � mc−) ≈ c±|p|[1 + p2/(8m2c2

±)] allows
one to compute thermal corrections of order O(T 4) [44]. At
temperatures kBT � kBTd , a reliable description of the ther-
modynamics is instead provided by the Hartree-Fock theory
[44], which is perturbative in the coupling constants [70].

The thermal excitations are most effective in exciting the
lowest energy mode out of the two branches. In Bose-Bose
mixtures with repulsive g12 > 0 interactions in bulk [75,76]
and optical lattices [77], the lowest energy mode is the spin
one and thermal excitations might induce a magnetic phase
separation of the system occurring at the divergence of the
magnetic susceptibility [75]. Instead, in our case, the inter-
species interactions are attractive, g12 < 0, and the density
modes are the first thermally excited thereby preventing mag-
netic phase separation. Therefore, from Eq. (19), we calculate
only the thermal contribution of the inverse isothermal com-
pressibility �κ−1

T = κ−1
T − κ−1

T (T = 0):

�κ−1
T = − 1

4n2

∑
±

∫ +∞

−∞

d p

2π h̄

p4c4
±

E3±(p)

×
[

f (E±) − β
∂

∂β
f (E±)

]
. (21)

Typical results for the free energy per particle A/N are
shown in Fig. 1. All the curves are reported only in the
respective dynamically stable regime n > nsp(T ), where the
spinodal density nsp is the one yielding a vanishing inverse
compressibility, κ−1

T = 0. The equilibrium densities neq(T )
are given by the extremum condition d (A/n)/dn = 0, or from
the equivalent relation P = 0. For sufficiently low tempera-
tures, the free energy per particle admits a local minimum at
the equilibrium density neq (shown with vertical dotted lines),
for which the system is a liquid. We observe that an increase
in the temperature for a fixed value of |g12|/g makes the free
energy per particle more negative and one might think that
thermal fluctuations enhance the stability of the liquid. In-
stead, the equilibrium density decreases [40] and approaches
the spinodal point neq → nsp, thereby making the liquid un-
stable. Above a critical temperature Tc, the free energy per
particle becomes a monotonically increasing function of the
density (dot-dashed lines), so that the system is in a gas phase.
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�g12��g � 0.75

�g12��g � 0.85

T�T0
0

0.3

0.5

0.7

2 4 6 8 10 12 14

�1.0

�0.8

�0.6

�0.4

n �a�

A
N

FIG. 1. Free energy per particle as a function of the density at
different values of temperature in units of T0 = ε0/kB, where ε0 =
h̄2/(m|a|2). The curves are reported in an increasing order of the
temperature from low (top) to high (bottom) values. Upper group
of lines are computed for |g12|/g = 0.75, while the lower one for
|g12|/g = 0.85. Solid lines correspond to the liquid state character-
ized by a minimum at the equilibrium density neq (vertical dotted).
Dot-dashed lines have no local minimum, so they yield a gas phase.
Curves are reported for values of densities in the dynamically stable
regime.

In Fig. 2 we show the equilibrium and spinodal densities
as dashed and solid lines, respectively, for various values of
|g12|/g and inverse density 1/(n|a|) at different temperatures.
This gives the complete phase diagram of the mixture. The
points at which the dashed and solid lines meet denote
the critical interaction strength (|g12|/g)c below which a
liquid ceases to exist and transforms into a gas phase. For

T�T0

0

0.3

0.5

0.7

0.70 0.75 0.80 0.85 0.90 0.95
0.0

0.1

0.2

0.3

0.4

0.5

0.6

�g12��g

1
n a

Gas

Unstable
gas

Liquid

Droplets

P � 0

P � 0

FIG. 2. Phase diagram of 1D weakly interacting Bose-Bose mix-
tures at finite temperature. Spinodal densities (solid) of the mixture
and equilibrium densities (dashed) of the liquid are reported. The
various solid (dashed) lines are obtained for increasing (decreasing)
values of the temperature, from top to bottom. The inset shows the
typical phase diagram at a fixed temperature. Below the spinodal
line, the system is a liquid or a gas depending on whether its free
energy per particle has a local minimum or not. In the liquid phase,
the pressure is positive or negative depending on whether the density
is larger or smaller than the equilibrium value. Above the spinodal
line, both phases are dynamically unstable.

