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Dynamical localization of interacting bosons in the few-body limit
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The quantum kicked rotor is well known to display dynamical localization in the noninteracting limit. In
the interacting case, while the mean-field (Gross-Pitaevskii) approximation displays a destruction of dynamical
localization, its fate remains debated beyond mean field. Here we study the kicked Lieb-Liniger model in the
few-body limit. We show that for any interaction strength, two kicked interacting bosons always dynamically
localize, in the sense that the energy of the system saturates at long times. However, contrary to the noninteracting
limit, the momentum distribution �(k) of the bosons is not exponentially localized, but decays as C/k4, as
expected for interacting quantum particles, with Tan’s contact C which remains finite at long times. We discuss
how our results will impact the experimental study of kicked interacting bosons.
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I. INTRODUCTION

The quantum kicked rotor (QKR) is a paradigmatic model
of quantum chaos. It is most famous for displaying dynamical
localization, which is the analog of Anderson localization in
momentum space [1]. Experimental realizations of the atomic
QKR and its variants have allowed for detailed studies of
Anderson localization and two dimensions [2] and the Ander-
son transition in three dimensions [3], as well as the study
of the effects of symmetries on weak localization [4] and
classical-to-quantum transition at early times [5].

The effects of interatomic interactions on dynamical local-
ization are an intriguing problem. Indeed, because localization
is in momentum space but interactions are effectively local
in real space (hence, long range in momentum), the interact-
ing QKR is expected to behave differently from a standard
disordered interacting quantum system. In the latter case,
strong enough disorder is known to produce, at least in low
dimensions, a new phase of matter, the many-body localized
(MBL) phase [6,7]. This phase is not ergodic and does not
allow for thermalization. In particular, the driven MBL system
can resist heating, in contrast with the expectation of heating
to infinite temperature for delocalized phases of interacting
systems [8] (however, for a counterexample, see e.g. Ref. [9]).

This therefore raises the question of the existence of a
many-body dynamically localized (MBDL) phase in the inter-
acting QKR. There have been studies for various toy models
[10–14], as well as for more realistic models for cold atoms.
At the mean-field level, it has been argued on both theoretical
and numerical grounds that the interactions will destroy dy-
namical localization, which is replaced by a subdiffusion in
momentum space [15–20]. Recently, the study of more real-
istic models of interacting atomic bosons periodically kicked,
the kicked Lieb-Liniger model, has led to seemingly contra-
dictory results. Using various many-body techniques, Rylands
et al. [21] have argued that the system should not heat up,
thus leading to the MBDL phase. On the other hand, Qin et al.

[22] have studied the kicked Lieb-Liniger model with only
two particles, which allows for a more exact treatment of the
problem. They have found that the energy of the system seems
to increase, indicating a breakdown of dynamical localization.

In this paper, we revisit the dynamics of two interacting
bosons described by the kicked Lieb-Liniger model. We an-
alyze in detail the dynamics of the system and show that
the energy always saturates at long times for any interaction
strength. This indicates that the system is indeed localized dy-
namically. However, we show that the momentum distribution
of the system, which is a quantity directly accessible in ultra-
cold atomic gas experiments, does not decay exponentially at
large momenta k as for noninteracting particles, but as a power
law k−4 as expected for interacting quantum systems. The
manuscript is organized as follows. We introduce the model
in Sec. II and discuss the dynamics in Sec. III. We analyze the
momentum distribution and give a quantitative description in
the infinite interaction limit in Sec. IV. Finally, we discuss our
results in Sec. V.

II. THE INTERACTING QUANTUM KICKED ROTOR

We study two interacting bosons in a ring of circumference
L = 2π , with the Hamiltonian Ĥ = ĤLL + ĤK . Here ĤLL de-
scribes the dynamics of the interacting bosons between the
kicks and is given by the Lieb-Liniger Hamiltonian [23]

ĤLL = p̂2
1

2
+ p̂2

2

2
+ gδ(x̂1 − x̂2), (1)

and the kick Hamiltonian reads

ĤK = K[cos(x̂1) + cos(x̂2)]
∑

n

δ(t − n). (2)