FIG. 3. Critical temperature Tc of the thermal liquid-gas phase
transition as a function of |g12|/g. The threshold temperature of the
dynamical instability has been calculated with the full BG dispersion
(solid), Eq. (19), and the phononic spectrum (dashed), Eq. (20). The
dot-dashed line corresponds to the typical evaporation temperature
Tev. The plot is color-coded using the function tanh ( Tc−T ev

2�T ), where
�T = (Tev − T ′

ev ) and T ′
ev is the solution of the equation kBT =

−μ0[neq(T )]. In this way, blue and red shadings denote respectively
regions of slow and fast evaporation.

|g12|/g > (|g12|/g)c the liquid survives with its equilibrium
density neq. By further increasing the temperature, the
transition occurs for larger values of (|g12|/g)c, and the gas
tends to occupy an increasingly larger portion of the phase
diagram. Thermal effects are, hence, dominant at smaller
values of |g12|/g, where they are driven by a larger value of
the density sound velocity c−, Eq. (11), corresponding to the
soft mode [41].

The thermal liquid-gas transition caused by the dynamical
instability takes place when the equilibrium density coincides
with the spinodal one, so that the minimum in the free en-
ergy per particle, characteristic of a liquid state, disappears.
The corresponding critical temperature Tc is shown with a
solid line in Fig. 3. If instead of the Bogoliubov spectra, one
considers only linear density and spin phonons, the critical
temperature is significantly underestimated for the large val-
ues of |g12|/g, where the system is dense. Such prediction,
corresponding to Eq. (20), was first obtained in Ref. [41] and
is reported with a dashed line in Fig. 3. In addition to the
dynamical instability, thermal fluctuations lead to the evapo-
ration of the liquid. The characteristic temperature associated
with the evaporation Tev can be estimated from the condition
kBT/2 = −μ0[neq(T )] (dot-dashed line in Fig. 3). We notice
that the solid and dot-dashed lines cross each other at tem-
perature Tcross ≈ 4T0. For T � Tcross, the solid line is below
the dot-dashed one, and the dominant mechanism for the tran-
sition is provided by the dynamic instability. For T � Tcross,
corresponding to the regime close to the mean-field collapse
|g12|/g ∼ 1, the transition to the gas phase is driven mostly by
evaporation.

At fixed ratio of the interaction strengths, our phase dia-
gram shows that it is possible to create a liquid from a gas by
decreasing the temperature. Moreover, the appearance of the
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0.88

0.90

0.92

0.94

0.96

0.98

1.00

�g12��g

�n 	

FIG. 4. Chemical potential as a function of |g12|/g. Various col-
ors correspond to different temperatures. The curves are reported
in an increasing order of the temperature from low (top) to high
(bottom) values. The chemical potential is reported in units of its
zero-temperature value, Eq. (14), at n = neq.

dynamical instability or the evaporation is fully controlled by
finely tuning the interaction ratio |g12|/g around the crossing
point of their critical temperatures. Finally, since the results
of Fig. 3 have been derived at the equilibrium densities, they
apply directly to large (saturated) self-bound droplets, where
the central density has reached the equilibrium value of the
uniform phase [19,22].

V. LOW-T THERMODYNAMICS OF THE LIQUID

After discussing the stability and the evaporation of the
liquid, we proceed to the calculation of the main thermody-
namic quantities from Eq. (19). All results presented in this
section refer to systems at a density fixed by the equilibrium
value at zero temperature neq, Eq. (16), and they are reported
in Figs. 4–7. They are also valid then for saturated droplets.