We use the standard units of the (noninteracting) kicked rotor:
time is in units of the kick period T , positions are in units of
L/2π (which is also the inverse wave vector of the kicking
potential), and momenta are in units of ML/T , with M being
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FIG. 1. Phase shift θm as a function of m for different values of
the interaction parameter g (k̄ = 1). The value of g increases from the
bottom curve to the top curve.

the mass of the bosons. The canonical commutation relations
are then given by [x̂i, p̂ j] = δi j k̄, with k̄ = 4π2 h̄T

ML2 being the
effective Plank constant [24]. The dimensionless interaction
strength g is related to the one-dimensional scattering length
a by g = − L

a
k̄2

4π3 [25].
To study the dynamics of the system, it is convenient to

use the eigenbasis of the Lieb-Liniger Hamiltonian. Following
Lieb and Liniger, it is easily found using a Bethe ansatz, and
the eigenfunctions of ĤLL read

�n
m(x1, x2) = ei n

2 (x1+x2 )

√
2π

sin
(
km|x1 − x2| − θm

2

)
√

π − sin(θm )
2km

. (3)

Here, n ∈ Z is the momentum of the center of mass (in units
of k̄). The relative momentum km = m+θm/π

2 (in units of k̄) is
parametrized by a positive integer m, and the phase shift is in-
duced by the interaction θm. The periodic boundary conditions
and the δ interaction give the constraints that m + n must be
odd and

θm = −2 arctan

(
2k̄2km

g

)
. (4)

The energy of the state |�n
m〉 is En

m = k̄2

4 (n2 + 4k2
m).

The phase shift θm is shown in Fig. 1 for different values of
the interaction strength, and k̄ = 1. It interpolates between 0
for small m, where the wave function effectively fermionizes,
and θm → −π as m → ∞, where the bosons are almost free,
as the (relative) kinetic energy dominates over the interaction.
In the Tonks limit, g → ∞, θm = 0, and we recover the Tonks-
Girardeau (TG) wave functions [26,27].

The evolution operator over one period is given by

Û = e−i ĤK
k̄ e−i ĤLL

k̄ , (5)

and its matrix elements read

U nq
mp ≡ 〈

�n
m

∣∣Û ∣∣�q
p

〉 = e−i En
m

k̄
〈
�n

m

∣∣e−i ĤK
k̄

∣∣�q
p

〉
. (6)

The matrix elements of the kick operator must be computed
numerically for finite g and are given explicitly by

〈
�n

m

∣∣e−i ĤK
k̄

∣∣�q
p

〉 =
∫ 2π

0
Fq−n(x)ψp(x)ψm(x), (7)

with ψm(x) = sin (kmx− θm
2 )√

π− sin(θm )
2km

and Fn(x) = (−i)nJn[ 2K
k̄ cos ( x

2 )],

where Jν (z) is the νth Bessel function of the first kind. The
asymptotic behavior of these matrix elements has been an-
alyzed in Ref. [22]. There, it has been shown that for fixed
m and p, |U nq

mp| decays as (|n − q|!)−1, much faster than an
exponential, while at fixed n, q, and p, it decays as m−4 [28].
This power-law decay has been interpreted by the authors
of Ref. [22] to be the cause of the breakdown of dynamical
localization in this model; see, however, the discussion of this
argument in Sec. V.

To compute the time evolution of the system, we ex-
pand its wave function in the Lieb-Liniger basis, |	t 〉 =∑

n,m cn
m(t )|�n

m〉, where the coefficients cn
m(t ) obey the stro-

boscopic evolution cn
m(t + 1) = ∑

q,p U nq
mpcq

p(t ). Here and in
the following, we always assume that the sum is performed
over the allowed values of m and n (m ∈ N∗, n ∈ Z, and
n + m odd). To perform the time evolution numerically, it is
necessary to truncate the basis, and we only keep states with
|n| � nmax and m � mmax, with typical values of nmax = 160
and mmax = 160. We have checked that these values used in
our numerics are such that our results are converged, in the
sense that physical observables do not change when nmax and
mmax are increased, and that the normalization of the wave
function stays very close to 1 at all times (such that the states
|�n

m〉, with n > nmax and m > mmax, would not be significantly
populated if they were included). Here and in the following,
we always assume that the system starts in the ground state of
the Lieb-Liniger Hamiltonian, |	t=0〉 = |�0

1〉. We use K = 3
and k̄ = 1 in the numerics, which allows us to use a not too
large basis.