The thermal contribution to the chemical potential can be
expressed as

�μ = 1

2n

∑
±

∫ +∞

−∞

d p

2π h̄

p2c2
±

E±(p)
f (E±). (22)

Figure 4 shows the chemical potential which is always nega-
tive [even at zero temperature, Eq. (14)], reflecting the bound
nature of the liquid. Its absolute value decreases with tempera-
ture as �μ is positive. This is in a striking contrast to that of a
single-component 1D Bose gas at low temperature: �μ is also
positive but, since μ > 0, the effect of thermal fluctuations is
to increase |μ| [44,45,78].

The thermal parts of the intraspecies (�C+) and inter-
species (�C−) Tan’s contact parameter densities are

�C± = m3

2nh̄4 (c2
+ ± c2

−)2

×
∫ +∞

−∞

d p

2π h̄
p2

[
f (E−)

E−(p)
± f (E+)

E+(p)

]
. (23)

We recall that for a weakly interacting single-component
1D Bose gas there is an intrinsic relation between the ther-
mal correction of the contact and of the chemical potential
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FIG. 5. Intraspecies (C+) (dashed) and interspecies (C−) (solid)
Tan’s contact densities as a function of |g12|/g for different values
of temperature. The curves are reported in an increasing order of the
temperature from low (bottom) to high (top) values. The contact den-
sities are reported in units of their zero-temperature value, Eq. (18),
calculated at n = neq.

�C ∝ �μ [44]. Due to the nontrivial coupling between den-
sity and spin modes, such a direct proportionality is absent
for two-component mixtures. In Fig. 5, we observe that the
intraspecies Tan’s contact density (dashed lines), which is de-
termined by the repulsive interaction g > 0, is more sensitive
to the thermal effects than the interspecies one (solid lines),
which instead emerges from the attractive interaction g12 < 0.

The adiabatic sound velocity v can be calculated from
Eq. (5) (see Appendix B):

mv2 = mv2
0 + n�κ−1

T − n2

(
∂ s̄

∂n

)
T

(
∂T

∂n

)
s̄

, (24)

where the entropy per particle is

s̄ = 1

nT

[∑
±

∫ +∞

−∞

d p

2π h̄
E±(p) f (E±) − �A

]
. (25)

In Fig. 6 we show that the sound speed of the liquid increases
with temperature as it occurs in a single-component 1D Bose
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FIG. 6. Adiabatic sound velocity v, from Eq. (24) as a function
of |g12|/g. Various colors correspond to different temperatures. The
curves are reported in an increasing order of the temperature from
low (bottom) to high (top) values. The adiabatic sound velocity is
reported in units of its zero-temperature value, Eq. (15), at n = neq.
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FIG. 7. Specific heat density at constant length as a function of
temperature, for different values of |g12|/g. The curves are reported
in an increasing order of the ratio of the coupling constants from low
(top) to high (bottom) values.

gas [45] and in classical systems. Moreover, v is greater for
smaller values of |g12|/g, as it occurs at zero temperature [25].

The specific heat density, Eq. (7), is

CL = nT

(
∂ s̄

∂T

)
n

, (26)

where the derivative of s̄ is provided by Eq. (B5). Our results
are shown in Fig. 7.

VI. EXPERIMENTAL CONSIDERATIONS

The standard thermometry technique, which is based on
switching off the trap and studying the expansion during
time-of-flight, cannot be applied to quantum liquids [9]. One
possible method is to introduce impurities and perform spec-
troscopic measurements [79], similar to the experiments on
liquid helium droplets [80], but this complicates the setup
as it requires a simultaneous handling of three components.
Another temperature probe is based on the measurements of
the density fluctuations and compressibility which directly
yield a theory-independent thermometer via the fluctuation-
dissipation theorem [81]. Indeed, the temperature enters in the
fluctuation-dissipation theorem, which relates the compress-
ibility to the global number fluctuations of the system. This
approach requires measurements of the total density sensitive
to atomic shot noise.

Here we suggest that a simpler method for probing the
temperature in quantum liquid experiments would be the di-
rect nondestructive in situ measurement of the thermodynamic
properties. In trapped gases, a single measurement of the
density profile provides access to the complete equation of
state of the system [35]. The pressure, the chemical potential,
the isothermal compressibility, the specific heat per particle at
constant volume, the free energy, the energy and the entropy
per particle as a function of temperature have been measured
in situ by using absorption imaging in 3D gases [35–37].