One difficulty in the study of the dynamics of this prob-
lem is that the various observables typically display large
fluctuations during the time evolution. This also happens
in the context of the QKR, and in that case, one usually
averages over the quasi-momentum β, which is a dynami-
cally conserved quantity. Changing the quasimomentum there
corresponds to a change of the disorder realization of the
corresponding Anderson model [24]. In order to simplify the
analysis of our numerics, we introduce an artificial “quasi-
momentum” in the energy of the Lieb-Liniger model, i.e., we
replace En

m by En+2β
m , equivalent to adding a magnetic flux

in the system. This way of introducing the quasimomentum
is consistent with what is done in the noninteracting limit. In
practice, we average typically over 100 and 500 values of β

sampled uniformly in [0, 1/2], and we write the average of an
observable O by an overline, O.

III. DYNAMICAL LOCALIZATION
OF INTERACTING BOSONS

Figure 2(a) shows the time evolution of the energy of the

system E tot.(t ) = 〈	t |ĤLL|	t 〉 for various values of g, up to
2500 kicks. We observe a behavior similar to that of the

043314-2



DYNAMICAL LOCALIZATION OF INTERACTING BOSONS … PHYSICAL REVIEW A 103, 043314 (2021)

FIG. 2. Evolution of the averaged energy of the system, showing
a saturation at long times for different values of the interaction
strength g for K = 3 and k̄ = 1, in linear scale (a) and semilogarith-
mic scale (b). Curves in panel (a) correspond, from top to bottom, to
g = 10, 1, 10−5, and 105, respectively.

dynamical localization of the noninteracting QKR: at very
short times, the energy increases linearly, with a rate inde-
pendent of g (dashed line)—which hints that the classical
diffusion constant might be rather insensitive to interactions.
This initial behavior is followed by a decrease of diffusion
and ultimately by a saturation of the energy. We conclude
that, even in presence finite interactions, the system does not
heat to infinite energy, which is a hallmark of localization for
an interacting system. In this sense, the system dynamically
localizes.

To check that the system does truly localize asymptotically
(i.e., that delocalization of the energy does not happen at
longer timescales), we have computed the energy after 2N

kicks, with N up to 28, by computing (Û )2N . Figure 2(b)
shows that the total energy of the system indeed saturates to
a finite value and no subdiffusive behavior seems to occur
even at very large kick numbers. For some finite values of
g, the localization time (i.e., the time needed for the full
saturation of the energy) is significantly longer than that in
the noninteracting case. Finally, we have checked that the
wave-function coefficients cn

m(t ) do converge at long times to
a finite steady-state value.

We now proceed to analyze the dependence of various
observables as a function of the interaction strength g. Figure 3

FIG. 3. Energy in the localized regime (t 
 104 kicks) as a func-
tion of g for K = 3 and k̄ = 1. It displays a clear maximum around
g ≈ 10 and decreases towards roughly the same asymptotic values,
in the noninteracting (free bosons, g → 0) and strong-interaction
(Tonks-Girardeau, g → ∞) limits. The inset represents the same
data, in semilogarithmic scale for g. Statistical error bars are due to
averaging over β (typically 100 values). The solid line is a guide to
the eye.

shows the total energy at long times, E tot. = limt→∞ E tot.(t ),
as a function of g. We observe a nonmonotonous dependence
of the energy as a function of the interaction. This is not too
surprising, since in both limits g = 0 and g = ∞, the energy is
given by that of noninteracting quasiparticles. In the noninter-
acting limit, the two bosons start in the zero-momentum state
and localize with the same wave function described by the
noninteracting QKR. In the opposite limit g = ∞, the Tonks
limit, the system can be described in terms of noninteracting
fermions [26,27]. In particular, the energy of the Tonks gas
is given by the kinetic energy of those free fermions. The
fermions start in the state ± 1

2 and localize with wave functions
described by the same localization length ploc (and hence
the same final kinetic energy) as the free bosons. Moreover,
because the interaction energy also vanishes in the Tonks
limit due to the fermionization of the bosons, we therefore
expect these two limits to have roughly the same total energy
in the long-time limit. Figure 4 shows the ratio between the
interaction energy, Epot. = limt→∞ 〈	t |gδ(x̂1 − x̂2)|	t 〉, and
the total energy in the localized regime. The interaction energy
corresponds to a very small contribution, at most 1.5% for
g 
 10, to the total energy, which is therefore dominated by
the kinetic energy. The interaction energy vanishes both in the
noninteracting limit g → 0 and in the Tonks regime g → ∞,
due to the fermionization of the bosons.

IV. MOMENTUM DISTRIBUTION OF THE
DYNAMICALLY LOCALIZED LIEB-LINIGER GAS

We now address the momentum distribution �t (k) of the
interacting system, which is a relevant quantity for exper-
iments, and point out key differences with respect to the
noninteracting case. The momentum distribution �t (k) of
the system is the Fourier transform of the one-body reduced
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FIG. 4. Ratio between the interaction energy and the total energy
in the localized regime as a function of the interaction strength g for
K = 3 and k̄ = 1. The ratio is at most 1.5%, meaning that most of
the energy is in the kinetic energy. The line is a guide to the eye.

density matrix (OBRDM) ρt (x, y),

�t (k) = 1

2π

∫ 2π

0
dx

∫ 2π

0
dyeik(x−y)ρt (x, y), (8)

with the momentum (in units of k̄) k ∈ Z due to the periodic
boundary conditions, and where the OBRDM is defined as

ρt (x, y) = 2
∫ 2π

0
dz	∗

t (x, z)	t (y, z). (9)

It is normalized such that
∫ 2π

0 dxρ(x, x) = 2 is the number
of particles of the system. For a given state |	t 〉, the mo-

mentum distribution �t (k) is such that
∑

k �t (k) = 2 and∑
k

k̄2k2

2 �t (k) = Ekin.(t ) = Etot.(t ) − Eint.(t ).
Leaving the details of the calculation to Appendix A, the

momentum distribution reads

�t (k) =
∑
n,m,p

(
cn

m(t )
)∗

cq
p(t )�n,n

m,p(k), (10)

with

�n,q
m,p(k) = δn,q

AmAp

π
[
(2k − n)2 − 4k2

m

][
(2k − n)2 − 4k2

p

]
,

(11)
and

Am = 8km cos
(

θm
2

)
√

π − sin(θm )
2km

. (12)

At long time, the momentum distribution reads

�(k) = lim
t→∞

∑
n,m,p

(
cn

m(t )
)∗

cq
p(t )�n,n

m,p(k). (13)

Since the coefficients cn
m(t ) converge to a finite steady-state

value, so does the momentum distribution, shown in Fig. 5.
The distributions �(k) display an exponential decay at small
enough momenta, with a characteristic localization length
which depends on the interaction strength. However, at large
momenta, the momentum distribution is dominated by a k−4

tail, which is clearly visible for g > 0. This tail is a universal
feature of interacting quantum systems and already exists in
the ground state (corresponding to the t = 0 curves in Fig. 5
for g > 0) [25,29]. This behavior at large momenta is in sharp

FIG. 5. Averaged momentum distributions in the dynamically localized regime (t = 104 kicks) for various values of the interaction
parameter g. For g �= 0, all localized distributions (solid lines) show the same common feature at large momenta (corresponding to power-law
1/k4 tails) and an exponential decay at low momenta, with a g-dependent localization length. In the TG limit (d), we find the same typical
localization length as in the noninteracting case (a).
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FIG. 6. Evolution of the average Tan’s contact C as a function
of the interaction parameter g, in the case of the initial Lieb-Liniger
ground state (blue diamonds) and in the localized regime (red cir-
cles). The dashed line corresponds to the analytical asymptotic
behavior C 
 g2/π 2 in the weak-interaction regime, and the trian-
gles are obtained in the TG limit, using the analytical expression
C 
 2E tot.

π2 k̄2 (see text). Solid lines are guides to the eye. Statistical error
bars are due to averaging over β (typically 200 values). The inset
shows the weak-coupling regime in logarithmic scale. The lines are
the analytical of the ground-state contact in this regime, at t = 0
(dotted blue line: C 
 g2/2π 2, see text) and at t  tloc. (dashed red
line).

contrast with the noninteracting limit of the kicked rotor,
where the momentum distribution decays exponentially.