A similar experimental technique has been applied to 1D
Bose gas to extract the chemical potential as a function of
temperature and interaction strength [39]. In situ thermome-
try through high-resolution absorption imaging measurements

of the thermodynamics has been recently achieved in 1D
fermionic balanced mixtures [82]. Tan’s contact can be mea-
sured with Bragg spectroscopy [38] and the sound velocity
can be extracted by exciting the system locally and by ob-
serving the propagation speed of the density perturbation,
especially in a quasi-1D geometry, by employing phase-
contrast techniques [33,34].

In alternative to the direct measurement of the temperature,
which can be problematic in the very low-T regime, one
can instead combine the experimental estimates of several
thermodynamic quantities [70]. An example can be provided
by the measurements of the Tan’s contacts, the free energy
and the density, so that the temperature of the system can
then be extracted a posteriori through the use of Eq. (8) and
our Fig. 5 as benchmark. A similar procedure involving the
measurements of the density, the isothermal compressibility
and the pressure has been successfully applied in Fermi [37]
and Bose [83] gases.

Different from trapped gases, in situ measurements on
self-bound uniform liquids are not affected by density
inhomogeneity effects. This promises high-precision mea-
surements in ultracold liquids.

One-dimensional configurations can be achieved in current
quantum liquid experiments [29], and this leads to strongly
reduced three-body losses [27,28]. As such both the thermal
dynamical instability and the evaporation discussed in this
paper could be directly and unambiguously observed. Our
results also suggest that quantum liquids may be experimen-
tally obtained from the gas state by direct cooling. Finally,
the strong dependence of the dynamical instability critical
temperature on |g12|/g, which can be fine-tuned in experi-
ments, provides yet another appealing probe of temperature
for quantum liquids.

VII. CONCLUSIONS AND OUTLOOKS

In this paper, we investigated the low-temperature be-
havior of the 1D weakly interacting liquids formed in
two-component Bose mixtures. We discussed in detail the
dynamical instability and the evaporation which drive the
thermal liquid-to-gas transition and we calculated the main
thermodynamic quantities of the liquid. Our results are based
on the Bogoliubov theory, which allows for a simple de-
scription of the system in terms of noninteracting bosonic
excitations and the inclusion of the quantum fluctuations in
the thermodynamics. We provided the phase diagram of the
system in terms of the interaction strengths and the tem-
perature. Such information can be of great help to realize
quantum liquids by directly lowering the temperature of the
gas. Consistently with Ref. [41], the dominant contribution to
the thermal effects is provided by the excitation of the soft
density mode. We have also provided a thorough study of
the thermodynamic quantities of the liquid at low tempera-
ture, which are of a large importance to the experiments: the
chemical potential, the intra- and interspecies Tan’s contact
parameter densities, the adiabatic sound velocity and the spe-
cific heat density at constant length.

Our theoretical predictions suggest novel important precise
temperature probes for the experiments on quantum liquids,
where time-of-flight expansion cannot be applied and density
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inhomogeneity effects are strongly reduced. The critical tem-
perature for dynamical instability can be fine-tuned at will
with Fano-Feshbach resonances [46–48]. Moreover, one can
apply in situ measurements of the thermodynamic quantities.
Both methods can be employed to measure the temperature in
quantum liquids with unprecedented precision and our results
constitute a fundamental benchmark. We found that the dy-
namical instability and the evaporation take place at low and
high liquid densities, respectively. Both thermal mechanisms
can be observed with high precision and their onset is com-
pletely reversible by tuning the interaction strengths. Here we
studied uniform liquids, but all our findings at zero pressure
apply directly also to saturated droplets.