The power-law tail is characterized by the so-called Tan
contact, C = limk→∞ k4�(k). Noting that �n,n

m,p(k) decays at
large momenta as k−4 for all n, m, and p, we find that

lim
k→∞

k4�(k) = C, (14)

where

C = lim
t→∞

∑
n,m,p

(
cn

m(t )
)∗

cn
p(t )

AmAp

16π
, (15)

is the effective Tan’s contact in the dynamically localized
regime. (We have checked that the contact obtained with the
above equation describes very well the tail of the momentum
distribution in Fig. 5.)

This feature is also dependent on the value of interactions
and is captured in the evolution of Tan’s contact shown in
Fig. 6. At low interaction strengths, the value of the contact
in the localized regime C (red circles and dashed line) remains
small and is roughly proportional to its initial value (blue dia-
monds and dotted line). Above a certain threshold of g, which
is on the order of unity, C increases significantly. It reaches
its maximum for g ∼ 50, which is, maybe counterintuitively,
not where the energy is maximum (around g = 10). It is
worth pointing out that, whereas for very large g the energy
decreases towards the same value as that in the noninteracting
case (see Fig. 3), in the TG limit the Tan’s contact saturates
to a finite value. This difference is also clearly observed in
Fig. 5(d).

The shape of the momentum distribution can be under-
stood quantitatively for weak (g → 0) and strong (g → ∞)

FIG. 7. Averaged momentum distributions in the dynamically
localized regime (t = 104 kicks) for weak (g = 10−1) and strong
(g = 105) interactions. The exponential decrease at small k is almost
identical and is very well described by the momentum distribution of
noninteracting bosons (g = 0). At larger momenta, the momentum
distribution in the Tonks regime is dominated by Tan’s contact.

interactions. The details of the calculations are given in
Appendix B, and we only use the results to discuss the mo-
mentum distribution and the contact in these two regimes. In
both the weak-interaction and the strong-interaction limits, we
find that the momentum distribution has typically two behav-
iors: (i) at small enough momenta, it decays exponentially
and is well approximated by the momentum distribution of
two noninteracting bosons starting at zero momentum; and
(ii) at large enough momenta, the power-law decay, �(k) 

C/k4, dominates. These behaviors are shown in Fig. 7. In the
weak-interaction limit, we find that C 
 g2/π2 (compared to
g2/2π2 in the ground state), whereas in the TG regime, we
find C 
 2E tot.

π2 k̄2 . These asymptotic formulas describe very well
the contact in these two regimes, as can be seen in Fig. 6.

V. DISCUSSION

Our results are in stark contrast with the conclusions of
Qin et al. [22], who found for the same model and parameter
range that interactions lead to delocalization. This affirmation
was based on two results: (i) by computing the variance of
the momentum up to 5000 kicks, they observed a somewhat
increasing trend, which they interpreted as delocalization; and
(ii) their major argument was that the coefficient cn

m(t ) be-
haved as m−4 at long times (contrary to the exponential decay
in the noninteracting limit), which they also interpreted as a
sign of delocalization.

Concerning the first point, we note that their numerical
simulation was not averaged, which makes it difficult to
interpret the absence of localization (as can happen in the
noninteracting QKR for some specific values of the param-
eters if not averaged over the quasimomentum). Concerning
the second point, we do agree with the m−4 behavior of cn

m(t ).
However, this power-law decay does not imply delocalization.
Indeed, as we have shown above, the total energy (which has
a term proportional to

∑
n,m m2|cn

m(t )|2) does saturate at long
times. Furthermore, the coefficients converge to finite steady-
state values. Finally, and more importantly, it is known that
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in some disordered model with power-law (but short-range)
hopping, corresponding here to |U nq

mp| ∼ m−μ for large m and
fixed n, q, and p, the states are localized as long as μ > 3/2
[30]. Since the matrix element of the present problem decays
with μ = 4, dynamical localization is therefore expected. To
support this, we analyze in Appendix C a modified QKR with
matrix elements decaying as m−4, and we show that indeed it
dynamically localizes.

VI. CONCLUSIONS

We studied the outcome of dynamical localization with the
kicked rotor model of two interacting bosons and demon-
strated its survival for arbitrary interaction strengths. The
localization energy is found to be equal in the noninteracting
(free bosons) and TG limits, and it displays a nonmonotonous
behavior. Moreover, distinctive features are predicted for the
shape of the momentum distribution, namely, the subsistence
of an exponentially localized “core,” at low momenta, and
the existence of a power-law decay at large momenta—a
key characteristic of interacting quantum particles. Both fea-
tures depend, yet in different manners, on the strength of the
interaction.

An interesting question is the outcome of dynamical local-
ization in the many-body limit. For interacting bosons in the
TG limit, our localization argument still holds: the energy is
rigorously equal to that of N free fermions and thus saturates
at long times to a finite value, with the same localization
timescale. This has already been predicted in Ref. [21]. How-
ever, the nature of this localized state is still to be determined.
While our work does not address the many-body momentum
distribution, we expect our conclusions concerning the contact
and power-law tail at large momentum to be robust. This
is especially relevant for future experimental observation of
many-body dynamical localization. A comprehensive study
of these aspects can be found in Ref. [31]. Finally, it is an
interesting question whether the subdiffusion in momentum
space, predicted by mean-field methods, could be observed in
a fully quantum kicked system, even in a finite time window.
This could indeed be the case in the weak-interaction limit,
which is known to be rather singular for the Lieb-Liniger
model.
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APPENDIX A: CALCULATION
OF THE MOMENTUM DISTRIBUTION

The momentum distribution is obtained from the OBRDM
as

�t (k) = 1

2π

∫ 2π

0
dx

∫ 2π

0
dyeik(x−y)ρt (x, y), (A1)

with

ρt (x, y) = 2
∫ 2π

0
dz	∗

t (x, z)	t (y, z). (A2)

The OBRDM can be expressed as

ρt (x, y) =
∑

n,m,q,p

(
cn

m(t )
)∗

cq
p(t )ρn,q

m,p(x, y), (A3)

with

ρn,q
m,p(x, y) = 2

∫ 2π

0
dz

(
�n

m(x, z)
)∗

�q
p(y, z). (A4)

To get the momentum distribution, we need to compute
�

n,q
m,p(k), the Fourier transform of ρ

n,q
m,p(x, y). Noting that the

invariance per translation of ĤLL implies that �
n,q
m,p(k) van-

ishes if n �= q, we obtain after a straightforward though rather
tedious calculation

�n,q
m,p(k) = δn,q

AmAp

π
[
(2k − n)2 − 4k2

m

][
(2k − n)2 − 4k2

p

] ,

(A5)
where

Am = 8km cos
(

θm
2

)
√

π − sin(θm )
2km

. (A6)

For a given state |�n
m〉, one can check that its momentum

distribution �n
m(k) obeys∑

k

�n
m(k) = 2,

∑
k

kk̄�n
m(k) = nk̄,

∑
k

k̄2k2

2
�n

m(k) = Ekin. = En
m − En

m,int., (A7)

where En
m,int. = 〈�n

m|gδ(x̂1 − x̂2)|�n
m〉 is the interaction

energy.
From the above results, the momentum distribution reads

�t (k) =
∑
n,m,p

(
cn

m(t )
)∗

cq
p(t )�n,n

m,p(k). (A8)

APPENDIX B: MOMENTUM DISTRIBUTION
IN THE ASYMPTOTIC REGIMES

1. Noninteracting limit

In the limit g → 0, the initial wave function is given by
�0

1(x1, x2) = (2π )−1 + O(g); i.e., the two bosons start into the
zero-momentum state. The dynamics is that of two indepen-
dent bosons [up to O(g) corrections], and we can therefore
assume that at long times the two bosons are described by the
same dynamically localized wave function of the noninteract-
ing QKR ψ0(x), i.e.,

	(x1, x2) = ψ0(x1)ψ0(x2) + O(g). (B1)
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It is then straightforward to show that in the Lieb-Liniger basis
the coefficients cn

m are given in the localized regime by

cn
1 = ψ̂0

(n

2

)2
+ O(g),

cn
m>1 =

√
2ψ̂0

(
n + m − 1

2

)
ψ̂0

(
n − m + 1

2

)
+ O(g),

(B2)

where f̂ is the Fourier transform of the function f .
In the weak-interaction limit, we find that the coefficients