In outlook, our results can stimulate further theoretical and
experimental investigations aiming at the characterization of
quantum degenerate phases in 1D weakly interacting mixtures
at finite temperature and the microscopic nature of new 1D liq-
uids. Our finite-temperature analysis can be generalized to: (i)
unsaturated droplets [24], even in 1D optical lattices [84–86];
(ii) the inclusion of higher-order corrections in density and
spin sound velocities [41], to understand their effects on ther-
mal quantum fluctuations; (iii) dimerized liquids emerging
from attractive atomic mixtures [87,88]. Also, the knowledge
of thermodynamics is crucial for predicting the temperature
dependence of the breathing modes [50,51]. Theoretically,
breathing modes of 1D liquids have been studied only at
zero temperature [30–32]. So far, no collective modes have
been observed yet due to the short experimental lifetime of
liquids. Our predictions are also relevant for Rabi-coupled
Bose-Bose mixtures, where low-T quantum fluctuations drive
the emergence of a droplet, which evaporates above a critical
Rabi frequency [89]. Other interesting perspectives regard the
investigation of the properties of impurities. One can consider
baths of very different nature, like: helium [90,91], ultra-
cold liquids [79,92] and other 1D quantum liquids [93,94].
Thermal effects can be also investigated in the dynamical
formation of liquids via evaporation [95] and in collisions
between droplets [30,96]. Interesting perspectives of our re-
sults open in liquids with: (i) different atomic species which
have been realized even in quasi-1D geometry [97,98]; and
(ii) different component densities or intraspecies interaction
strengths [99]. Another exciting perspective is provided by the
mixed bubbles in weakly repulsive bosonic mixtures [100].
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APPENDIX A: THERMODYNAMIC RELATIONS

In this Appendix, we provide details about the derivation
of the thermodynamic relations presented in Eq. (9). Very
general considerations on dimensional analysis [52,60,61]
strongly constrain the functional form of the free-energy den-
sity A = E − TS:

A(T, a, a12, n) ∝ n3 f (na, na12, T/n2). (A1)

From Eq. (A1), one can deduce the scaling law

A(
2T, 
−1a, 
−1a12, 
n) = 
3A(T, a, a12, n), (A2)

where 
 is an arbitrary, dimensionless parameter. Taking the
derivative of Eq. (A2) with respect to 
 at 
 = 1 yields[

2T

(
∂

∂T

)
a,a12,n

− a

(
∂

∂a

)
T,a12,n

− a12

(
∂

∂a12

)
T,a,n

+ n

(
∂

∂n

)
T,a,a12

]
A(T, a, a12, n) = 3A(T, a, a12, n).

(A3)

From Eq. (A3) and by using Eqs. (2)–(4) and Eq. (8), we find
Eq. (9). The latter is a generalization to two-species mixtures
of the single-component result found in Ref. [44].

APPENDIX B: ADIABATIC SOUND VELOCITY

In this Appendix, we provide details on the derivation of
the adiabatic sound velocity. Using Eq. (5), one gets

mv2 =
(

∂P

∂n

)
s̄

=
(

∂P

∂n

)
T

+
(

∂P

∂T

)
n

(
∂T

∂n

)
s̄

. (B1)

Given a function of the form h(x, y, z) = 0, the partial deriva-
tives of its variables can be related with the triple product rule:

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (B2)

Hence, one can rewrite(
∂T

∂n

)
s̄

= −
(

∂ s̄

∂n

)
T

/(
∂ s̄

∂T

)
n

, (B3)

where(
∂ s̄

∂n

)
T

= − s̄

n
+ β

2n2T

∑
±

∫ +∞

−∞

d p

2π h̄

p2c2
±

E±(p)

∂

∂β
f (E±)

(B4)
and(

∂ s̄

∂T

)
n

= − β

nT 2

∑
±

∫ +∞

−∞

d p

2π h̄
E±(p)

∂

∂β
f (E±). (B5)

In the derivation we have used Eqs. (11), (12), and (25).
The derivatives of the pressure are(

∂P

∂n

)
T

= mv2
0 + n�κ−1

T (B6)

and (
∂P

∂T

)
n

= −n2

(
∂ s̄

∂n

)
T

, (B7)

where we have applied Eqs. (15) and (21).
Inserting Eqs. (B3)–(B7) in Eq. (B1) finally gives Eq. (24).
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