Am that enter in the momentum distribution (see Appendix A)
are such that

A1√
π

[
(2k − n)2 − 4k2

1

] =
√

2δn,2k + O(g),

Am>1√
π

[
(2k − n)2 − 4k2

m

] = δn,2k+m−1 + δn,2k−m+1 + O(g),

(B3)

which immediately gives

�(k) = 2|ψ̂0(k)|2 + O(g), (B4)

as expected for free bosons.
However, for momenta that are very large compared to the

localization length ploc of the noninteracting QKR, |ψ̂0(k)|2 is
exponentially small compared to the O(g) corrections, and the
momentum distribution is dominated by the contact,

�(k) 
 C
k4

. (B5)

In this regime, we find

C = g2

π2

∑
n,m,p

amap
(
cn

m

)∗
cn

p + O(g3), (B6)

with a1 = 1/
√

2 and am>1 = 1, where we can use Eq. (B2) to
the same accuracy. We can now use the fact that the phases
of the QKR wave functions are essentially random, such that
when averaging over β only the diagonal terms p = m sur-
vive, i.e., (cn

m)∗cn
p 
 δm,p|cn

m|2.
We then obtain

C = g2

π2

(
1 − 1

2

∑
q

|ψ̂0(q)|4
)

+ O(g3). (B7)

For the localized state, we expect 1
2

∑
q |ψ̂0(q)|4 
 1

8ploc
to be

small and the contact is thus

C 
 g2

π2
. (B8)

In summary, the momentum distribution decays exponen-
tially as 2|ψ̂0(k)|2 for |k| � pc and as a power law g2/(π2k4)
for |k|  pc, where the crossover scale is given by

2|ψ̂0(pc)|2 
 g2

π2 p4
c

. (B9)

A similar calculation shows that the contact in the the
ground state is g2/2π2.

2. Tonks-Girardeau regime

In the limit g → ∞, thanks to the Bose-Fermi mapping,
we can write the wave function of the bosons in the localized
regime as

	(x1, x2) = sign(x1 − x2)√
2

det

(
ψ+(x1) ψ−(x1)
ψ+(x2) ψ−(x2)

)
, (B10)

where ψ±(x) are the wave functions of noninteracting
fermions, evolving according to the noninteracting QKR
Hamiltonian, with antiperiodic boundary conditions. The ini-
tial condition is such that the two fermions start in the
momentum state p± = ± 1

2 . At long time, ψ̂±(q) are exponen-
tially localized with a localization length ploc similar to that
of free bosons. In particular, for large enough ploc, we expect
|ψ̂±(q)|2 
 |ψ̂0(q)|2, where ψ̂0(q) is the localized wave func-
tion of a boson starting at zero momentum.

In the Lieb-Liniger basis, the coefficients cn
m are then given

by

cn
m =

∑
σ=±1

σψ̂+

(
n + σm

2

)
ψ̂−

(
n − σm

2

)
. (B11)

Therefore, the momentum distribution reads

�(k) = 1

π2

∑̃
p1,p2,q1,q2

Bp1,p2,q1,q2 (k)ψ̂∗
+(p1)ψ̂∗

−(p2)

× ψ̂+(q1)ψ̂−(q2), (B12)

where

Bp1,p2,q1,q2 (k) = (p1 − p2)(q1 − q2)

(k − p1)(k − p2)(k − q1)(k − q2)
, (B13)

and the sum
∑̃

p1,p2,q1,q2
is over half-integers such that p1 +

p2 = q1 + q2.
Upon averaging over β, we expect

ψ̂∗+(p1)ψ̂∗−(p2)ψ̂+(q1)ψ̂−(q2)


 δp1,q1δp2,q2 |ψ̂+(q1)|2 |ψ̂−(q2)|2, (B14)

since the phases of two different localized states of the QKR
are (almost) uncorrelated.

The averaged momentum distribution reads

�(k) = 1

π2

∑
q1,q2

(q1 − q2)2

(k − q1)2(k − q2)2
|ψ̂+(q1)|2 |ψ̂−(q2)|2.

(B15)
We have observed numerically that for small enough mo-

menta, �(k) is well described by

�(k) 
 |ψ̂+(k)|2 + |ψ̂−(k)|2,

 2|ψ0(k)|2, (B16)

where we have assumed that the width of the wave functions
(given by ploc) is much larger than one to go from the first
to the second line. For large momenta we have �(k) 
 C/k4

with the averaged contact

C 
 1

π2

∑
q1,q2

(q1 − q2)2|ψ̂+(q1)|2 |ψ̂−(q2)|2,


 2E tot.

π2k̄2 , (B17)
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FIG. 8. Coupling matrix elements of the standard (red circles)
and modified (blue triangles) QKRs.

where the averaged total energy is given by E tot. =
k̄2

2

∑
q q2(|ψ̂+(q)|2 + |ψ̂−(q)|2). To go from the first to the

second line, we have assumed that the wave functions are
broad enough such that we can neglect

∑
q q|ψ̂±(q)|2.

A crossover scale between the exponential and the power-
law decay of the momentum distribution can be defined
similarly as in the weak-interaction regime.

APPENDIX C: DYNAMICAL LOCALIZATION
OF A MODIFIED QKR

We analyze a modified QKR model engineered such that
the evolution operator decays as a power law similar to that of

the kicked Lieb-Liniger gas, and we show that this power-law
behavior does not change the localization properties.

We introduce the toy model

Ĥ ′ = p̂2

2
+ KV ′(x̂)

∑
n

δ(t − n), (C1)

with [x̂, p̂] = ik̄, and the kick potential

V ′(x) = 2x4

π4
− 4x2

π2
+ 1, (C2)

for x ∈ [−π, π [, and V ′(x) is of period 2π . This potential
and its first and second derivatives are continuous, whereas its
third derivative is piecewise continuous, which implies that
its Fourier coefficients V̂n decay as n−4. The corresponding
evolution operator over one period is

Û ′ = e−i K
k̄ V ′(x̂)e−i p̂2

2̄k , (C3)

and by the same argument, one has

lim
|p′−p|→∞

〈p′|Û ′| p̂〉 ∝ |p′ − p|−4. (C4)

This behavior is demonstrated in Fig. 8.
The numerical analysis of this model is much simpler than

that of the kicked Lieb-Liniger model, and one convinces one-
self rather quickly that, for generic values of the parameters
(choosing k̄ to not be a rational multiple of π to avoid quantum
resonances), the kinetic energy of the system always saturates
at long times (see Fig. 9). In the localized regime, we observe
that similarly to the Lieb-Liniger case, the wave function
takes a steady-state shape, and decays as |〈p|ψ〉|4 ∝ p−8 in
momentum space for large momenta (see Fig. 9). However,
this power-law tail does not change the fact that the inverse

FIG. 9. Comparison of the dynamics of the single-particle standard and modified QKRs (K = 3, k̄ = 1): (a) saturation of the kinetic energy;
(b) comparison of localized wave functions, shown for t = 216 kicks; panels (c) and (d) show, in log-log scales, wave functions at different
times for the standard, respectively modified QKR (t increases from left to right curves). For the modified QKR, the 1/p4 matrix elements lead
to the population of a power-law tail (∝1/p8), present already after the first kick. However, the tail does localize at long times, with a timescale
much longer than that of exponentially localized “core” of the momentum distribution (which dominates the localized kinetic energy).
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(a)

(b) (c)

FIG. 10. Localized two-body wave function in the Lieb-Liniger basis (a), at t = 228 kicks (K = 3, k̄ = 1, g = 1). The wave function is
exponentially localized in the center-of-mass direction n (b) and displays a long-range 1/m8 tail (c), characteristic of the power-law coupling
[similar to the V ′(x) potential of the modified single-particle QKR].

partition ratio P = ∑
p |〈p|ψ〉|4 is always finite, which is a

hallmark of localization. Because of the power-law nature of
the momentum coupling of Û ′, the momentum distribution
features a long power-law tail even after a single kick. We note
that the large-momentum power-law tail localizes over longer
timescales than the system energy, but still ends up localizing
to a constant value.

To push the analysis further, we can also analyze the
shape of the wave function in the Lieb-Liniger basis |cn

m|2.
This is shown in Fig. 10. While we observe an exponen-
tial localization in the center-of-mass direction n, the shape
of the wave-function coefficients |cn

m|2 displays the charac-
teristic power-law 1/m8 tails along the relative momentum
direction m.
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